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ABSTRACT:
Acoustic line transect surveys are often used in combination with visual methods to estimate the abundance of

marine mammal populations. These surveys typically use towed linear hydrophone arrays and estimate the time

differences of arrival (TDOAs) of the signal of interest between the pairs of hydrophones. The signal source TDOAs

or bearings are then tracked through time to estimate the animal position, often manually. The process of estimating

TDOAs from data and tracking them through time can be especially challenging in the presence of multiple

acoustically active sources, missed detections, and clutter (false TDOAs). This study proposes a multi-target tracking

method to automate TDOA tracking. The problem formulation is based on the Gaussian mixture probability hypoth-

esis density filter and includes multiple sources, source appearance and disappearance, missed detections, and false

alarms. It is shown that by using an extended measurement model and combining measurements from broadband

echolocation clicks and narrowband whistles, more information can be extracted from the acoustic encounters. The

method is demonstrated on false killer whale (Pseudorca crassidens) recordings from Hawaiian waters.
VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0006780
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I. INTRODUCTION

Passive acoustic monitoring can be an important addi-

tion to the traditional visual-based line transect methods for

estimating the abundance of marine mammals. This is espe-

cially relevant for elusive species when groups are fre-

quently missed by visual observers, species with complex

group structure, and species that show behavioral response

to the boat presence.1 Acoustic line transect methods incor-

porate a towed hydrophone array and often rely on estimat-

ing the time difference of arrival (TDOA) of acoustic calls

recorded on hydrophone pairs. TDOA tracks are created by

connecting multiple TDOA estimates from a given source

across multiple time steps, and the resulting tracks are used

to estimate the animal position and/or bearing.2–4 The deci-

sion of which track to assign a newly calculated TDOA esti-

mate to is often performed manually and can be especially

difficult when multiple vocalizing sources are present. This

paper presents a multi-target tracking (MTT) method for

automated TDOA tracking from acoustic recordings of both

narrowband and broadband signals such as the whistles and

echolocation clicks produced by delphinid species. The

method is demonstrated on recordings of false killer whales

(Pseudorca crassidens) obtained during line transect sur-

veys in the Hawaii exclusive economic zone (EEZ), USA.

The Hawaiian Archipelago is home to three distinct

false killer whale populations, one of which appears to be at

a high risk of extinction.1,5,6,59 False killer whales are highly

vocal, producing broadband echolocation clicks7,8 and nar-

rowband whistles.9,10 Due to significant differences in the

signal properties, tracking and localization is typically car-

ried out separately based either on whistles or echolocation

clicks but generally not on both. However, as the types and

rates of vocalizations depend on the animal behavioral con-

text,11 it is expected that a better understanding of a given

acoustic encounter can be gained by performing the tracking

task based on combined whistle and click information.

To obtain TDOA estimates, signals of interest are typi-

cally first detected, and TDOA estimates are obtained using

methods such as the standard cross-correlation (SCC),12,13

cross-correlation of spectrograms,14–16 rhythm analysis,2,3 or

direct difference of arrival times.17 An alternative approach to

estimate TDOAs from the data, which avoids the detect-first

paradigm, is to construct cross-correlograms and track the

TDOAs as slowly varying peaks through time.17 Cross-

correlograms can be computed using generalized cross-correla-

tion (GCC) methods, which offer advantages over SCC when

estimating time delays for the narrowband signals.18

Depending on the bandwidth of the signal of interest

and how many active sources are present, the cross-

correlation function will exhibit multiple peaks per time

step. Some of these peaks are due to true sources, whereas

others are due to spurious peaks called clutter. These

a)This paper is part of a special issue on Machine Learning in Acoustics.
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spurious peaks can result from incorrect associations

between the direct and multipath arrivals of a signal or

incorrect associations between direct signals from different

sources. A range of methods have been proposed to reduce/

eliminate clutter, including classification based on different

properties of the direct and multipath clicks;19 considering

the variance of the arrival angles and rhythm analysis;2,3

assigning clicks from individual animals to click trains;20

considering the cross-correlation of sequences of calls

instead of individual calls;21 or considering only the TDOAs

that achieve a high correlation score.15

Once clutter has been eliminated, the remaining peaks

in the cross-correlation function are assumed to belong to

multiple true sources and must be connected into multiple

TDOA tracks. These multiple TDOA tracks have been pre-

viously estimated using various approaches such as the man-

ual analysis of bearing-time scatterplots;22 automated

analysis based on properties of the signals of interest;17 and

a traditional MTT approach based on multiple hypothesis

tracking.23 Although the automated methods have advan-

tages over the manual analysis, such as being less time-

consuming and producing more objective results, they can

suffer from computational limitations when dealing with

high clutter density and many closely spaced targets.24

We propose to cast the TDOA estimation problem into

a more general statistical MTT framework, where clutter

(false TDOAs), missed detections (when a target is present

but no measurement is collected), and sources’ appearance

and disappearance are incorporated in the problem formula-

tion.24,25 This framework is based on random finite sets

(RFSs) and is computationally less demanding and more

accurate than traditional MTT methods.24 Although the fun-

damental ideas of RFS can be applied to a variety of prob-

lems, each problem requires a careful engineering of the

models and assumptions that drive the filters implemented

within the RFS.

A frequently used filter within the RFS framework is

the probability hypothesis density (PHD) filter,24,26 a com-

putationally tractable approximation of the multi-target

Bayes filter that propagates only the first-order moment of

the multi-target posterior.24 Detailed discussions can be

found in Refs. 24 and 27 The PHD filter has been previously

used to track multiple targets in sonar28,29 and video,30

multiple speakers in reverberant environments,25,31 and mul-

tiple overlapping dolphin whistles in spectrograms.32,33

Although the problems of whistle tracking32,33 and

TDOA tracking appear similar, there are key differences

that require the filters to be derived and defined differently.

These differences pertain to what is measured: a whistle is

produced by only one animal, whereas a TDOA track is pro-

duced by a group of likely multiple animals, resulting in a

much higher track variance in the TDOA domain.

Moreover, in whistle tracking, missed detections are caused

by the signal amplitude falling below a threshold and, gener-

ally, span only a few time steps. Meanwhile, missed detec-

tions in TDOA tracking can also be the result of animals not

vocalizing during certain periods of time, resulting in

increased track fragmentation due to multiple, prolonged

periods of missed detections. Thus, although whistle track-

ing filters can extract meaningful tracks with less informa-

tive measurements based on only one feature (in this case,

frequency),32,33 TDOA tracking filters require more infor-

mative measurements with additional features for successful

tracking.

It has been shown that an improved tracking perfor-

mance can be achieved with the PHD filter by incorporating

the amplitude information to the measurements.34,35

However, the formulation presented in Refs. 34 and 35 per-

forms a joint update step for both newly appearing and per-

sistent targets, which can bias the number of estimated

targets.36 In the formulation proposed in Ref. 36, the new-

born and persistent targets are updated separately, but it

does not incorporate the amplitude information. In this

paper, we derive a PHD filter formulation that incorporates

the amplitude information for more informative measure-

ments and improved tracking and updates persistent and

newborn targets separately for reduced bias in the number

of estimated targets.

The novel contributions of this work are the following:

(i) we present a modified PHD filter formulation to incorpo-

rate the amplitude information and separately update new-

born and persistent targets; (ii) we present a target birth

model that incorporates the measurement amplitude infor-

mation to better inform the appearance of new targets; (iii)

we propose a framework for combining the measurements

from broadband echolocation clicks and narrowband whis-

tles to reduce fragmentation and improve TDOA tracking

with the extended PHD filter; and (iv) we apply the pro-

posed extended PHD filter to track multiple sources in simu-

lated and measured towed array data. The paper is

structured as follows. Section II describes the preprocessing

method to obtain the measurements. Section III describes

the proposed filter and models for TDOA tracking. The

method is demonstrated and compared to a simpler PHD fil-

ter formulation on simulated data in Sec. IV and real data in

Sec. V. The discussion and conclusions can be found in

Secs. VI and VII, respectively.

