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This study compares three approaches in the design of an autonomous machine 

listening agent that predicts harbor porpoise ultrasonic echolocation clicks in diverse 

noise environments. Considering the temporal variations of noisy coastal ocean 

soundscapes which the harbor porpoises inhabit, we propose a leave-one-day-out 

(LODO) cross-validation strategy in the training of a random forest classifier that 

successfully addressed the covariate shift present in our time-series data. To evaluate 

the efficacy of our approach to capture signals in this noisy environment, we compare 

three preprocessing approaches and two deep learning architectures on our harbor 

porpoise click data. We find that feature extraction strategies of mel frequency cepstral 

coefficients (MFCC) and short time Fourier transform (STFT) outperformed our novel 

approach, the heterodyned-Teager-Kaiser Energy Operator (TKEO), which shifts down 

the ultrasonic signal to a lower frequency in the time domain. Building on these results, 

we seek to improve the robustness of our porpoise click classifier for a real-world 

environment by implementing a second-stage stacked random forest ensemble on 

combinations of subsets of 42 deep learning base models that were trained from the 

folds of our LODO cross-validation and the three preprocessing approaches that were 

explored in this study. Our results demonstrate that experiments using the LODO cross-



 

 

validation strategy reported a difference between the average fold accuracy and a held-

out test accuracy of 6%, while training without cross-validation and the equal k-fold 

cross-validation reported a 28.7% and 30.4% difference, respectively. From the three 

preprocessing approaches we implement, the models trained on MFCC produced the 

highest accuracy of 95.6% on the held-out test set while those trained on STFT and 

heterodyned-TKEO produced accuracies on the same held-out test set of 88.7% and 

85.0%, respectively. Results from our stacked random forest show the greatest 

improvement in accuracy of 5.6% in the heterodyned-TKEO models while the STFT 

and MFCC models reported 4.5% and 1.9% improvements in accuracy, respectively. 

Highly varying noise environments are common across coastal areas inhabited by 

harbor porpoises. This study, with our proposed ensemble of different feature and 

model architectures, emphasizes the need to overcome such shifts in noise to design a 

robust porpoise click classifier that is ready for real-time deployment and able to 

generalize to all real-world conditions. 
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1 

 

1. Introduction 

 1.1 Motivation 

 The Bay of Fundy, in Nova Scotia, Canada, hosts some of the strongest tidal currents in 

the world, ranging from 13 to 38 feet throughout the year [1]. As a result of these currents, this 

bay has been targeted as one of the best locations to harvest tidal energy via tidal turbines [2]. The 

bay, however, also hosts a large population of harbor porpoises. Unfortunately for harbor 

porpoises, and for the environment that they play a key role in, these tidal turbines are a serious 

physical threat that can hit porpoises passing by with their blades. Additionally, these turbines 

produce a significant amount of mechanical noise that could potentially and significantly interfere 

with the ultrasonic echolocation they use for foraging and communication [3, 4].  

 There is a need to establish a reliable acoustic system that can detect the presence of 

porpoise clicks. This system could (1) combine with previous statistical investigations to further 

investigate the impact that tidal turbines have on porpoise populations and porpoise click activity, 

and (2) potentially provide an opportunity for a real-time porpoise click detector that can switch 

off tidal turbines as soon as porpoise clicks were detected near the vicinity. Both use cases serve 

to benefit the well-being of the harbor porpoise by managing and mitigating our human impact on 

their environment. 

 1.2. Problem Statement 

 This investigation focuses on effectively classifying harbor porpoise vocalizations (clicks) 

recorded in Nova Scotia, Canada. More precisely, our objective is to create an autonomous 

machine listening agent that can predict if a harbor porpoise click exists in a given clip of audio. 

To solve this problem, we investigated whether a deep learning approach could detect these clicks 

and compared the performances of two deep model architectures: a convolutional neural network 

(CNN) and a long short-term memory (LSTM) recurrent neural network (RNN). However, since 

this time-series data contains high levels of background noise, this study also experiments with 

different cross-validation approaches to best represent our models’ potential performance in 

https://www.zotero.org/google-docs/?fQVwxG
https://www.zotero.org/google-docs/?2S1xGw
https://www.zotero.org/google-docs/?XKMSmx
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real-world conditions. Lastly, we leverage the CNN and LSTM model’s individual predictions by 

constructing an ensemble method which resulted in a final classifier with better performance than 

any individual model itself. 

