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Abstract

The development of an algorithm for automatic detection of sperm whale clicks in large recordings
is described. It is based on the Teager–Kaiser (TK) energy operator and it is able to detect efficiently
creaks as well as regular clicks. A matching filter is first used as a pre-processor in order to overcome
the difficulties caused by the multi-pulse structure of regular clicks. Next, the TK energy operator is
applied to the output of the matching filter. A first selection of clicks is performed based on statistical
measurements on the TK output, while the final selection is carried out by a forward–backward
search algorithm. The proposed system has been tested on a total duration of 25 min of data contain-
ing regular clicks as well as creak clicks, where the location of clicks has been marked by hand. An
average rate of 94.05% of correct detections was achieved by comparison with the hand-labeled data
created from the tested files. Comparing to a standard method used for the same task, the proposed
algorithm is more effective in detection rate by 30% and much more accurate and robust.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Sperm whales (Physeter macrocephalus) are among the most vocally active marine
mammals, therefore are well suited for passive acoustic surveys. Their distinct vocaliza-
tions are made up mostly of impulsive click-type sounds (Chapter 5 in [1]), [2–4], although
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there is strong evidence that they produce other kinds of sounds as well [5–7]. Sperm whale
recordings, once quantified, may have a range of uses: animals localization[8,9], study of
animals behavior [1,10], abundance estimation [11,3,6], length estimation [12,13]. They can
also help us to understand their sound production mechanism [2,14–18] as well as to iden-
tify sperm whales acoustically in an automatic way [19]. Many hours of vocalizing sperm
whales have been recorded using various configurations: two (or more) towed hydropho-
nes a few meters apart deployed behind a monitoring vessel [8,20], towed-array systems
[21–23], or even tags [14,24]. In order to extract and evaluate the information contained
in these recordings one major step should be done: find the clicks amid the hours of data.
One can visually inspect the waveforms or spectrograms of the signals but a more practical
solution consists of using an automatic detection algorithm. The advantages of the latter
are well described in [25]. Given the importance of the detection of clicks, several softwares
for automatic detection of sperm whale sounds have been developed (i.e., Rainbow Click
[26], Moby Click [27,3], Ishmael [28]). Most of the existing methods have a high rate of
false detection especially when the recorded clicks do not conform to the expected click
pattern or when the recordings have a low signal-to-noise ratio (SNR). Usually this is
the case when creak clicks are analyzed. Moreover, the user has to deal with a great num-
ber of parameters when using these methods, and this constitutes a drawback.

In this paper we present the application of the Teager–Kaiser (TK) energy operator [29]
for the automatic detection of clicks from sperm whales. In [30], the TK energy operator
has been tested on synthetic data as well as on real recordings. The TK energy operator is
characterized by instantaneous tracking capability by using only three consecutive signal
samples. Most of our attention in [30] was on the clicks from the creak sounds since the
characteristic low sound level of this type of clicks and their short inter-clicks intervals,
makes their detection harder. Moreover, it has been applied on isolated windows of anal-
ysis. In this work, we extend the use of the energy operator on the automatic detection of
clicks in large recordings. Extended tests were conducted using data provided by the Naval
Undersea Warfare Center (NUWC) and collected at the Atlantic Undersea Test and Eval-
uation Center (AUTEC). The proposed automatic system is able to detect clicks from
creak areas as well as from regular clicks. It has been observed that the multi-pulse struc-
ture of regular clicks often combined with various reflections causes problems in the detec-
tion task. Therefore, we first used an echo cancelation algorithm implemented as a
matching filter and then, we applied the TK energy operator to the output of the filter.
The selection of clicks was made in three steps. In the first one, a selection was performed
based on the statistics of samples of the new signal (TK output). In the second one, we
applied a peak picking algorithm and in the last step, a forward–backward search algo-
rithm was applied with respect to the time instant of the highest peak which was assumed
to be a click sound. To test the efficiency of our system we have manually marked the
clicks on some of the recordings (for regular and creak clicks). Moreover, the performance
of the proposed algorithm is compared to the output produced by the Rainbow Click soft-
ware [26].