II. GCC AND CROSS-CORRELOGRAMS

Estimating TDOAs from the cross-correlation of nar-

rowband signals is challenging for multiple reasons. For

example, in Hawaii, false killer whale whistles have a nar-

row bandwidth of about 600 Hz and occur between about

2.5 to 12 kHz (based on unpublished NOAA data).60

Because the width of the cross-correlation peak is propor-

tional to the signal bandwidth, W, approximately 1=W, the

peak is wide for narrowband signals. Moreover, the cross-

correlation function has a quasiperiodic nature when com-

puted from narrowband signals: the main peak occurs at the

time delay, and additional peaks occur with a period of

2p=x0, where x0 is the signal center frequency.38 If the sig-

nal bandwidth is a small fraction of the center frequency

(i.e., W=x0 � 1), which is the case in false killer whale
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whistles, the adjacent peaks have very nearly equal height,

and identifying the largest peak requires either a very large

signal-to-noise ratio (SNR) or exceedingly long observation

times.37

The true peak in the cross-correlation function can be

enhanced by choosing an appropriate frequency weighting

function in the GCC method such as a smoothed coherence

transform (SCOT).18,38,39 Sharpening the peak is useful,

especially in cases with multiple time delays (from multiple

sources), because sharper peaks allow better distinction.

However, sharp peaks are more sensitive to errors intro-

duced by the finite observation time, particularly in cases of

low SNR.38

Limiting the frequency bands to those in which the sig-

nals of interest occur can improve the SNR. When there are

multiple types of overlapping signals present in the record-

ings, it can also help to treat these separately. For example,

when narrowband whistles and broadband echolocation

clicks occur together, it can help to filter out the clicks,

which otherwise dominate the cross-correlation function

because clicks are broadband and high amplitude. For many

odontocetes, clicks can be efficiently filtered out by band

limiting the frequencies of interest. However, false killer

whale echolocation clicks exhibit significant energy below

20 kHz (Ref. 8) and, thus, overlap in frequency with the

whistles. Hence, a different filtering strategy is required.

In this work, we first remove echolocation clicks with a

three-stage click removal process. Stage one employs a

fourth-order bandpass Butterworth filter with cut-off fre-

quencies of 2.5 and 12 kHz. The filter is applied in a forward

and reverse fashion to preserve the phase response. Stage

two employs an adaptive weighting to the filtered time-

domain signal.32,40 Stage three applies median background

subtraction across the frequency bins (61 point median fil-

ter) to the frequency domain signal.32,40 This de-clicking

procedure does not affect the time delay estimates, and a

result of this procedure is shown in Fig. 1. A sample code

for this process is available in Ref. 41.

After de-clicking the full time-domain signal, the gener-

alized cross-correlation smoothed coherence transform

(GCC-SCOT) is computed in 1 s long sliding windows. The

windows have a 50% overlap, resulting in 0.5 s time steps.

The window length was chosen to include full whistle con-

tours; false killer whale whistles are typically 0.44 (60.22) s

in duration.9 The TDOA resolution for this method depends

on the sampling frequency ( fs) and is 1=fs, which for our

data ( fs ¼ 500 kHz) yields 2 ls.

To improve the SNR, only frequencies between 2.5 and

12 kHz (typical for Hawaiian false killer whales) were used

to compute the GCC-SCOT. Other frequencies are set to

zero. We used envelopes of the GCC-SCOT, computed with

the Hilbert transform,42 to provide the time delay estimates

rather than the raw cross-correlation.

The result of these processing steps is a cross-

correlogram consisting of the envelope, Axy, of the GCC-

SCOT per each time step for a given sensor pair. Because

the cross-correlogram consists of the envelope information,

its probability density function (pdf) can be described by a

Rayleigh distribution,42 which is parameterized by its vari-

ance r2
r . To simplify the expressions for the amplitude pdfs

in Sec. III B 4, this cross-correlogram is normalized so that

the segments containing background noise only will have

rr ¼ 1.

Using cross-correlation methods to estimate the time

delay for the broadband signals, such as clicks, is more

straightforward than for narrowband signals such as whis-

tles. Because the bandwidth of broadband signals is large,

the cross-correlation peak is sharp, and the cross-correlation

function is not oscillatory as it is for narrowband signals;

this is true even for SCC. Thus, the processing scheme that

we developed for whistles also works for clicks with some

modification. The signals are first bandpassed with a fourth-

order Butterworth filter with cut-off frequencies of 8 and

30 kHz. Cross-correlograms are then computed based on the

GCC-SCOT with a 1 s long sliding window and 50% over-

lap. The window length and overlap were kept the same as

FIG. 1. (Color online) Spectrograms of a false killer whale recording ( fs ¼ 500 kHz, 8192 point Hanning window, 50% overlap). The raw signal containing

clicks and whistles (left) and the de-clicked signal (right) are shown.
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for whistles to allow us to combine the measurements for

the joint tracking of the different signal types. Although a

1 s window typically contains multiple clicks in each frame,

leading to multiple peaks in the cross-correlation function,

only one of the peaks dominates the function for a given

source. Moreover, the spurious peaks will not form a coher-

ent track over multiple time steps, whereas the dominant

(correct) peaks will. As they were for whistles, the cross-

correlograms based on the clicks are normalized so that the

Rayleigh parameter for noise rr is unitary.

Both of the resulting normalized cross-correlograms

(based on whistles and clicks) are used to obtain the mea-

surements from which TDOA tracks are extracted as dis-

cussed in Sec. III.

III. GAUSSIAN MIXTURE PROBABILITY HYPOTHESIS
DENSITY (GM-PHD) FOR TDOA TRACKING

Assuming Gaussianity of the noise processes and linear-

ity of the underlying models, the analytic solution to the

PHD filter24,26 is the Gaussian mixture probability hypothe-

sis density (GM-PHD) filter.43 Intuitively, the PHD, vkjkðxÞ,
is a function whose peaks indicate the likely target positions

and whose integral gives the expected number of targets in a

given region of the state space.43 In the GM-PHD approxi-

mation to the PHD filter, the PHD function is approximated

with a mixture of weighted Gaussian components that are

propagated recursively through time. The means and cova-

riances of the components are predicted and updated with

the Kalman filter,44 whereas the weights are predicted and

updated with the PHD filter equations.43 New components,

representing new targets, are introduced to the recursion

through a birth PHD, which also assumes that the PHD for

target births is a Gaussian mixture.43 Moreover, when new

components are initiated based on the available measure-

ments, the PHD equations need to be modified so that the

newborn and persistent components are predicted and

updated separately.36 To maintain computational feasibility,

pruning and merging techniques are employed at the end of

each time step.43 This is followed by the estimation of mul-

tiple target states from the posterior PHD, which is achieved

by taking the Gaussian components with the weights above

some threshold.43 To maintain continuity of the target

tracks, individual labels are propagated along with the

components.32,45

The GM-PHD filter requires specification of the under-

lying models and parameters. These are application specific,

and different models will affect the filter’s performance.

A better performance in terms of distinguishing targets from

clutter can be achieved when the GM-PHD filter measure-

ment model is extended to include the amplitude informa-

tion.34,35 However, this requires the PHD equations to be

re-derived. While Refs. 34 and 35 derive the PHD filter that

incorporates the amplitude information, they update new-

born and persistent targets jointly, which can bias the num-

ber of estimated targets.36 In Ref. 36, the newborn and

persistent targets are updated separately, but they do not

derive the updated equations that would incorporate the

amplitude information. In this paper, we derive the PHD fil-

ter that incorporates the amplitude information and updates

persistent and newborn targets separately. The derivation is

shown in the supplementary material.46 For brevity, the dis-

cussion in this paper is limited to the parts of the model, pre-

diction, and update steps that are affected by including the

amplitude feature. The pruning, merging, and state estima-

tion parts of the filter are not changed from a standard GM-

PHD implementation43 and still controlled by merging U,

pruning Tr, and weight wth thresholds and the maximum

number of components per time step Jmax.

This section is organized as follows. The training data

for certain GM-PHD filter parameters and models is

described in Sec. III A, and the specific models and parame-

ters are discussed in Sec. III B. The extended GM-PHD

equations with the amplitude feature, which include a sepa-

rate update for newborn and persistent targets, are discussed

in Sec. III C. The parameters used in the filter are summa-

rized in Table I.

A. Training data

Certain parameters in the GM-PHD need to be specified

based on the characteristics of the system under consider-

ation, and training data is used to learn these parameters.