 

 1.3 Contributions and Novelty 

 In recent years, various approaches to autonomous classification of bioacoustic sound 

events have been explored and will be discussed in detail in Chapters 2 and 3. This study adds to 

these contributions in three ways. First, considering that background noise is always a difficult 

factor in marine soundscape, this study proposes a leave-one-day-out cross-validation approach 

over our limited observation data, introduced in Section 5.1, that attempts to evaluate how our 

autonomous classifier might perform in and generalize to real world situations. Second, we 

introduce an approach of heterodyning of ultrasonic audio as a preprocessing approach prior to the 

input of deep learning models. By shifting the high frequency clicks down to lower frequencies, 

discussed further in Section 5.2.3.4, we significantly reduce the dimensionality of input data when 

training deep learning models on raw audio signals. Lastly, from the 42 classifiers that are trained 

from a combination of approaches (three different preprocessing approaches, two deep learning 

models and seven folds from the cross validation), we train a second stage random forest ensemble 

model from variations of the output of each model and demonstrate a significant improvement in 

performance over any individual architecture and feature approach. 

 



 

 

3 

2. Preliminaries 

This section provides context about the different domains that are discussed in the course 

of this investigation. The three relevant domains that are reviewed in this section are porpoise 

bioacoustics, marine mammal signal processing, and machine learning.  

This section is organized into three subsections, each introducing one of these domains. 

Section 2.1 explains the characteristics of porpoise clicks. Section 2.2 reviews marine mammal 

bioacoustics and elaborates on the current best known practices in signal processing of cetacean 

echolocation clicks. And finally, section 2.3 introduces machine learning with a focus on 

time-series analysis. 

2.1. Harbor porpoises and their clicks 

 Phocoena phocoena, commonly known as harbor porpoises, are cetaceans, sharing the 

same infraorder as whales and dolphins. Like other toothed cetaceans, harbor porpoises rely on 

echolocation to hunt and navigate in the marine environment. Similarly to dolphins, harbor 

porpoises emit ultrasonic clicks with the intention of hearing echoes that bounce off of their prey 

and other objects, providing information such as size, structure, material composition and shape 

of objects [5, 6]. This ability is known as echolocation or biological sonar. Figure 2.1.1 shows an 

illustration of a harbor porpoise. 

 

 

Figure 2.1.1. Illustration of an adult harbor porpoise courtesy of NOAA Fisheries. Adult 

porpoises weigh between 135 and 170 lbs and range between 5 and 5.5 ft in length [7]. 

 

Compared to most dolphins, however, harbor porpoises emit clicks at a much narrower 

bandwidth, ranging between 6 to 26 kHz at a center frequency between 130 and 140 kHz [3]. Thus, 

https://www.zotero.org/google-docs/?FFC387
https://www.zotero.org/google-docs/?z637Xt
https://www.zotero.org/google-docs/?fpwj5Q
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harbor porpoise clicks are classed as narrow-bandwidth high-frequency (NBHF) clicks. Other 

smaller cetaceans, including dolphins in the genus Cephalorhynchus and dwarf sperm whales, also 

emit NBHF clicks. Experts currently believe that species developed NBHF clicks from selection 

pressure to avoid predation from killer whales [3, 8, 9]. Harbor porpoise click durations last 

between 44 and 115 µs with a variable interclick interval between 30 and 100 ms. It has been 

reported, however, that when porpoises are within two meters of their prey, they can have an inter-

click interval as short as 1.5 ms [3]. Figure 2.1.2 shows a spectrogram image of a typical train of 

clicks from a harbor porpoise. 

 

 

 

Figure 2.1.2. Grayscale spectrogram image of a harbor porpoise click train. The y-axis represents 

the linear frequency in kHz (where only the 90-170 kHz band is visualized for clarity) while the 

x-axis is time in milliseconds. The color corresponds to the dB magnitude of the sound. The two 

white, dashed, vertical lines highlight the interclick interval between two clicks at 250 and 281 

ms, showing an interval time of 31 ms. 