A short review of the Rainbow Click detector and the TK energy operator is described
in Section 2. Section 3 details the steps of the proposed algorithm. In Section 4, the data
set and the hand-labeled data used for the evaluation of the detection algorithm are pre-
sented along with the results from the comparison between the automatic detection made
by different algorithms and the detection made by hand. Discussion on these results and
future work concludes the paper.
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2. Background

2.1. Rainbow click detector

Rainbow click performs the detection task in mainly, two steps. In the first step,
referred to as ‘‘First Level Trigger’’, the input signal is rectified and then is passed through
a low-pass filter of first order (realized as an all-pole model) of Z-transform:

HðzÞ ¼ a
1� ð1� aÞz�1

ð1Þ

Coefficient a is chosen accordingly (0 < a < 1); for the transient clicks it is usually close to
1, while if a� 1, the filter provides a measure of the background noise level. At every time
instant two signals are obtained: the estimated click signal, g1(n) with a � 1, and an esti-
mation of the noise signal, g2(n), with a� 1. An estimation of the mean noise level is ob-
tained by g2(n). The enhanced signal is obtained by subtracting the estimated noise level,
g2(n), from the click signal g1(n):

gðnÞ ¼ g1ðnÞ � g2ðnÞ ð2Þ

The start of a click signal is considered the time instant when the amplitude of the en-
hanced signal passes over a given threshold (referred to as ‘‘On Threshold’’), while a click
ends when the amplitude drops below another second threshold (referred to as ‘‘Off
Threshold’’). These thresholds are set to a number of standard deviations above the mea-
sured mean noise level.

Since clicks often contain several pulses, a minimum number of samples of click sepa-
ration is set, while other rules are used for splitting or merging (i.e., the ‘‘Maximum Click
Length’’) the detected click sounds.

The second step is a selection process of the clicks detected in the first step. Clicks are
first filtered by an user-defined bandpass filter. Filtered clicks with an energy greater than a
threshold are accepted as clicks, while the others are rejected.

Two mechanisms are also available for eliminating noise from the propeller of a vessel
(‘‘Forward Veto’’) and loud signals from other sources (i.e., seismic survey vessels). Note
that all the parameters can be controlled by the user.

In the Rainbow Click detector the first step is very important. From the above descrip-
tion it follows easily that the two filtering procedures can be combined into one filter with
Z-transform:

HðzÞ ¼ ðac � anÞ
1� z�1

1� ð2� ac � anÞz�1 þ ð1� acÞð1� anÞz�2
ð3Þ

where ac and an denote the coefficient a used for the transient and the noise signal, respec-
tively. Fig. 1 shows the magnitude of the frequency response of the combined filter for
ac = 0.9 and an = 0.1. Obviously, this is a high-pass filter, which is, however expected since
the two low-pass filters (the one for the click sounds and the other for the estimation of the
noise level) differ only in bandwidth which is controlled by a. Hence, a high value of a re-
sults in a low-pass filter of wide bandwidth while a low value of a provides a low-pass filter
with a narrow bandwidth.
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Fig. 1. Magnitude of the frequency response of the combined filter used in the first step of the Rainbow click
detector, for ac = 0.9 and an = 0.1.

V. Kandia, Y. Stylianou / Applied Acoustics 67 (2006) 1144–1163 1147
2.2. The Teager–Kaiser energy operator

The Teager–Kaiser (TK) energy operator is defined in the continuous domain as:

W½xðtÞ� ¼ dxðtÞ
dt

� �2

� xðtÞ d
2xðtÞ
dt2

¼ _x2 � x€x ð4Þ

where _x and €x denotes the first and second derivative over time, respectively. For a discrete
time signal, it is shown in [29] that the TK energy operator is given by

W½xðnÞ� ¼ x2ðnÞ � xðnþ 1Þxðn� 1Þ ð5Þ
where n denotes the sample number. An important property of the TK energy operator in
(5) is that it is nearly instantaneous given that only three samples are required in the energy
computation at each time instant: x(n � 1), x(n), and x(n + 1).