For the purpose of obtaining the training data, a 2.2 h long

encounter containing false killer whale vocalizations was

considered from the data collected with a linear towed array

(see Sec. V for details). This training encounter is different

from the test encounter used in Sec. V and was hand-

annotated as follows. A cross-correlogram was formed as

described in Sec. II for whistles. The annotations contained

34 TDOA tracks in total with a median track duration of

2.6 min (interquartile range of 10.8 min) and some tracks as

long as 61.7 min. Because the TDOAs in these tracks did

not occur at regular, fixed intervals and they are noisy, they

were first fitted with a polynomial and then interpolated to

obtain a sample for every time step. The polynomial model

TABLE I. Summary of parameters used in the GM-PHD-SA filter for TDOA tracking. pS and pk
D denote the probabilities of the survival and detection

respectively; U, Tr, and wth denote the merging, pruning, and weight thresholds respectively; Jmax denotes the maximum allowed number of Gaussian com-

ponents in one iteration; �b denotes the expected number of newborn targets; r2
v and R denote the system and measurement noise variances, respectively; rk

denotes the clutter rate; (d1,d2) denote the lower and upper expected SNR values for the targets (linear scale); and the symbol “*” denotes parameters learned

from the training data.

pS pk
D U Tr wth Jmax �b r2

v [(s/s2)2]* R [s2]* rk* (d1,d2)*

0.99 0.4 4 0.001 0.1 100 0.0005 1.3 �10�9 4.5 �10�8 1 (3.16,100)

3402 J. Acoust. Soc. Am. 150 (5), November 2021 Gruden et al.

https://doi.org/10.1121/10.0006780

https://doi.org/10.1121/10.0006780


order was selected for each track based on the goodness of

fit criteria—root mean squared error (RMSE). To prevent

overfitting, the lowest model order at which the RMSE

stopped changing significantly was selected, the residuals

plot was examined, and the significance of the coefficients

was evaluated by examining the confidence intervals. The

polynomially fitted and interpolated TDOA tracks, denoted

by zp, together with their corresponding cross-correlogram

containing the background noise and clutter information

became our training data. From this data, the first- and

second-order derivatives ( _zp and €zp) of zp were obtained.

B. Models for TDOA tracking

Most target tracking techniques are model based and

rely on two basic models, collectively known as the state

space models: a system (or dynamic) model that describes

target motion and a measurement (or observation) model

that relates the noisy measurements to the target states, i.e.,

the full descriptions of targets.47 The PHD filter requires

additional models that govern the clutter (false alarms) and

birth (appearance) of new targets, which is discussed below.

1. System model

In our application, the aim is to track multiple TDOAs

from different sources on a cross-correlogram. The state

vector x, thus, consists of the TDOA information (s) and

rate of change of TDOA ( _s),

x ¼ s; _s½ �T ; (1)

where ½��T denotes the transpose. The variables s and _s can

be interpreted as a source position and source velocity in

TDOA space, respectively.

It is assumed that the target state develops according to

the nearly constant velocity (NCV) model,47 also referred to

as a discrete white noise acceleration model.48 The second-

order derivative of the position (acceleration) is assumed to

be a zero-mean random process, and the system model is

xk ¼ Fxk�1 þ nk�1 ¼
1 D

0 1

" #
xk�1 þ nk�1; (2)

where subscripts k and k – 1 denote the current and previous

time steps, respectively, D denotes the time interval between

the overlapping windows, and nk�1 is the zero-mean white

noise process with covariance Q, which can be expressed as48

Q ¼

1

4
D4 1

2
D3

1

2
D3 D2

2
664

3
775r2

v ; (3)

where rv is the standard deviation of the process noise and

its physical dimension is that of acceleration.

The choice for the value of rv should be on the order of

the maximum acceleration magnitude, aM, and a practical

range should be 0:5aM � rv � aM.48 The value of aM for

our application was learned from the hand-annotated data

(described in Sec. III A) to be 7:3� 10�5 and, therefore,

rv ¼ 0:5aM ¼ 3:7� 10�5 s/s2.

2. Measurement model

Although acoustic line transect surveys typically use

only timing information for tracking,4 having more informa-

tive measurements can be beneficial. For example, adding

amplitude information as a measurement improved the

tracking performance in radar and sonar applications.34,35,49

When track formation is based on the consistency of ampli-

tude returns (in addition to the consistency of target motion),

better distinction between targets and clutter is achieved.35

Although our application is based on passive (not active)

acoustics, it is still reasonable to expect that the amplitude

of the peaks in the cross-correlation associated with the tar-

gets will be relatively consistent and higher in amplitude

than peaks resulting from clutter.

The measurements in this study are obtained by finding

all of the local maxima in the cross-correlograms (computed

as described in Sec. II) above a threshold k in each time step

k. Thus, the measurements consist of the measured TDOA

information, z, and amplitude, a, of Axy:

~z ¼ z; a½ �T ; (4)

and the measurement model can be written as

~zk ¼
1 0 0

0 0 r2
r

" #
~xk þ

1

0

" #
gk; (5)

where r2
r is the background noise variance (normalized to

unity), ~x denotes the augmented state, ~x ¼ ½xT ; d�T , and d
denotes the expected SNR. Note that ~x is constructed here

for the sake of derivation; however, only x is directly propa-

gated through time with the GM-PHD filter. As d is not

known, in practice, it is marginalized out from the final

equations as shown below. The measurement noise, gk, is

assumed to be independent Gaussian white noise with a var-

iance R.

For certain applications, the variance of the TDOA

measurement can be expressed analytically as a function of

the SNR, bandwidth, integration time, and center frequency

of the signal.50 For the towed arrays, the uncertainty in the

TDOA measurement is also affected by the uncertainty in

the hydrophone position.51 If the hydrophone displacements

can be measured or estimated, the variance of the TDOA

can be computed analytically.51 However, estimating the

displacement requires position sensors in the array, which

increases the cost and complexity of the system and is often

not available. Moreover, delphinid groups consist of multi-

ple closely swimming animals, which also affect the accu-

racy of the TDOA measurement. Thus, R was learned from

the hand-annotated data, described in Sec. III A, as follows.

First, the absolute difference between the hand-annotated
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and training data was computed. Second, the median abso-

lute deviation (MAD), which is robust to outliers, was com-

puted to be 2:1� 10�4 s. This resulted in R ¼ MAD2 ¼ 4:5
�10�8 s2.

To determine how likely it is that a measurement is due to

a target, the target measurement likelihood function is required

and is determined from Eq. (5). If we assume that a is indepen-

dent of z, then the target likelihood function ~gkð~zj~xÞ is35

~gkð~zj~xÞ ¼ gkðzjxÞgaðajdÞ; (6)

where gkðzjxÞ denotes the target likelihood based on the

TDOA information and gaðajdÞ denotes the target amplitude

likelihood function. For clarity, the subscript k is left

implicit in the function arguments.

The target amplitude likelihood gaðajdÞ is defined in

Sec. III B 4, and gkðzjxÞ is

gkðzjxÞ ¼ N ðz; ẑ; SÞ; (7)

where Nð�; ẑ; SÞ denotes a Gaussian density function with

mean ẑ and covariance S.

Further, measurements are obtained given a certain prob-

ability of detection, pD, which can be trained from the

data32,33 when no prior knowledge is available or it can be

approximated analytically. In sonar and radar,35,49 the proba-

bility of detection given a threshold k can be modeled as the

function of the SNR only, pk
DðdÞ. However, in passive acous-

tic applications based on biological signals, the overall proba-

bility of detection is likely a product of two components:

detectability and availability.52 Detectability is the probability

that the animal is detected given that it produces a vocaliza-

tion. This concept is similar to the way in which the probabil-

ity of detection is used in sonar, and it depends on the SNR.

Availability is the probability that an animal will produce a

vocalization and requires knowledge of the vocalization rate.

Because vocalization rates are not available for false killer

whales, we take pk
D to be lower than what is expected based

on the SNR alone, which would be pk
D ¼ 0:63; see Eqs. (17)

and (18) in Ref. 34 for calculation, assuming values k ¼ 3:7
and SNR between 5 and 20 dB (see Sec. III B 4). We used

pk
D ¼ 0:4 as an empirically determined conservative estimate.

3. Clutter model

As measurements originate from targets and clutter, the

PHD filter framework requires a model for clutter that defines

how likely it is that a measurement is the result of clutter (i.e.,

clutter likelihood function), how much clutter is expected, and

how clutter is distributed across the observation space.

Assuming that a is independent of z, the likelihood

function for clutter ~ckð~zÞ is35

~ckð~zÞ ¼ ckðzÞcaðaÞ; (8)

where ckðzÞ denotes the clutter likelihood based on the

TDOA information, and caðaÞ denotes the clutter amplitude

likelihood function.