 

 

 

 

 

https://www.zotero.org/google-docs/?A90ce4
https://www.zotero.org/google-docs/?pyfwrB
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Figure 2.1.3. Waveform of a harbor porpoise click. The y-axis is the amplitude recorded from a 

hydrophone, normalized across the half-second window shown in Figure 2.1.2. The x-axis is 

time microseconds. The vertical lines at times 113 and 163 µs highlight the estimated duration of 

one click. This is the same click at time 250 ms in Figure 2.1.2.  

 

Sørenson et al. [10] identified two different reasons harbor porpoises make clicks: 

communication and foraging. After tagging six harbor porpoises, Sørenson et al. concluded that 

although inter-click intervals varied slightly, the acoustic characteristics such as duration, centroid 

frequency and bandwidth were the same in both cases. 

 Although harbor porpoises navigate and survey coastal waters via ultrasonic echolocation, 

Miller et al. in 2013 identified that environmental noise, such as rain and ship noise, at much lower 

frequencies has shown to interrupt their foraging behavior [3]. In 2019, Tollit et al. observed via 

generalized estimating equations that harbor porpoise click activity significantly dropped when 

turbines were operational in Minas Passage off the coast of Nova Scotia, Canada [4] – the same 

location where our hydrophone data was collected. 

https://www.zotero.org/google-docs/?T8QmpU
https://www.zotero.org/google-docs/?c0eTng
https://www.zotero.org/google-docs/?saPIYs
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2.2. Audio processing and feature extraction  

 There have been many signal extraction approaches that have been applied to marine 

mammal bioacoustics. In this investigation, we chose to use three of the most popularly used 

approaches for echolocation click detection for the input into deep learning architectures. In this 

section, we provide background for those three methods: short-time Fourier transform (Section 

2.2.1), Mel frequency cepstral coefficients (Section 2.2.2), Teager-Kaiser energy operator (Section 

2.2.3). We will also introduce heterodyning because we used it in combination with the Teager-

Kaiser energy operator (Section 2.2.4). 

 

2.2.1. Short-time Fourier transform 

In order to discuss the short time Fourier transform (STFT), it is first necessary to establish 

the discrete Fourier transform (DFT). The DFT is defined to operate on a signal x by the following 

equation: 

�̂�(𝑘) = ∑ 𝑥[𝑛] ⋅ 𝑒−𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑛=0

 

 

Here N is the total number of samples in the given signal and n is the sample number in the range 

[0,N-1]. Variable k is the wavenumber that corresponds to the discrete frequency 2𝝿k/N that is 

translated from Euler’s formula: eix = cos(x) + i sin(x). The output of the DFT, �̂�(𝑘), is 

consequently a one-dimensional spectral vector of Fourier coefficients that represents the signal x 

in the frequency domain. Although the DFT is a great way to observe the frequency characteristics 

of a given audio signal, it fails to provide any information with respect to time. 

 The STFT was subsequently developed after the DFT to address this limitation by having 

with temporal dimension in addition to the spectral vector. The STFT performs the DFT over a 

sliding frame throughout the signal. The STFT is defined to operate on a signal x by the following 

equation: 

 

�̂�(𝑚, 𝑘) = ∑ 𝑥[𝑛 + 𝑚𝐻] ⋅ 𝜔[𝑛] ⋅ 𝑒−𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑛=0
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Observe that the STFT extends the DFT with the new variables m and H; m ranges from 

[0, M-1] where M is the total number of frames chosen to represent the signal throughout time, 

and H represents the hop size which is the distance, in samples, between each consecutive frame. 

This allows for frame overlapping. The new factor, 𝜔(𝑛), is a windowing function that is also not 

part of the DFT. This function can simply be just the rectangular function that controls what 

samples to perform the STFT on within each frame. The Hann or Hamming window functions are 

the most common windowing functions that serve to remove spectral leakage between spectrum 

coefficients. 