The operator is referred to as energy operator since it is related to the concept of energy
in the generation of acoustic waves [29]. In that context, by energy it does not mean simply
the mean square value of the signal but is referring to the actual physical energy required
to produce the signal [31]. The TK energy operator can be seen as a special case of a family
of quadratic energy operators defined by:

EðnÞ ¼
XN�1

m¼0

xðnþ mÞxðn� mÞhðmÞ ð6Þ

where h(m) is an N-point set of quadratic filter coefficients. It is easily seen from (5) and (6)
that the TK energy operator is obtained when:



1148 V. Kandia, Y. Stylianou / Applied Acoustics 67 (2006) 1144–1163
hðmÞ ¼
1 m ¼ 0

�1 m ¼ 1

0 otherwise

8><
>:

The frequency response of the impulse response is given then by:

HðejXÞ ¼ e�jX=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos XÞ

p
In Fig. 2 the magnitude of the frequency response of the TK energy operator filter is plot-
ted. This is a high-pass filter and therefore, the output of this filter will mainly contain the
high frequencies of the input.

Despite the similarities of the two filters shown in Figs. 1 and 2, we must note that
none of them represents a simple and usual linear filter, and therefore, a direct com-
parison between them is not possible. Indeed, the one used in the Rainbow click is
applied on the rectified input signal (i.e., the absolute values of the input signal which
a non-linear operator) while the filter used in the TK-energy operator is a quadratic
filter.

In the case where the input is a random signal, the statistical properties of the TK
energy operator should be studied. If an input signal, u(t), is a realization from a wide
sense stationary Gaussian process with a power spectrum Suu(X)

SuuðXÞ ¼
Z 1

�1
RuuðsÞe�jXsds

where Ruu(s) denotes the autocorrelation function of the process, it is shown in [30] that
the output of the TK energy operator will also follow a Gaussian distribution:

W½uðtÞ� �NðlW; r
2
WÞ
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Fig. 2. Magnitude of the frequency response of the TK-energy operator filter.
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where the mean value, lW, is given by:

lW ¼ EfW½uðtÞ�g ¼ 1

p

Z 1

�1
X2SuuðXÞdX ð7Þ

and the variance, r2
W by:

r2
W ¼ 3

d2Ruuð0Þ
ds2

� �2

þ r2
ur

2
€u ð8Þ

where r2
€u denotes the variance of the second derivative over time of u(t) and is obtained by:

r2
€u ¼

d4Ruuð0Þ
ds4

ð9Þ

which is the fourth derivative of the autocorrelation function at s = 0. Details on the der-
ivation of the above formulas can be found in [30].

In this paper, the recorded signal, s(n), is assumed to have three components: an inter-
ference signal (usually this is considered to be a low frequency signal), x(n), a transient sig-
nal, y(n), and background noise, u(n):

sðnÞ ¼ xðnÞ þ yðnÞ þ uðnÞ ð10Þ

Applying the TK energy operator on s(n) we obtain [30]:

W½sðnÞ� ¼ W½xðnÞ� þW½yðnÞ� þW½uðnÞ� þ T ðnÞ ð11Þ
where T(n) denotes the sum of all cross terms between the possible pairs of the input com-
ponents (x(n), y(n), and u(n)). For example, the cross term, Wc, between x(n) and y(n) is
defined by:

Wc½xðnÞ; yðnÞ� ¼ xðnÞyðnÞ � xðnþ 1Þyðn� 1Þ ð12Þ

It is worth to note that when the transient signal is modeled by a periodic, with period P,
train of pulses:

yðnÞ ¼
X1

k¼�1
dðn� kP Þ ð13Þ

where

dðn� lÞ ¼
1 n ¼ l

0 n 6¼ l

�
ð14Þ

and taking into account the high-pass character as well as the statistical behavior of the
operator, it can be shown that the output of the TK operator in (11) is approximately gi-
ven by [30]:

