wd 0.002, lr 0.0005, BS 16, nepoch 200 spec = fftweight.fft_gtgram(sig, fs, 1024/fs, 1024/fs, 32, 500) 0.0 : first try, archi 0.0 0.1 : archi 0.0, with white pink noise & rnd shift -> poor results 0.2 : archi 0.2 (only 2 1024 layers) 0.3 : archi 0.3 (only 2 512 layers) wd 0.002, lr 0.0005, BS 16, nepoch 200 spec = fftweight.fft_gtgram(sig, fs, 1024/fs, 512/fs, 32, 500) 0.3 : archi 0.3, 512 spec hopsize spec = fftweight.fft_gtgram(sig, fs, 512/fs, 256/fs, 32, 500) 0.4 : archi 0.3, 512 spec winsize spec = fftweight.fft_gtgram(sig, fs, 512/fs, 256/fs, 32, 2000) 0.5 : archi 0.3, 2000 start freq spec = fftweight.fft_gtgram(sig, fs, 512/fs, 256/fs, 64, 2000) 0.6 : archi 0.3, 64 freq bins 0.7 : archi 0.4 (256 features) spec = fftweight.fft_gtgram(sig, fs, 512/fs, 256/fs, 128, 2000) 0.8 : archi 0.3, 128 freq bins 0.9 same as 0.6, new dataset 0.10 balanced weights BEST : 0.6 -> 0.88 valid AUC, 0.8 valid ACC new dataset __ spec = fftweight.fft_gtgram(sig, fs, 512/fs, 128/fs, 64, 2000) 0.61 : archi 0.3 (kernel width = 1) same as 0.6 0.62 : archi 0.5 (kernel width = 11) 0.8 archi 0.6 0.9 archi 0.7, hopsize 128 dataset split = sklearn 0.8 archi 0.8 (kernel sizes 17, 11, 5 insted of 11 11 11), split = BOMBYX2017 0.10 archi 0.7, dataset split test = BOMBYX2017 split BOMBYX2017 0.12 archi 0.7 batchsize 32 -> overfit plus que 0.11, valid AUC .89 0.11 archi 0.10 batchsize 32 valid AUC .895 LASTS : 0.13 : gammatone stft stftpcen sincnet