Ultimately, the result of the STFT over the entire signal, x, is a two-dimensional matrix 

where each column corresponds to a frame, m, and each row corresponds to a frequency bin, k. 

From this STFT matrix, audio applications such as bioacoustics use the STFT to create a 

spectrogram image where each pixel value corresponds to each element, �̂�(𝑚, 𝑘), in the STFT 

matrix. An example of a spectrogram was shown previously in Figure 2.1.2. 

2.2.2. Mel frequency cepstral coefficients  

 The name mel is abbreviated from melody and its calculation, as will be described in this 

section, aims to better align the human perception of pitch with the frequency of audio. Mel 

frequency cepstral coefficients (MFCCs) result from a few extra calculations on the output of the 

STFT described in the previous section. Figure 2.2.2.1 shows the process of extracting MFCCs 

from the time-domain audio signal. The rest of this section will walk through each of these steps 

after the STFT. 
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Figure 2.2.2.1. Block flow diagram of the MFCC extraction calculation on a clip of continuous 

audio. Each of these steps after the STFT is discussed in detail below. The calculation starts with 

a 1-dimensional array representing a time-domain signal and then outputs a 2-dimensional matrix 

of 13 discrete cosine transform (DCT) corresponding to the final MFCC.  

 

Starting with the output of the STFT, the next step is to convert each �̂�(𝑚, 𝑘) into the mel 

scale. The relationship between mel and frequency is often defined with the following equation: 

𝑚𝑒𝑙 = 1127 ⋅ 𝑙𝑛(1 + 𝑓/700) 

 The constants, 1127 Hz and 700 Hz, were found experimentally via rigorous psychological 

surveys [11]. To convert the STFT matrix to the mel-scale filter banks, we first must convert the 

lowest and highest frequency in the STFT matrix to mel values. Then, divide the difference of 

those two mel values into an evenly spaced amount. These divisions are called mel bands and it is 

common practice to create 13 mel bands, although different numbers have been explored for 

different applications. From each of these mel bands, we then locate the center frequency 

converting the mel value back to frequency value with inverse of the above equation: 

𝑓 = 700(𝑒𝑚/1127 − 1) 

 From this frequency, we then round to the nearest frequency bin in the STFT matrix. With 

the center frequency defined for each band, a triangular filter is then applied, starting from the 

center frequency of the previous band and ending with the center frequency of the proceeding mel 

band. Figure 2.2.2.2 shows an example of 6 mel bins and how the triangular filter is applied 

corresponding to the relative frequency bins. 

 

https://www.zotero.org/google-docs/?gDD9HY
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Figure 2.2.2.2 Example of a mel filter bank with 6 mel bins between 2,000 to 16,000 Hz. The x-

axis is linear frequency. The bottom x-axis shows values in Hz while the top x-axis shows the 

values in mel-frequency. The y-axis is the weight corresponding to the triangular filter. As we 

see an increase in linear frequency, the base of the triangle filters increases logarithmically, 

which is how the mel spectrum attempts to mirror human pitch perception. 

 

 What results from this conversion from the STFT matrix to the mel scale is a matrix of m 

rows corresponding to each mel band, and the same number of columns as the STFT that 

correspond to each frame. Now that the signal is represented in the spectral domain, the discrete 

cosine transform (DCT) is calculated to transfer the signal over to the cepstrum domain. The DCT 

is similar to the inverse Fourier transform but is used here because it only calculates real-valued 

coefficients. The DCTs coefficients correspond to the amplitudes of the cosine frequencies that 

are present in the spectrum signal, and are then the resulting MFCCs. Traditionally 13 cosine 

signals are extracted, although other numbers can be used. This results in a final matrix of 13 rows, 

corresponding to the 13 DCT coefficients, and M columns, corresponding to the number of frames 

used defined in the initial STFT calculation as seen in Figure 2.2.2.1.   
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2.2.3. Teager-Kaiser energy operator 

 The Teager-Kaiser energy operator (TKEO) [12] is a signal conditioner that was first 

popularized on electromyography (EMG) signals [8]. It is now used in various applications from 

mechanics to image and audio processing. Its discrete equation, operated on a signal x, is defined 

as 

 

𝛹[𝑥(𝑛)]  =  𝑥2(𝑛)  −  𝑥(𝑛 + 1)𝑥(𝑛 − 1) 

 

where n is the discrete sample number in x. The TKEO conditioner measures the instantaneous 

changes in energy at each sample by taking the difference of the squared value of the current 

sample and the product of the previous and the following samples in the signal. Figure 2.2.3.1 

shows an example of TKEO being applied to audio that contains with harbor porpoise clicks.  