W½sðnÞ� � W½yðnÞ� þ wðnÞ ð15Þ

where w(n) is a Gaussian random signal with characteristics given by (7) and (8).
From (15) it follows that when a transient signal, y(n), is present, the probability density

function (pdf) of W[s(n)] will deviate from a typical Gaussian curve (bell-shaped). Indeed,
in this case the output pdf will be better approximated by heavy tail distributions (e.g.,
Laplacian density). Following this observation, a simple criterion based on measurements
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Fig. 3. (a) The global input to the TK-energy operator and (b) the global output from the TK-energy operator.
Note that the maximum signal amplitude in (b) has been normalized to unity.
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like skewness can be used for detecting the presence of transient components in the signal.
Moreover, the above comment implies that the output of the TK energy operator will be
dominated by the transient signal (even for low transient-to-noise ratios). A typical exam-
ple of a synthetic signal (low-pass interference signal, periodic train of pulses and Gaussian
noise) and the output from the TK energy operator is depicted in Fig. 3. As it is expected
the output is dominated by the ideal transient signal.

Although a real click sound is not an ideal pulse as in (14), it is still a wideband signal
(narrow support in the time domain); therefore the application of the TK energy operator
on a signal containing all these components will produce an output mainly dominated by
the energy of the transient signal.
3. Detection algorithm

Although sperm whale clicks are mainly characterized by high regularity in their pro-
duction (i.e. periodicity) they are non-stationary signals; their periodicity (usually referred
to as Inter-Click interval, ICI) changes over time. However, considering short window of
analysis with a few number of clicks inside the window (about 4–6 clicks) the stationary
hypothesis for the windowed signal may hold (in general). Moreover, short analysis win-
dows simplifies the detection algorithm while reducing the computation time and memory
allocation needs for processing the input audio files.

The proposed detection system is depicted in Fig. 4. We carried out a frame by frame
analysis where the window size was determined using the previous estimated ICI. For ini-
tialization of the algorithm an initial estimated value for ICI of 0.8 s was used. The appli-
cation of TK energy operator on a complex signal like the multi-pulse sperm whale regular
click raises some serious difficulties. According to the existing theory for sound generation
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of sperm whale clicks, the main pulse1 (referred to as p1) contains most of the signal energy
[15]. However, this is not always the case [18,17]; the directionality of regular clicks
combined with the various conditions under which the recordings were made, may result
in a different pattern of pulses than the usual one, where p0 is the dominated pulse.
According to Zimmer et al. [17], this is the case when the recording aspect is close to
the acoustic axis of p0 and off the axis of the p1 pulse (recordings made behind the animal).
Furthermore, when recordings are made on the off-axis of a sperm whale a quite complex
(noisy) waveform is obtained [17]. In Fig. 5(a) an example of a regular click is shown
where both pulses (p0 and p1) are quite strong. Obviously, this signal does not conform
to the usual case of clicks discussed in [21] or in [18,17].

To deal with the aforementioned variability in the distribution of energy inside a click
sound, we define as click instant the onset time of the click, in other words the time instant
1 Our notation on pulses follows that of [21,17].
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of the p0 pulse, independently of its power (weak or strong). Therefore, in this paper, click
detection is synonymous to the detection of the first pulse of the click. Fig. 5(b) depicts the
output of the TK energy operator when the input is the signal shown in Fig. 5(a). Here, it
is worthwhile to mention the clean pattern of pulses in the output signal. Actually,
between the p0 and p1 pulses, an additional pulse is noticeable. Given that the system
recordings were in the far field and following the analysis of clicks presented by Zimmer
et al. [17], this could be the pulse referred to as p1/2, which seems to be an orientation
dependent delay relative to the p0 pulse [17].

Energy-based criteria for the detection of clicks are quite common. Despite the clean
pattern of pulses obtained in Fig. 5(b), if a criterion of maximum energy were applied
to the output of the TK energy operator, a detection error of about 7 ms would be
obtained. In an attempt to overcome this problem and increase the signal to noise ratio
(SNR), and motivated by the fact that a sudden excitation of a stable system by an impulse
signal will produce as output an oscillation of decaying with time amplitude, we suggest
the use of a simple matching filter with impulse response given by:

sðtÞ ¼ cosð2pftÞe�at for t > 0 ð16Þ
where frequency f was chosen to be 1000 Hz by inspection of the existing oscillation into
some waveforms with regular clicks and the damping factor a was given by the formula