The clutter amplitude likelihood caðaÞ is discussed in

Sec. III B 4. In this work, we assume a uniform distribution

of clutter in TDOA space, therefore, the clutter is not depen-

dent on the measurement, i.e., ckðzÞ ¼ ck, and ck is

ck ¼ Uð�sm; smÞ; (9)

where UðA;BÞ denotes a uniform distribution between the

parameters A and B, and sm ¼ ds=c with sensor separation

ds and speed of sound c (1500 m/s).

The number of clutter points per time step is assumed

to be Poisson distributed and is drawn from a Poisson distri-

bution parameterized by a clutter rate, rk. The clutter rate

was learned from the training data (Sec. III A) to be rk ¼ 1.

4. Amplitude feature likelihood models

To use the amplitude likelihoods in practice, the type

and shape of the distribution must be determined. It can be

shown that the envelope of a narrowband random signal is

Rayleigh distributed42 and is a function of only its variance

r2
r . Thus, a Rayleigh distribution can be used to describe

gaðajdÞ and caðaÞ.34,35 Assuming that the background noise

is normalized (rr ¼ 1) and the measurements are obtained

by considering peaks (local maxima) in the Axy above a

threshold k, one can express caðaÞ as35

ck
aðaÞ ¼ a exp

k2 � a2

2

� �
; a � k: (10)

The threshold, k, is typically determined for a specified

value of false alarms, pFA, and given the assumptions above

(normalized background and Rayleigh distribution), the

threshold is k ¼ sqrtð�2 	 logðpFAÞÞ [obtained by rearrang-

ing Eq. (5) in Ref. 34]. In this work, we chose pFA ¼ 0.001;

thus, k ¼ 3:7.

The amplitude likelihood for targets, gaðajdÞ, is depen-

dent on the expected SNR, d. However, when the expected

SNR is not known, the parameter d can be marginalized

over a range of possible values ½d1; d2� and the expression

for the amplitude likelihood for the targets, which is not

dependent on d, can be written as34,35

gaðaÞ ¼
2 exp

�a2

2ð1þ d2Þ

 !
� exp

�a2

2ð1þ d1Þ

 ! !

aðlnð1þ d2Þ � lnð1þ d1ÞÞ
: (11)

In this work, the values for ½d1; d2� are learned from the

data as follows. The training data, described in Sec. III A,

contains TDOA and amplitude information from a normal-

ized cross-correlogram. The SNR is computed as

SNR ¼ a=EN , where a denotes the target cross-correlation

amplitudes (a squared quantity proportional to the hydro-

phone signal energy), and EN is the total background noise

energy. The background noise energy is estimated by com-

puting the median value across all time steps t of the cross-

correlogram, Axy, resulting in a vector of noise energies per
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TDOA. The total background noise energy, EN, is then

obtained as the median value of this vector,

EN ¼ median
s

median
t

Axyðt; sÞ
� �� �

: (12)

The resulting SNR values were distributed between 5

and 20 dB, which is equivalent to ½d1; d2� ¼ ½3:16; 100�.

5. Appearance of new targets

New targets are introduced to the recursion with a birth

PHD. The birth PHD is a density with peaks that corre-

sponds to the positions that the targets are likely to appear in

at a given time step. It should be defined in a way that cov-

ers the region in which targets are expected to appear.36 In

some applications, the birth region is assumed to be known

a priori and is concentrated to small specific areas.43 When

the birth regions are unknown, it is advantageous to base the

birth PHD on the measurements.36 Basing the birth PHD on

the measurements ensures that the components get intro-

duced where the likelihood of a new target appearing is

high. Moreover, it is often useful to assume that not every

measurement is equally likely to initialize a newborn tar-

get.32,33 In this study, the measurements that are more likely

to initialize a newborn target are the ones with a higher

amplitude.

We obtain newborn Gaussian components from the

measurements as follows. A Gaussian mixture, pðxÞ, is con-

structed at each time step, k, from the measurements,

~z 2 ~Zk, and prior information on the rate of change of the

TDOA, _zp, which was obtained from the training data. The

weights, wðjÞ, of the mixture are set proportional to the mea-

sured amplitudes, aðjÞ, such that wðjÞ ¼ aðjÞ=
Pj~Zk j

j¼1 aðjÞ, where

j~Zkj denotes the cardinality of the measurement set at time

k. The means of the mixture are mðjÞ ¼ ½zðjÞ; _zðjÞp �
T
, where _zðjÞp

denotes the rate of change of TDOA drawn from a prior

f ð _zpÞ. The covariance, PðjÞ, is the same for all components

in the mixture and is equal to Q in Eq. (3) with the off diago-

nal elements set to zero. Formally,

pðxÞ ¼
Xj~Zk j

j¼1

wðjÞN x; mðjÞ;PðjÞ
� �

: (13)

The prior, f ð _zpÞ, was learned from the training data

(Sec. III A) by fitting _zp with a Gaussian mixture model

(GMM).53 The model order was selected based on the

Bayesian information criterion,53 and f ð _zpÞ was determined

to be a mixture of four Gaussians,

f ð _zpÞ ¼
X4

n¼1

bðnÞN ðx; lðnÞ;RðnÞÞ; (14)

where bðnÞ; lðnÞ, and RðnÞ are the weights, means, and variances

of the GMM, respectively. For our dataset, these parameters

were b¼½0:17;0:06;0:14;0:63�; l¼½�5:2�10�9;9:6�10�5;

4:6�10�5;5:9�10�6�, and R¼½3:1�10�16;4:1�10�9;4:3
�10�10;2:9�10�11�.

The birth PHD is constructed by summing Nb weighted

Gaussian components and has the form

ckðxÞ ¼
XNb

i¼1

w
ðiÞ
k;bN x; m

ðiÞ
k;b;Q

ðiÞ
� �

: (15)

Note that the weights of the newborn components, w
ðiÞ
k;b,

sum to the expected number of newborn targets per time

step, �b, thus, ck is a density but not a pdf. The means, m
ðiÞ
k;b,

of newborn components are drawn from pðxÞ [Eq. (13)].

The covariances are equal to Q [Eq. (3)]. Their weights,

w
ðiÞ
k;b, are proportional to the weights in pðxÞ and, thus, also

proportional to the amplitudes, and set to the sum of the

expected number of newborn targets, which we set to

�b ¼ 0:0005. Note that this weight assignment makes the fil-

ter biased toward higher amplitude measurements, which

are more likely originating from the targets. Hence, �b can

be set to a lower value and still allows for successful

tracking.

C. GM-PHD filter with amplitude feature (GM-PHD-SA)

The PHD and, consequently, the GM-PHD equations

need to be modified when using an extended measurement

model with the amplitude feature as demonstrated in Refs. 34

and 35. Additionally, when the birth PHD is based on the

measurements, the prediction and update steps need to be

performed separately for the persistent and newborn targets36

to avoid biasing the number of estimated targets. We present

combined GM-PHD equations that take into account both the

extended measurement model and the separate prediction and

update for the newborn and persistent targets, henceforth,

referred to as the GM-PHD-SA filter (“S” stands for the sepa-

rate prediction and update for the newborn and persistent tar-

gets, and “A” stands for the amplitude). Detailed derivations

are given in the supplementary material.46

The PHD, vkjkðxÞ, can be expressed as two PHDs, one

for persisting targets, vkjk;pðxÞ, and one for newborn targets,

vkjk;bðxÞ. In this paper, the subscripts kjk � 1 and kjk are

used to indicate the predicted and updated elements, respec-

tively. The subscripts p and b are used to denote the persis-

tent and newborn targets, respectively. The probability of a

target surviving from one step to another is assumed to be

state independent and the same for the persistent and new

targets, pS;pðxÞ ¼ pS;bðxÞ ¼ pS.

The prediction step of the GM-PHD-SA filter stays

unmodified from the standard filter.43 The predicted PHD

for the persistent, vkjk�1;pð�Þ, and newborn, vkjk�1;bð�Þ, targets

consists of Gaussian components and can be written

as34,36,43

vkjk�1;pðxÞ ¼
XJk�1

i¼1

w
ðiÞ
kjk�1
N x; m

ðiÞ
kjk�1

;P
ðiÞ
kjk�1

� �
; (16)

vkjk�1;bðxÞ ¼ ckðxÞ; (17)
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where w
ðiÞ
kjk�1

¼ pSw
ðiÞ
k�1, the means, m

ðiÞ
kjk�1

, and covariances,

P
ðiÞ
kjk�1

, of the persistent targets are predicted with a Kalman

filter,43,44 ckð�Þ denotes the birth PHD defined in Eq. (15),

and Jk�1 denotes the number of Gaussian components (per-

sistent and newborn from the previous time step).