 

 

Figure 2.2.3.1. These two plots, show an audio signal before (a) and after (b) the application of the 

TKEO. The three arrows correspond to three examples of clicks within a train of harbor clicks. 

The TKEO significantly reduces the noise while also increasing the amplitude of each harbor 

porpoise click. 

https://www.zotero.org/google-docs/?sgfX5Q
https://www.zotero.org/google-docs/?8c7ZMd
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2.2.4. Heterodyne 

 Heterodyning is a signal processing method used for many applications in 

communications. At a high level, heterodyning shifts a frequency band into another band of equal 

width. For instance, by shifting ultrasonic frequencies down to the audible frequency band, 

heterodyning makes it possible for bat bioacousticians to hear bat echolocation clicks in real time, 

since a heterodyne bat detector shifts the ultrasonic bat calls down to the 20 Hz - 20 kHz range of 

human hearing.  

 Digital heterodyning can be broken down into three main steps. The first step is to perform 

a band pass filter on the frequency band of interest that is intended to be shifted. This removes all 

energy except that which resides in the frequency band of interest. The second step is then to shift 

that frequency band to the new frequency band, which in most cases would be starting at 0 Hz, by 

multiplying it by a sine wave whose frequency is the lower end of the original frequency band of 

interest. Lastly, a low pass filter is then executed to remove the energy produced from the copy of 

the heterodyned signal. To help visualize this process, Figure 2.2.4.1 shows a spectrogram of the 

same audio clip in Figure 2.1.2 after heterodyning from the 100-150 kHz band down to the 0-50 

kHz band.  
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Figure 2.2.4.1. Spectrogram of porpoise click train after heterodyning. The x-axis remains the 

same as Figure 2.1.2 but the y-axis has now changed to frequencies from 0 to 50 kHz. We see that 

the heterodyne operation manages to maintain the clarity of the clicks while effectively reducing 

the sample rate from 512 kHz to 100 kHz. 

 

2.3. Machine learning, CNNs and LSTMs 

 Before introducing the specifics of the Deep Learning (DL) approaches that are used in 

this study, it is important to first contextualize them within the broader field of machine learning 

(ML). ML algorithms predict or make decisions without domain knowledge embedded in the 

algorithm or explicit direction from the inherent design. Instead, ML algorithms are trained on 

large amounts of past data to make predictions/classifications about future data. This training on 

posterior data is how the algorithm learns, hence its name. Starting from the 1960s, many different 

ML models have been successfully developed and deployed to solve real-world problems. Some 

of the most popular models include decision trees [15], perceptron models [16], logistic regression 

models [17], naive Bayes models [18] and support vector machines [19].  

Of the many different ML models, decision trees have been popularized not only for their 

success in ensembles, known as random forests [20], but they remain relevant in recent 

https://www.zotero.org/google-docs/?j3DO6j
https://www.zotero.org/google-docs/?IkqsNK
https://www.zotero.org/google-docs/?4CdnXx
https://www.zotero.org/google-docs/?uXdR6Q
https://www.zotero.org/google-docs/?5Gk2nh
https://www.zotero.org/google-docs/?j3JOId
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conversations and studies about ML interpretability [21] due to their simplicity, interpretability, 

and feasibility to visualize. The importance of individual features of a random forest (RF) are 

identified by calculating the total criterion reduction for each feature in all trees of the RF. The 

features that result with the greatest total sum of criterion reduction have the most impact, or in 

other words, are the most important features for inference. 