a ¼ f
0:12N p

ð17Þ

where Np represents the number of periods (typical value used in the paper was 20). It
must be emphasized, however, that the chosen value for f does not represent a critical va-
lue, neither the constant (0.12) involved in the definition of the decay rate a in (17). Fig. 6
shows the impulse response of the matching filter using the above values for f and Np.
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Fig. 6. Impulse response of the matching filter.
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Although the matching filter is not optimized according to the current analysis window
(adaptation) resulting, therefore, in a lower (comparing to the optimal case of adaptation)
SNR, we have found that this simple matching filter provides good results since it is sim-
ilar to the expected ideal impulse response of a click sound. Fig. 7 elucidates how the appli-
cation of the matching filter facilitates the detection of the beginning of a regular click. The
illustrated regular click is the same with the one shown in Fig. 5(a).

For creak sounds, the presence of oscillation after the pulse (click) is still valid. How-
ever, the low energy of creak clicks combined with the power of recorded background
noise, results in a very low SNR, making useless the application of the matching filter.
Actually, the application of a matching filter under so adverse SNR conditions leads, most
of the time, in erroneous detection of click onset times. On the other hand, creak clicks are
mainly mono-pulsed signals and so, they do not pose the above-mentioned problems [2].
Since creak clicks have a much lower sound level than regular clicks, the matching filter
was applied only when the input signal was above a certain energy threshold in order
to prevent its application on creaks.

The existence of clicks in the analyzed signal is not a necessary condition for the
algorithm. As it is shown in the previous Section, the presence of a transient (click) signal
will modify the distribution of the TK output (W[u(n)]) causing a negative skewness.
Therefore, by measuring the skewness of the TK output signal, a detector of the presence
of the click sound is obtained. The threshold used in the skewness criterion was estimated
after the statistical analysis of a selected number of data used in the current work. As a
result, the algorithm does not waste time and effort on click detection where only noise
is present.

The final steps for the detection of clicks are depicted in Fig. 8. Since the presence of the
transient signal modifies the mean value of the noise distribution, we formulate a standard
maximum-likelihood decision criterion [32,33] (also known as a test of the mean) in order
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to determine a threshold (decision rule) for possible click values. A peak-picking
procedure is then applied so as to separate the peaks of the signal from all the other signal
values that passed the threshold. Finally, making the assumption that the highest peak
corresponds to a click sound, we applied a forward and backward search with reference
to the time instant of the highest peak. Note that periodicity of clicks cannot be used
for detecting efficiently the location of clicks (although this could simplify by far the detec-
tion algorithm) since periodicity may change quickly even inside an analysis window. This
is especially true during the transition from an area of quasi-regular clicks into a creak
area. A mathematical description of the forward search algorithm follows.

Let ti, i = 1, . . . ,N be the position (location) of all peaks selected by the peak-picking
procedure and let tm be the position of the peak with the highest amplitude among them.
The observation that regular clicks contain a certain number of pulses in a close distance,
led us to the following steps. We calculated the differences

di;m ¼ ti � tm ð18Þ
and set a threshold (Thr) in order to separate the various peak groups

Thr ¼ 0:1 max
i
f _dig ð19Þ

where

_di ¼ di;m � di�1;m ð20Þ
is the first-order forward discrete-time derivative over consecutive time peak locations.
The first peak of the next group will be positioned at

tj ¼ minfdi;m > Thrg ð21Þ
The differences

d�i;j ¼ ti � tj; i ¼ 1; . . . ;N ð22Þ

help us isolate the next group of peaks which will contain all peaks for which the condition
0 6 d�i;j < Thr is true. Among them, the peak with the highest amplitude will be considered
as being the next click (the time instant of p0 pulse or, as mentioned previously, the click
onset time).