The update step of the GM-PHD-SA filter is modified

to incorporate amplitude information and is performed sepa-

rately for the persistent and newborn targets. The updated

PHD for persistent targets, vkjk;pð�Þ, becomes

vkjk;pðxÞ ¼ 1� pk
D

h i
vkjk�1;pðxÞ

þ
X
~z2~Z

k
k

XJk�1

j¼1

w
ðjÞ
kjkð~zÞN x; m

ðjÞ
kjkð~zÞ;P

ðjÞ
kjk

� �
; (18)

where 1� pk
D represents a probability of the missed detec-

tion, and ~z denotes a measurement in a measurement set, ~Z
k
k ,

above a threshold, k. The means, mkjk, and covariances, Pkjk,

of the updated mixture are calculated from vkjk�1;pðxÞ with

the Kalman filter update,43,44 and the updated weights

w
ðjÞ
kjkð~zÞ are calculated as

w
ðjÞ
kjkð~zÞ ¼

w
ðjÞ
kjk�1

gaðaÞgðjÞk;pðzjxÞ
Lð~zÞ (19)

and

Lð~zÞ ¼ rkckck
aðaÞ þ gaðaÞ

XNb

l¼1

w
ðlÞ
k;bg

ðlÞ
k;bðzjxÞ

þ gaðaÞ
XJk�1

l¼1

w
ðlÞ
kjk�1

g
ðlÞ
k;pðzjxÞ; (20)

where the first term in Eq. (20) relates to the clutter with the

clutter rate, rk, and the clutter likelihood, ck, and amplitude

likelihood for clutter, ck
aðaÞ, are defined in Eqs. (9) and (10),

respectively. The second term relates to Nb newborn targets,

where gaðaÞ is the amplitude likelihood for the targets

defined in Eq. (11). gk;bð�Þ denotes the target likelihood func-

tion for the newborn targets in Eq. (7), where ẑ ¼ Hm
ðlÞ
k;b is

the predicted measurement, S ¼ HQðlÞHT þ R is the innova-

tion, and H ¼ ½1; 0�. The third term relates to Jk�1 persistent

targets, where gk;pð�Þ denotes the target likelihood for the per-

sistent targets in Eq. (7), where ẑ ¼ Hm
ðlÞ
kjk�1

and

S ¼ HP
ðlÞ
kjk�1

HT þ R.

Because the newborn targets are initiated based on the

measurements, they are assumed to be always detected, i.e.,

pk
D ¼ 1. The update for newborn targets, vkjk;bðxÞ, becomes

vkjk;bðxÞ ¼
X
~z2~Z

k
k

XNb

i¼1

w
ðiÞ
kjk;bð~zÞN x; m

ðiÞ
kjk;bð~zÞ;P

ðiÞ
kjk;b

� �
: (21)

For the newborn targets, the means and covariances are

computed from ckðxÞ with the Kalman filter update,44 and

the updated newborn weights w
ðiÞ
kjk;b are calculated as

w
ðiÞ
kjk;bð~zÞ ¼

w
ðiÞ
k;bgaðaÞgðjÞk;bðzjxÞ
Lð~zÞ : (22)

Intuitively, what is gained by using the GM-PHD-SA

filter can be understood if one considers the terms that relate

to the amplitude likelihoods in Eq. (19) and rewrites the

equation as

w
ðjÞ
kjkð~zÞ ¼

w
ðjÞ
kjk�1

g
ðjÞ
k;pð�Þ

ck
aðaÞ

gaðaÞ
rkckþ

XNb

l¼1

w
ðlÞ
k;bg

ðlÞ
k;bð�Þþ

XJk�1

l¼1

w
ðlÞ
kjk�1

g
ðlÞ
k;pð�Þ

;

(23)

where the amplitude likelihood ratio, ck
aðaÞ=gaðaÞ, controls

which term dominates the denominator. When the amplitude

of a measurement is large, a
 1 (i.e., when the measure-

ment originates from a target), then ck
aðaÞ=gaðaÞ � 1, and

the terms related to the newborn and persistent targets domi-

nate. In this case, the weight is mainly determined by gkð�Þ,
i.e., the TDOA part of the measurement only. When the

amplitude of a measurement is very small, a� 1 (i.e., when

the measurement originates from a clutter), then

ck
aðaÞ=gaðaÞ 
 1, and the clutter term dominates. In this

case, the weight is determined based on both the amplitude

and TDOA information.

IV. SIMULATIONS

We use simulation to demonstrate that the GM-PHD-

SA filter described in Sec. III can extract multiple TDOA

tracks immersed in clutter and evaluate its performance

against a simpler version of the filter (discussed below). The

number of targets in the simulation varies randomly between

one and seven, and they are observed in the clutter over the

region of TDOA space [�0.02, 0.02] s, which corresponds

to a 30 m sensor separation. Note that negative TDOA val-

ues correspond to sources ahead of the array, and positive

TDOA values correspond to the sources behind the array.

The target states are TDOA and rate of change of the TDOA

[Eq. (1)] and are assumed to evolve according to

the constant velocity (CV) model in Eq. (2), where

r2
v ¼ 1:3� 10�9. At each time step, each target has the sur-

vival probability pS ¼ 0:99 and probability of detection

pk
D ¼ 0:4. The targets are assumed to appear according to

the model described in Sec. III B 5.

Measurements contain two features, TDOA and ampli-

tude information, and are obtained every D ¼ 0.5 s. The

TDOA part of the measurements for the targets is simulated

based on the real-world hand-annotated TDOA tracks with

the noise variance set to R ¼ 4:5� 10�8. The TDOA part of

the measurements for the clutter is simulated based on a uni-

form distribution in TDOA space [Eq. (9)]. The number of

clutter points has a Poisson distribution, and two different

clutter rates, rk, are considered, rk ¼ 1 and rk ¼ 10, per time

step to simulate the lower and higher clutter scenarios. The

amplitude part of the measurements for the targets and
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clutter is simulated by randomly drawing from the pdfs in

Eqs. (11) and (10), respectively, with k ¼ 3:7 and the

expected target SNR bounds ½d1; d2� ¼ ½5; 20� dB.

One hundred different cases are simulated for a given

clutter rate, and the filter performance is quantified by preci-

sion, recall, coverage, fragmentation, and mean deviation as

described in Ref. 54. These are typically used to evaluate

the whistle tracking performance32,33,40,54 and measure the

quantity and quality of the detected tracks. Briefly, precision

measures the percentage of the detections that are correct,

recall measures the percentage of the expected detections

that are retrieved, coverage measures the average percentage

of a ground truth track that is detected, fragmentation mea-

sures the average number of detections per ground truth

track, and mean deviation measures the average deviation

between the ground truth track and its corresponding

detection(s).

Filter performance is also benchmarked against a sim-

pler implementation of the GM-PHD filter, henceforth

referred to as the GM-PHD-S filter, which includes separate

predictions and updates for the persistent and newborn tar-

gets but does not use the amplitude feature in the measure-

ments.32 Note that because the GM-PHD-S filter has no

amplitude information to inform the newborn weights, these

are set to be the same for all newborn targets, i.e.,

w
ðiÞ
k;b ¼ �b=Nb. Unlike the GM-PHD-SA, the newborn

weights in the GM-PHD-S are evenly distributed between

all of the measurements (targets and clutter). As a conse-

quence, if �b is set too low, all of the newborn tracks will

decay faster and not pass the state estimation stage.

Therefore, GM-PHD-S requires a higher value of �b than

GM-PHD-SA does to successfully extract the tracks. Note,

if �b was left the same as for the GM-PHD-SA filter, GM-

PHD-S would extract no tracks. Thus, the parameter �b had

to be adjusted to �b ¼ 0:005 to improve the performance.

The rest of the parameters remained the same as those for

the GM-PHD-SA filter.

The results of the tracking on the 100 simulated cases

for each rk are shown in Table II, and it can be seen that the

GM-PHD-SA filter outperforms the GM-PHD-S filter.