Building on its origins in the linear perceptron model, the multilayer perceptron model 

(MLP) or feedforward artificial neural network has been well established as an important ML 

algorithm to learn from non-linearly separable data [22]. As a supervised ML model, MLPs learn 

via multiple iterations of forward and back propagation. In forward propagation, input data passes 

through each neuron as a weighted sum and then transforms it with an activation function. In 

backpropagation, the weights that contribute to the summation of each neuron are updated via 

gradient descent [23]. It was not until the implementation of the rectified linear unit activation 

function [24] in MLPs, however, that ultimately led to the advent of deep learning (DL) – a 

subdomain of ML [25].  

CNNs, similarly to MLPs, have input, hidden and output layers. The input, however, is an 

n-dimensional matrix that is usually of the form (height, width, channels). These matrices are often 

called tensors to abstract away from dimensionality. Instead of the standard perceptron model 

applied to each neuron in the MLP, CNNs perform convolutions at each layer, typically followed 

by a max pooling layer to reduce the tensor size while simultaneously maintaining important 

features. The more times this convolution-pooling pair is repeated, the “deeper” the CNN becomes. 

Typically, after all of the convolution-pooling layers, one to three MLP layers are connected to the 

end to feed to the final output. These final layers in a CNN are called fully connected layers because 

each neuron is connected to every element in the previous layer. For example, if there is one fully 

connected layer in the CNN, then the feature map before it is flattened and then each element is 

fed to each neuron. The purpose of the fully connected layer(s) is to learn the combinations of non-

linear features that the convolutional layers extracted. A CNN with convolution-pooling layer is 

shown in Figure 2.3.1.  

 

https://www.zotero.org/google-docs/?C9h1fj
https://www.zotero.org/google-docs/?CjWjxa
https://www.zotero.org/google-docs/?cSdUvn
https://www.zotero.org/google-docs/?cy2ukV
https://www.zotero.org/google-docs/?hC8uWW
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Figure 2.3.1. A simple CNN architecture (courtesy of [26]). This CNN has one convolutional 

layer. Notice how the height and width of the tensor remains the same before (the initial input) 

and after the convolution. The second layer is a pooling layer. Notice the reduction in height and 

width of the tensor – it is keeping the most important features that are being learned from the 

previous convolution layer. The pooling layer is then flattened and input into the fully connected 

layer. This layer learns the non-linear combinations of features extracted from the previous 

convolution-pooling layer and outputs the result to 3 nodes corresponding to three classes. The 

value at each node is the probability of the input example being that class. 

 

Backpropagation in a CNN is executed the same on the final fully connected layers’ 

weights and is also applied to the weights of each convolution filter. CNNs are most commonly 

chosen for image classification problems. In classical computer vision algorithms, a particular 

filter is usually rigorously tuned to effectively extract certain information from an image. With 

CNNs, however, various combinations of filters are learned and calibrated autonomously through 

the training of the CNN and have shown to greatly outperform classical computer vision 

approaches in image recognition problems [27]–[29]. 

Recurrent neural networks (RNNs) are also an extension of the MLP in that they have the 

same neural structure, but uniquely they introduce sequential propagation from one neuron (or 

grouping of neurons) to the next within the same layer. In other words, information from one 

sample (or grouping of samples) is applied to all that proceed it. These groupings of samples are 

https://www.zotero.org/google-docs/?cHGkg5
https://www.zotero.org/google-docs/?EmHnZb
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known as timesteps of the sequence. At each timestep, the standard perceptron operation is 

performed on the samples with a tanh activation. The output of each timestep, however, is then 

concatenated with the input of the proceeding timestep. This identifies sequential patterns in each 

observation passed through the RNN, making it effective in classifying and predicting temporal 

data. Figure 2.3.2 shows an example of an RNN with three timesteps. 

 

 

 

Figure 2.3.2. Example of an RNN with three timesteps (courtesy of [30]). Each input element Xt 

has its own RNN timestep. Note that the output of a timestep is then propagated into the 

proceeding timestep. RNNs can also be visualized with one timestep that feeds back to itself with 

every sample. This particular RNN outputs the results at each timestep. 