After estimating the location of a click, the next group of peaks is detected and the posi-
tion of the next click is estimated. This process continues until the end of the analysis win-
dow is reached. The backward search algorithm is applied in exactly the same way but in
the opposite direction; from the time instant of the first estimated click (tm) to the begin-
ning of the analysis window.
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4. Application

4.1. Data Set

The data on which the above detection system was applied were provided by the Naval
Undersea Warfare Center (NUWC) and collected at the Atlantic Undersea Test and Eval-
uation Center (AUTEC), Andros Island, Bahamas. We have used 25 min of recordings
made with Hydrophone G, one of the five hydrophones belonging to the Data set # 2.
The constellation of hydrophones can be seen in [34]. The audio files (five files with
5 min duration each) were sampled at 48 kHz with accuracy of 16 bits/sample and con-
tained clicks from only one sperm whale. Reverberation was often noticed in the available
recordings.

4.2. Hand labeled data

All five files were scanned manually and the starting point of each click sound was
marked with the aid of Sound Forge 6.0 (Sonic Foundry). Then, the position of the mark-
ers was extracted in milliseconds and saved in a text format. Fig. 9 illustrates what was
considered to be the start of (a) a regular click and (b) a creak click, respectively. To
increase accuracy in labeling clicks for creak sounds the output sampling frequency was
heavily reduced (i.e. from 48 kHz input sampling frequency to 2 kHz).2

4.3. Results

It is worth to note that the proposed detection algorithm is completely automatic while
the values of the design (input) parameters like a in (17) or Thr in (19) are not really critical
in the efficiency of the detection algorithm. On the other hand, the algorithm relies on a
strong assumption; the highest peak in the output of the TK energy operator corresponds
to the p0 pulse of a click sound. Although this is true in general, especially after the appli-
cation of the matching filter, it may result in erroneous click location if other sources of
impulsive noise are present in the signal.

For comparison reasons, the audio files were also processed by the Rainbow click detec-
tor. In this test the version 3.01.0013 of the click detector was used. Design parameters
were chosen by trials and errors in order to get the best results in terms of detection accu-
racy. The best performance was obtained by the following parameters. For all the files,
coefficient a is taken as 0.99 and 0.001 for the ‘‘Signal Filter’’ and the ‘‘Noise Filter’’,
respectively. To ensure that the whole click is extracted, Rainbow click requires two
parameters, referred to as ‘‘Presample’’ and ‘‘Postsample’’, that are the number of samples
added to the detected click area. In addition, the expected maximum length of a click
should be given. For all analyzed files, ‘‘Presample’’, ‘‘Postsample’’, and expected ‘‘Max-
imum Length’’ of a click, were taken as 0.1 ms, 0.2 ms, and 21 ms, respectively. Parameters
‘‘On Threshold’’ and ‘‘Off Threshold’’ were set to different values for the first two audio
2 Lowering the output sampling frequency (this is not a downsampling, however) of an audio signal has the
effect of playing the sound in a lower than the original rate, since the original time is expanded. This facilitates the
auditory and visual inspection of fast moving acoustic events. For the case of creaks, this is very important for as
an accurate as possible manual labeling.
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Fig. 9. Hand labeled clicks. Labels are indicated by a dashed line: (a) regular click and (b) creak click.

Table 1
Percentage (%) of correctly identified clicks per file

File name Clicks TK RB

Score (%) Clicks Score (%) Clicks

10M_ch2_0–5.wav 266 (0) 100 268 94.74 265
10M_ch2_5–10.wav 944 (549) 60.17 986 15.68 781
10M_ch2_10–15.wav 689 (414) 94.05 732 71.12 622
10M_ch2_15–20.wav 529 (242) 99.81 528 75.05 440
10M_ch2_20–25.wav 435 (155) 75.17 387 69.20 347

Tolerance of 2 ms.
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files; ‘‘On Threshold’’ was set to 760 and 300 and ‘‘Off Threshold’’ to 380 and 150 for the
first and the second audio file, respectively. For the other three files, the thresholds were
the same; 510 for the ‘‘On Threshold’’ and 200 for the ‘‘Off Threshold’’. Because the num-
ber of automatic detected clicks was less than the number of the manually marked clicks
(especially in the creak areas), the ‘‘Second Level Trigger’’ was not used in the current
testing.