When the clutter rate is low (rk ¼ 1), the GM-PHD-SA filter

has a recall, coverage, and mean deviation similar to that of

the GM-PHD-S filter, but precision is significantly better

and fragmentation is lower. When the clutter rate is

high (rk¼ 10), the performance of the GM-PHD-SA filter

remains stable, but the performance of the GM-PHD-S filter

deteriorates. Two examples, one for each clutter rate, and

corresponding tracking by both filters are shown in Fig. 2.

In each example, six TDOA tracks are present, some of

which overlap. As expected from the results in Table II, the

GM-PHD-SA filter’s performance remains stable regardless

of the amount of clutter in the measurements [Figs. 2(b) and

2(e)], whereas the GM-PHD-S filter’s performance deterio-

rates significantly with higher clutter rate [Figs. 2(c) and

2(f)].

V. REAL DATA

This section applies the proposed framework to field

acoustic recordings and combines the measurements origi-

nating from different signal types to improve the tracking

and insight about the acoustic encounter.

Data were collected during the Hawaiian Islands

Cetacean and Ecosystem Assessment Survey (HICEAS) in

2017.55 A linear hydrophone array sampling at fs ¼ 500 kHz

was towed at 10 kn, 335 m behind the vessel, at depths

between 10 and 15 m. We used two hydrophones separated

by ds ¼ 31:1 m in this study (type HTI-96-min, Long Beach,

MI, and a combined sensitivity with custom built preampli-

fiers of �144 dB 6 5 dB re 1 V/lPa from 2 to 100 kHz and

approximately linear roll-off to �156 dB 6 2 dB re 1 V/lPa

at 150 kHz). A representative encounter with false killer

whales was chosen, which included multiple subgroups of

animals that were reasonably well separated in the TDOA

space and contained a good representation of the different

types of TDOA tracks. This encounter is different from the

encounter used for the filter parameter training in Sec. III A.

Data were processed as described in Sec. II to obtain

the normalized cross-correlograms based on the whistles

and clicks. Then the measurements, ~zk ¼ ½zk; a�, were

obtained by finding all of the peaks in the normalized cross-

correlograms above the threshold k ¼ 3:7. In addition to

two measurement sets (one based on the whistles and one on

the echolocation clicks), a third measurement set was

formed by combining the extracted peaks from the whistle

and click cross-correlograms. The combined measurements

are shown in Fig. 3.

The measurement sets were hand annotated to obtain

the ground truth information. In the example considered

here, three subgroups are present, two in which animals

whistle and echolocate and one in which animals echolocate

only [Fig. 3(a)]. In some subgroups, the measurements show

a large variance around the mean group trajectory. The

TDOA track from the echolocate-only subgroup crosses the

TABLE II. Performance [median (interquartile range)] of the GM-PHD-S and GM-PHD-SA filters on the 100 cases of simulated data for two different clut-

ter rates (rk). R denotes recall, P is the precision, Cover denotes the coverage, Frag denotes the fragmentation, and lDev denotes the mean deviation from

the ground truth data.

Filter type rk R (%) P (%) Cover (%) Frag lDev (s)

GMPHD-S 1 100 (0) 6.2 (4.3) 93.6 (7.6) 2.6 (1.1) 1.3 �10�4 (5.5 �10�5)

GMPHD-SA 100 (0) 100 (13.4) 93.8 (6.8) 1 (0.3) 1.3 �10�4 (5.7 �10�5)

GMPHD-S 10 7.1 (33.3) 50 (100) 48.7 (99.6) 0.5 (1) 5.7 �10�5 (3.5 �10�4)

GMPHD-SA 100 (0) 100 (0) 92.7 (10.8) 1.2 (0.3) 1.4 �10�4 (5.4 �10�5)
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FIG. 2. (Color online) Two example simulations for different clutter rates rk and the corresponding GM-PHD-SA and GM-PHD-S detections. [(a)–(c)]

Simulation with rk ¼ 1 and [(d)–(f)] simulation with rk ¼ 10. Six ground truth tracks (gray lines) are present in both examples and are shown in (a) for rk ¼
1 and (d) for rk ¼ 10. GM-PHD-SA detections (colored lines) are shown in (b) for rk ¼ 1 and (e) for rk ¼ 10. Note that different colors denote different

detections (i.e., track fragments). GM-PHD-S detections (colored lines) are shown in (c) for rk ¼ 1 and (f) for rk ¼ 10. All TDOA measurements (clutter and

target) are denoted by gray dots.

FIG. 3. Measurements obtained from hand-annotating cross-correlograms (based on clicks and whistles) of a false killer whale encounter. The top row

shows the measurements associated with the targets. (a) TDOA measurements derived from whistle (gray diamonds) and echolocation click (black �) cross-

correlograms with corresponding interpolated ground truth tracks (black lines); and (b) amplitudes of the cross-correlation measurements with corresponding

target amplitude pdf [Eq. (11)]. The bottom row shows the measurements associated with clutter. (c) TDOA measurements derived from both types of cross-

correlograms; and (d) amplitude of the cross-correlation measurements with corresponding clutter amplitude pdf [Eq. (10)].
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tracks of the other two subgroups. Each hand-annotated

track was fitted with a polynomial and interpolated to obtain

a ground truth TDOA track for each subgroup. The polyno-

mial orders examined were between one and nine. The best

polynomial order for each track was selected as discussed in

Sec. III A. The best order ranged between two and five,

depending on the measurement set under consideration. For

the combined measurement set, the order was three for the

two subgroups that produced clicks and whistles and five for

the subgroup that only echolocated. The interpolated ground

truth TDOA tracks based on the combined measurements

are shown in [Fig. 3(a)]. The measurements contain a high

amount of clutter [Fig. 3(c)]. The amplitude measurements

are also shown [Figs. 3(b) and 3(d)], and they follow the

assumed amplitude pdfs from Eqs. (10) and (11),

respectively.

The GM-PHD-SA filter (Sec. III, Table I) was used to

track TDOAs of the subgroups from the measurements. The

filter performance was quantified using precision, recall,

coverage, fragmentation, and mean deviation from the

ground truth track.54 To investigate the feasibility of the fil-

ter for TDOA tracking from acoustic recordings, four sce-

narios are considered. To facilitate comparisons with the

other filters, the measurements, annotated, and interpolated

data for each of these scenarios are included in the supple-

mentary material.46

In the first scenario, the TDOA measurements from a

single subgroup of the whistling and clicking animals were

augmented with simulated clutter; i.e., a single target

immersed in simulated clutter. The clutter was simulated

with a uniform distribution in TDOA space [Eq. (9)], where

the number of clutter points have a Poisson distribution with

a clutter rate of rk ¼ 1 per time step. The clutter amplitude

was simulated by randomly drawing from the pdf in Eq.

(10), where k ¼ 3:7. The GM-PHD-SA tracking results

showed that while the subgroup was tracked when only

measurements from either whistles and (to some extent)

clicks were available, better results were achieved when

both measurements were combined (Fig. 4). In all of the

cases, the subgroup was detected in fragments during which

the animals were vocally active, but in the combined mea-

surement case, the extracted fragments of the track were

longer and better coverage of the TDOA track was achieved

compared to when separate measurements were considered

(Table III).

In the second scenario, the TDOA measurements from

all three of the subgroups were augmented with simulated

clutter; i.e., multiple targets immersed in simulated clutter.

The clutter was simulated as in the first scenario. The GM-

PHD-SA filter successfully tracked all three of the sub-

groups (Fig. 5). Note that in the whistle measurements, only

two subgroups were present, whereas in the click and com-

bined measurements, all three of the subgroups were pre-

sent. When tracking was based on combined measurements,

the extracted fragments of the three subgroups were longer

and the precision was higher compared to the tracking based

on the measurements from the echolocation clicks only

(Table III). When tracking was based on whistle measure-

ments, the precision was better and the coverage was similar

compared to the performance on the click and combined

measurements (Table III). However, because one of the sub-

groups did not whistle, the information on that group was

missed in this case. In general, the GM-PHD-SA filter main-

tains the tracks through shorter periods of silence (which

FIG. 4. (Color online) GM-PHD-SA tracking of TDOAs from a subgroup of false killer whales immersed in simulated clutter (scenario 1). Tracking from

the whistle (top), echolocation click (middle), and combined (bottom) cross-correlogram measurements. Measurements are denoted by light-gray dots, mea-

surements originating from the subgroup of animals are denoted by dark-gray diamonds (whistles) and black � (clicks), and the estimated GM-PHD-SA

tracks are denoted as colored lines. Note that the different colors denote different detections (i.e., track fragments).
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can be considered similar to missed measurements from a

filtering perspective), but fragmentation occurs when the

period of silence is longer.