As correct detection we considered an absolute time distance of less or equal to 2 ms
between the automatic detection and the detection made by hand. Detection score refers
to the percentage of the correctly detected hand labeled clicks:

Number of correctly detected hand labeled clicks

Total number of hand labeled clicks
� 100 ð23Þ

Results are summarized in Table 1. TK stands for the proposed detection method, while
RB stands for the Rainbow click detector.3 The second column corresponds to the total
number of manually detected clicks (regular and creak) per file. The number of creak clicks
is indicated between parentheses. The columns of clicks for both methods, TK and RB,
correspond to the clicks suggested by the algorithms. The proposed system achieved an
3 We have chosen to keep the original names of files used in this experiment, since they may serve as a
benchmark database. In this case, files should be easily identifiable. Hand labeled data are available upon request
(please send email to the first author).



V. Kandia, Y. Stylianou / Applied Acoustics 67 (2006) 1144–1163 1157
average rate of 94.05% of correct detections while the detection score of the Rainbow click
detector was 71.12%. All the average scores were computed via median. Therefore, the
proposed algorithm shows 32% improvement in detection score. It is worth to note that
RB always detects less clicks than manually detected. After checking, it was found that
most of missing clicks were from the creak areas. This is expected, since creak clicks have
very low SNR and their detection is not a trivial task. On the other hand, the TK-based
detector overestimates the number of clicks into two files (second and third). The extra
clicks come from segments of background (sometime impulsive) noise. If we split the set
of all the manually detected clicks – independently of source file – into regular and creak
clicks the performance of the TK-based detector shows a clear improvement over RB; for
regular clicks the detection score is 84.83% for TK and 68.86% for RB (improvement:
23.2%) while for creak clicks the detection score is 78.01% for TK and 39.70% for RB
(improvement: 96.5%).

In order to make result evaluation independent of the tolerance, curves similar to the
Receiver Operating Characteristics (ROC) curves were produced. ROC curves show the per-
formance of a detector as a trade off between selectivity and sensitivity. Due to the non-
statistical nature of the algorithms presented here, we used a simple convention to produce
curves that approximate ROC curves, which we will call Approximate ROC (AROC). We
monitor the detection score by increasing the tolerance threshold of accepted clicks from
1 ms to 6 ms (absolute deviation). Fig. 10 shows the detection performance for the two detec-
tion algorithms. TK detection score is always higher than the RB score.

To prove the accuracy of the proposed algorithm, the Average Absolute Deviation
(AAD) in milliseconds of time instances of the automatically detected clicks from those
of the manually detected ones is shown in Fig. 11. Results correspond to all analyzed files.
It worth to note that for 2 ms tolerance, the proposed algorithm is over 40% more accurate
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Fig. 10. Approximate ROC curves. Dashed line corresponds to results from the Rainbow click detector and solid
line to the proposed (TK-based) one.
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than Rainbow click (0.36 ms for TK, and 0.61 ms for RB). Moreover, the robustness of
the proposed algorithm is pronounced; as the tolerance increases, the average absolute
deviation for Rainbow click increases faster than for the TK-based detector.

An example of the close agreement between the two kinds of detection used in the cur-
rent work is given in Figs. 12 and 13. The former refers to regular click detection and the
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Fig. 12. Comparison of hand labels and automatic click detection: (a) four regular clicks (detection by hand) and
(b) its TK output (automatic detection). The close agreement between the two detections is highlighted by dotted
lines (AAD = 0.233 ms). Maximum amplitude of the TK-output has been normalized to unity.
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Fig. 13. Comparison of hand label and automatic click detection: (a) segment of a creak (detection by hand) and
(b) its TK output (automatic detection). The close agreement between the two detections is highlighted by dotted
lines (AAD = 0.0187 ms). Maximum amplitude of the TK-output has been normalized to unity.
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latter to creaks. For the example with the regular clicks, AAD is 0.233 ms for the proposed
detector and 0.447 ms for the Rainbow click detector. For the example with the creak
clicks, AAD is 0.0187 ms for the TK-based detector while no clicks were detected by
the Rainbow click detector. Note in Fig. 13 the efficiency of the algorithm: it can reveal
the periodicity of the signal even in such bad conditions.

5. Discussion

In general, the proposed algorithm proved effective at detecting automatically sperm
whale clicks in large recordings. An attempt to explore the cause behind the low scores
of files ‘‘10M_ch2_5–10.wav’’ and ‘‘10M_ch2_20–25.wav’’, was made by a step-by-step
examination. We may notice three source of errors: (a) even after the application of a
matching filter, regular sperm whale clicks may contain p0 pulses with much lower sound
level than p1 (it is reminded that our notation follows that of [21,17]), (b) very faint creaks
for which the skewness value is very similar with those taken from segments with absence
of click sound, and (c) the length of the analysis window.

According to Zimmer et al. [18,17], p0 pulse in regular clicks is a backward-directed
pulse with low directionality while p1 pulse is a forward-directed highly directional pulse.
Consequently, the presence of a strong or weak p0 pulse depends heavily on the off-axis
aspect of the recorder with respect to the whale for each emitted click. The recordings
used for the evaluation of the proposed algorithm were obtained using one of the widely
spaced bottom mounted hydrophones at the AUTEC. The movement of the whale with
respect to the fixed position of the hydrophone resulted in clicks being recorded with
variable p0 levels, a number of them lying far below p1 levels. Since the detection
algorithm was based on the assumption that the highest peak inside a click corresponds
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to its starting point, a weak p0, even after the application of the matching filer, may not
be detected, leading to a detection error. In Fig. 14(a) we can observe a regular sperm
whale click with a weak p0 pulse. As illustrated in Fig. 14(b), TK energy operator will
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Fig. 14. (a) Waveform of a regular sperm whale click taken from file ’’10M_ch2_5–10.wav’’ and (b) its TK output
(maximum amplitude has been normalized to unity).
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Fig. 15. After the application of the matching filter: (a) waveform of the regular click shown in Fig. 14 and (b) its
TK output (maximum amplitude has been normalized to unity).
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detect the strongest peak within the click which does not correspond to the beginning of
the click. Unfortunately, as shown in Fig. 15, the proposed matching filter does not offer
a viable solution in these cases. The design of a new matching filter is under
investigation.

Furthermore, although the algorithm proved effective at detecting creak clicks in low
SNR conditions (Fig. 13), the skewness criterion that was applied on the TK energy
operator output seems to militate against detection of creak clicks. As already men-
tioned in Section 3, the skewness can be used as a detector of the presence of a click
in order to avoid spending effort on the detection of a non-existing sound. Hence, care
must be taken in choosing the right threshold value for the presence or the absence of a
sound. The fact that segments of the signals analyzed in the current work containing
faint creaks gave skewness similar to those segments with no clicks at all is suggestive
of detection errors (false negative decisions). Therefore, we need to work out ways of
determining a more representative value for the skewness criterion. It is very likely that
the above-mentioned sources of errors acted cumulatively to produce the resultant low
detection scores.

Adding to the above difficulties was the choice of the analysis window. As we have
already stressed, creak clicks have very low periodicity which can change dramatically
with time. For example, within 5 s their period may change from 0.3 s to as low as
10 ms. Accordingly, we need to consider short analysis window for the detector. Fur-
thermore, the duration of the window should be selected to be long enough so that
the windowed signal contains a few click sounds and in the same time, short enough
to avoid analyzing a signal containing a mix of very different periods. We made a com-
promise of these two conflicting constraints by choosing the window duration to be
four times the previously estimated ICI. This was an ad hoc selection as we have
noticed that the more the window was getting shorter, the more false clicks were
detected (false alarms), although we had a higher score of correct detections in a num-
ber of cases.

6. Conclusions

An algorithm based on the Teager–Kaiser (TK) energy operator has been developed
for the automatic detection of clicks in large recordings from sperm whales. For evalu-
ation purposes, real recordings were initially labeled by hand. Tests performed on
recordings of a total duration of 25 min gave high scores of correct detection both for
regular clicks and creaks. The use of TK energy operator, which is robust against addi-
tive noise and nearly instantaneous, makes the proposed algorithm a promising tool for
automatic click detection. In comparison with a widely used click detector, the Rainbow
click, the proposed one seems to be more efficient in detection score, more robust and
more accurate.
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