In the third scenario, TDOA measurements from a single

subgroup of whistling and clicking animals were augmented

with real clutter from the corresponding cross-correlogram.

Real clutter was defined as all of the measurements ~zk above

k ¼ 3:7, which were not associated with measurements from

any of the subgroups. Besides the main subgroup, additional

tracks are detected and appear to be false positives (Fig. 6).

This lowered the precision compared to when clutter was sim-

ulated in the first scenario (Table III). On further investigation,

we found that most of the potential false positive tracks were

measurements originating from the subgroups that were

missed in the hand annotations. The amount of the extracted

track was again higher when combined measurements were

considered (Table III).

In the fourth scenario, TDOA measurements from all three

of the subgroups were augmented with real clutter from the

corresponding cross-correlograms, with real clutter obtained as

in the third scenario. All three of the subgroups are tracked

well (Fig. 7), but the precision was lower compared to when

the clutter was simulated in the second scenario (Table III). On

further investigation, we again found that most of the potential

false positive detections were measurements originating from

the animals (some from whistle and some from click cross-cor-

relograms) missed in the hand-annotation process. Tracking

based on combined measurements extracted longer portions of

TABLE III. Performance of the GM-PHD-SA filter for different scenarios (described in Sec. V). The performance is shown for the measurements originat-

ing from whistle (W) and click (C) cross-correlograms and for the combined measurements (Comb). R denotes recall, P is the precision, Cover denotes the

coverage, Frag denotes the fragmentation, and lDev denotes the mean deviation from the ground truth data. For scenarios 2 and 4, which contain multiple

ground truth tracks, the metrics Cover, Frag, and lDev are stated as the mean value 6 standard deviation.

Scenario Type R (%) P (%) Cover (%) Frag lDev (s)

1 W 100 92.9 49.0 13 1.3 �10�4

C 100 92.9 19.0 13 1.5 �10�4

Comb 100 72.7 54.8 8 1.4 �10�4

2 W 100 100 33.7 6 18 12.5 6 2.1 (1.5 6 0.3) �10�4

C 100 86.8 22.6 6 6 11.7 6 7 (2.2 6 1.6) �10�4

Comb 100 90.5 34.1 6 16 13.3 6 2 (2.2 6 1.1) �10�4

3 W 100 66.7 46.0 14 1.3 �10�4

C 100 62.5 21.6 15 1.8 �10�4

Comb 100 36.8 51.0 14 1.6 �10�4

4 W 100 71.1 35.6 6 13.4 13.5 6 2.1 (1.7 6 0.5) �10�4

C 100 67.3 28.0 6 4.9 12.7 6 4.5 (2.5 6 0.8) �10�4

Comb 100 49.3 36.6 6 18.6 12.3 6 4.2 (2.5 6 0.8) �10�4

FIG. 5. (Color online) GM-PHD-SA tracking of TDOAs from three subgroups of false killer whales immersed in simulated clutter (scenario 2). The symbols

and colors follow the same definitions as in Fig. 4.
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the three subgroups tracks compared to tracking based on mea-

surements from the echolocation clicks only (larger coverage,

Table III). An example of track switching can be observed at

3800 s in the combined measurements, where one subgroup

ends and another subgroup is in close proximity.

Filter performance was benchmarked against the GM-

PHD-S filter. As described in Sec. IV, the newborn weights

for the GM-PHD-S filter were set the same for all newborn

targets, and the expected number of newborn targets was

adjusted to �b ¼ 0:005 for better performance. The rest of

the parameters remained the same as those for the GM-

PHD-SA (Table I).

For all of the scenarios, precision was much lower (due

to more false detections) and fragmentation was much

higher for the GM-PHD-S filter compared to the GM-PHD-

SA filter (Table IV). Recall and mean deviation from the

ground truth tracks were similar and coverage was compara-

ble, with GM-PHD-S performing slightly worse in most

cases (Table IV). An example of GM-PHD-S tracking for

the fourth scenario is shown in Fig. 8, and additional figures

FIG. 6. (Color online) GM-PHD-SA tracking of TDOAs from a subgroup of false killer whales immersed in real clutter (scenario 3). The symbols and colors

follow the same definitions as in Fig. 4.

FIG. 7. (Color online) GM-PHD-SA tracking of TDOAs from three subgroups of false killer whales immersed in real clutter (scenario 4). The symbols and

colors follow the same definitions as in Fig. 4.
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for the rest of the scenarios can be found in the supplemen-

tary material.46

VI. DISCUSSION

This study developed a GM-PHD-SA filter to track the

TDOAs of subgroups of animals from their acoustic record-

ings. The cross-correlation amplitude was added as an addi-

tional feature to TDOA, and the resulting GM-PHD-SA

filter successfully tracked multiple subgroups from the

towed array recordings. In contrast to other common

approaches used in marine mammal tracking, no prior detec-

tion of the signals of interest was required. Moreover, the

proposed scheme incorporates multiple vocalization types

(whistles and echolocation clicks), allowing longer tracks to

be extracted and providing more detailed information about

the acoustic encounters. Simultaneously analyzing

information from both clicks and whistles could help

improve our understanding of the vocalization behavior

within subgroups of delphinid species.

By incorporating the amplitude as one of the measure-

ment features and, thus, making the measurements more

informative, the performance of the GM-PHD-SA filter was

greatly improved compared to that of the benchmark GM-

PHD-S filter, which only considered the TDOA information.

GM-PHD-SA reported many fewer false targets (Tables III

and IV). The difference in performance was even more pro-

nounced on the simulated data (Table II) because as the clut-

ter rate in the measurements increased, the GM-PHD-SA

filter performance was not impacted, whereas GM-PHD-S

performance deteriorated (recall decreased significantly). In

general, the amount of clutter in the measurements will

depend on the threshold k, which is used to obtain the mea-

surements from Axy. The lower the k, the more clutter

TABLE IV. Performance of the GM-PHD-S filter for different scenarios (described in Sec. V). For a description of the column names and symbols, see

Table III.

Scenario Type R (%) P (%) Cover (%) Frag lDev (s)

1 W 100 61.8 46.6 21 1.4 �10�4

C 100 37.0 13.6 10 1.5 �10�4

Comb 100 16.9 55.1 23 1.5 �10�4

2 W 100 70.8 33.9 6 17.8 17.0 6 5.6 (1.5 6 0.2) �10�4

C 100 66.7 19.9 6 6.2 10.7 6 7.6 (2.2 6 1.1) �10�4

Comb 100 33.9 39.7 6 14.1 20.0 6 3.6 (2.4 6 1.0) �10�4

3 W 100 56.3 40.9 18 1.4 �10�4

C 100 39.5 16.4 17 1.8 �10�4

Comb 100 23.0 52.9 23 1.7 �10�4

4 W 100 55.2 37.0 6 8.0 18.5 6 0.7 (1.6 6 0.3) �10�4

C 100 45.0 29.5 6 6.7 17.3 6 9.0 (2.2 6 0.7) �10�4

Comb 100 25.4 44.7 6 12.0 20.3 6 1.2 (2.7 6 0.8) �10�4

FIG. 8. (Color online) GM-PHD-S tracking of TDOAs from three subgroups of false killer whales immersed in real clutter (scenario 4). The symbols and

colors follow the same definitions as in Fig. 4.
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measurements, but also more target related measurements

will be present. Having more target measurements could

improve the coverage (amount of a track extracted), whereas

having more clutter measurements has a potential to

decrease precision due to increased false positive detections.

However, when more simulated clutter measurements were

present in the data, the GM-PHD-SA precision did not

change (Tables II and III, scenario 2, where measurements

based on the combined data contain twice as much clutter

compared to the measurements based on either whistles or

clicks). On the contrary, having more simulated clutter mea-

surements present decreased the precision of the GM-

PHD-S filter significantly (Table IV, scenario 2) and deterio-

rated its recall (Table II). On the other hand, if higher k
would be imposed on Axy, this would result in fewer mea-

surements overall (both clutter and target). Having fewer tar-

get related measurements would result in a potential

decrease in the performance for both of the filters. Having

fewer (or no) clutter related measurements would result in a

comparable performance between the two filters because the

amplitude feature would no longer be meaningful (if all mea-

surements originate from targets, all have high amplitudes).

In this study, the amplitudes of the measurements were

assumed to follow Rayleigh pdfs, and a good agreement

between the analytical pdfs and real data was obtained

(Fig. 3). However, it should be noted that the real clutter con-

tained some measurements that had high amplitude values,

and this resulted in decreased precision of the GM-PHD-SA

filter in the scenarios with real clutter (Table III, scenarios

3 and 4) compared to scenarios with simulated clutter

(Table III, scenarios 1 and 2). Some of these higher amplitude

measurements resulted from targeted animals that were

missed during the annotation process, and some could also be

the result of other correlated sources in the environment.

Certain model parameters were obtained from the train-

ing data (Table I), which was relatively small in the current

study. In the future, larger training datasets should be con-

sidered, either by the hand annotation of the field data or,

potentially, by constructing them from existing data with the

help of the deep learning procedures.56 The parameters

reported in this paper were trained based on the whistle

cross-correlograms and used for tracking all of the measure-

ment types, including echolocation clicks and combined

clicks and whistles. The parameters related to the evolution

of the TDOA tracks are expected to be similar between the

whistle or click cross-correlograms. However, certain

parameters, such as the clutter rate and SNR range, might

differ significantly when different measurement types are

considered. Performance on the click and combined mea-

surements may have suffered as a consequence. Although

the proposed parameters appear to perform sufficiently well,

a detailed optimization is still needed and would ideally

include all of the GM-PHD-SA filter parameters (Table I).

Future studies could use the Bayesian optimization or simi-

lar to determine the optimal parameter values by minimizing

a performance metric. While in the present study, the perfor-

mance was quantified with metrics typically used for whistle

contour tracking,32,40,54 it is difficult to optimize the param-

eters based on multiple competing metrics. Thus, a single

metric, such as an optimal sub-pattern assignment (OSPA)57

and its variants, could be used. The OSPA is typically used

for MTT based on RFSs and combines the information on

cardinality, localization, and labelling errors, which, in

essence, includes all of the metrics measured in this study.

In addition to the detailed parameter optimization, a sensi-

tivity study33 of the filter to these optimized parameter val-

ues should be performed in future work. Future studies

should also evaluate GM-PHD-SA performance on a larger

variety of acoustic encounters.

Comparison to ground truth data is required to evaluate

filter performance. However, hand-annotated ground truth

data is often subjective and prone to errors as seen in Sec. V,

Figs. 6 and 7. Moreover, the definition of the ground truth

data must be carefully considered as there is no unique under-

standing of what ground truth should be, and favoring one def-

inition over others implies some expectations on the filter

performance. For example, when tracking subgroups of ani-

mals containing multiple individual animals, should the

ground truth constitute the mean TDOA trajectory of all of the

animals in the subgroup or something else? Nor is it clear

whether one ground truth track should consist of multiple, sep-

arate track segments when the animals are vocally active or

whether it should incorporate multiple vocalizations and the

large periods of silence in between them as a single track.

This translates to whether it is reasonable to expect the filter

to track through long gaps (on the order of tens of seconds)

during which the animals do not vocalize but move signifi-

cantly, or whether it is more reasonable to expect the filter to

interrupt tracking through these long silent periods. In the pre-

sent study, the ground truth data were defined as the mean tra-

jectory of the group, obtained by fitting and interpolating the

analyst hand-annotated measurements, including through peri-

ods of silence. Although this definition of ground truth cap-

tures well our intuition of what the “ideal” track should be, in

practice, the large silent gaps included in this definition

resulted in the low coverage of individual tracks even though

the filter successfully tracked through periods when animals

were vocally active and through some brief missed detections

within those periods. Hence, under this definition of ground

truth, the performance metric “coverage” does not adequately

describe the filter’s ability to continue tracking through the

brief missed detections as it is typically understood in the tar-

get tracking literature. Instead, the performance is affected by

the filter’s inability to continue tracking targets through long

silent periods, which is a much more demanding task. For

comparison, when the tracking was performed on the simu-

lated data (Sec. IV), where pk
D was low but constant through

time (i.e., the animals were assumed to vocalize with a con-

stant rate), the coverage was very high (Table II).

Several challenges were encountered in the current appli-

cation. All of the major MTT algorithms assume that the detec-

tion profile is known a priori, and the GM-PHD filter

implementation requires the probability of detection to be con-

stant across time.27 Contrary to typical target tracking
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applications where the probability of target detection only

depends on the SNR of the target returns, in biological applica-

tions, the probability of detection is also a function of animal

vocalization rates, which are typically unknown. In addition,

the measurements originating from animal subgroups typically

occurred in temporal clusters and thus the assumption that pk
D is

constant in time was not met. This resulted in severe track frag-

mentation, where the filter was able to track the subgroups

through sparse missed detections and shorter periods of silence

but did not continue the tracks through longer periods of

silence. By combining the measurements based on whistles and

clicks, some of these gaps were filled and longer track segments

could be extracted. The performance might be further improved

by considering a nonconstant probability of detection with a

“background-agnostic” PHD filter.58

Another challenge resulting from the limited spatial reso-

lution of the measurements was that the individually tracked

targets (subgroups) actually consisted of multiple individuals

swimming in close proximity. As the animals moved and

vocalized, their corresponding TDOA measurements consisted

of multiple point detections spread around the subgroup mean

position. This meant that the measurement model had to con-

sider a greater noise variance of TDOA measurements than

what would be expected if a single source or multiple well

separated sources were present. This larger noise variance also

makes the tracks more sensitive to clutter and nearby sub-

groups, leading to tracks diverging from the true positions.

The GM-PHD-SA filter and processing framework were

presented for towed arrays with two sensors and applied to false

killer whales in this work, but it is suitable for the TDOA track-

ing of any biological or nonbiological, broadband, or narrow-

band sources. TDOA tracking is often the first step in the

overall signal processing chain that leads to localization. We

hope that our method of obtaining automated and improved

TDOA estimates will correspond to improved localization esti-

mates in future work. Our approach does not require a specific

localization strategy because after the TDOA tracks are

obtained, different localization procedures can be used to obtain

the animal locations. Future efforts could investigate the exten-

sion of the method to multiple sensors.

VII. CONCLUSIONS

This paper described an automated method that simulta-

neously tracked multiple TDOAs from acoustically active sour-

ces in the presence of clutter and missed detections. The

measurements were based on narrowband whistles and broad-

band echolocation clicks, and incorporated cross-correlation

amplitude as an additional feature to TDOA. The proposed

scheme tracked multiple subgroups based on their TDOAs and

amplitudes well and extracted more information compared to

cases that considered only one signal type. This is an important

step toward automating source tracking with hydrophone arrays.
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NOMENCLATURE

Axy Envelope of GCC-SCOT

a Measured amplitude

caðaÞ Clutter amplitude likelihood

ck
aðaÞ Thresholded caðaÞ with a threshold k

~ckð~zÞ Likelihood function for clutter

ckðzÞ¼
abbr

ck Clutter likelihood based on the

TDOA

d Expected SNR

d1,d2 Lower and upper values for the

expected SNR

gk,Rk Measurement noise process and its

covariance matrix, respectively

F State transition (system) matrix

gaðajdÞ¼
abbr

gaðaÞ Target amplitude likelihood

~gkð~zj~xÞ Likelihood function for the targets

gkðzjxÞ Target likelihood based on the TDOA

ckðxÞ Birth PHD

Jk�1 Number of persistent targets derived

from the previous time step k – 1

k Threshold imposed on Axy

mk;b Newborn component mean

nk�1 and Q System noise process and its covari-

ance matrix, respectively

�b Expected number of newborn targets

per time step

pk
DðdÞ¼

abbr
pk

D Probability of detection given the

threshold k
pS Probability of the target’s survival

from one time step to another

rk Clutter rate

r2
r Variance of a Rayleigh distribution

rv Standard deviation of the system noise

s; _s;€s TDOA and its derivatives

vkjk�1ðxÞ Predicted PHD

vkjkðxÞ Posterior PHD

vkjk�1;pðxÞ; vkjk;pðxÞ Predicted and posterior PHDs for the

persistent targets, respectively

vkjk�1;bðxÞ; vkjk;bðxÞ Predicted and posterior PHDs for the

newborn targets, respectively
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w Weight

wk;b Newborn component weight

x, ~x State vector and extended state vec-

tor, respectively

z Measured TDOA

~z Extended measurement vector

~Zk Extended multi-target measurement

set at time k
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