 

However, over time it has been observed that RNNs struggled as increasingly longer 

sequences were processed. Often, important characteristics that occurred near the beginning of an 

observation were lost towards the end of the series of timesteps. This had made RNNs notorious 

for only having short-term memory [31]. Long short-term memory (LSTM) models were then 

introduced to attempt to solve this issue [32]. LSTMs introduce three more neural network layer 

operations within each timestep (with sigmoid activation) as well as another tensor that propagates 

through each timestep called the cell state. This cell state learns through training what information 

from each timestep to keep and discard, thus enabling “long-term memory”. Figure 2.3.3 shows 

an example of three LSTM timesteps. 

 

 

https://www.zotero.org/google-docs/?2kddJy
https://www.zotero.org/google-docs/?YK0Orb
https://www.zotero.org/google-docs/?9WamrH
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Figure 2.3.3. Example of LSTM with three timesteps courtesy of [30]. The cell state is the tensor 

running at the top of the timesteps. Notice the pointwise addition and multiplication of the cell 

state tensor at each timestep. 

  

Both the CNN and LSTM frameworks are commonly employed on a variety of tasks today. In the 

following chapter, we will discuss such employments in bioacoustics and Chapter 5 will then 

introduce how we implement our own variations of the CNN and LSTM in this work. 

https://www.zotero.org/google-docs/?WcYyds
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3. Related work 

In this research we attempt to find an approach to effectively and automatically classify 

ultrasonic harbor porpoise clicks present within a given audio clip that may also contain high 

amounts of environmental noise. This chapter surveys the approaches that have been used to solve 

similar problems. Although marine mammal bioacoustics have come a long way from the days of 

traditional signal processing approaches for event detection, in this chapter we review the various 

feature extraction techniques commonly used in bioacoustics and how they evolved to help 

machine learning and deep learning models learn to classify bioacoustic phenomena.  

Section 3.1 provides an overview of the related work involving feature extraction and 

processing of acoustic signals. In recent years, machine learning (ML) and deep learning (DL) 

approaches have far surpassed classical approaches that relied heavily on the low-level feature 

extraction methods. Sections 3.2 and 3.3 will be dedicated to the contributions made in ML and 

DL (where ML is referring to all ML approaches that are not DL). Lastly, section 3.4 will 

summarize the entire chapter and provide context for the approaches that are explored further in 

this study.   

 3.1. Feature extraction 

 Prior to the rise of machine learning, bioacoustics and many general acoustic applications 

relied heavily on the fine-tuning of various feature extraction techniques. These feature extractions 

are often measured in both the time and time-frequency domains (where DFT is utilized).  

In 1992, Fristrup and Watkins surveyed the most prominent extraction techniques on 

several marine mammal species’ signals [33] such as upsweep mean, median frequency mean and 

amplitude frequency correlation. From their summary, some of the feature extraction calculations 

only required information in the time series signals, such as amplitude mean and standard 

deviation. Many other calculations, however, require not only time series data but their 

corresponding frequencies as well, such as the section of extraction methods in frequency 

modulation and both bandwidth sections.  

 

 

https://www.zotero.org/google-docs/?xoBr3q
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In 2019, Mcloughlin et al., in the broader domain of bioacoustics, discusses the most 

common feature extraction methods used today [34]. These include some of the extraction methods 

introduced in table 3.1.1, and variations of them, such as the centroid frequency (similar to center 

frequency) and spectral flux (similar to frequency modulation). They also add zero crossing rate 

and spectral flatness as well as other low-level extraction methods that are still currently being 

used in bioacoustic classification. 

In particular for cetacean clicks, the TKEO has been shown to significantly improve signal 

detection [14, 35, 36]. In 2006, Kandia et al. implemented the TKEO on sperm whale clicks before 

inputting into a forward-backward search algorithm. Their results show that TKEO provided a 

30% increase in detection rate.  

The difference between sperm whale clicks and harbor porpoise clicks, however, is that 

porpoises vocalize at a much higher frequency (100-150 kHz). This results in having an impractical 

amount of data to input directly to the LSTM due to the high sampling rate required to capture the 

ultrasonic information. Mirzaei et al. [37] had a similar dimensionality problem with ultrasonic 

bat calls and used MFCCs to represent the audio at a significantly reduced dimensionality. Their 

study showed a 10% increase in accuracy with respect to a fast Fourier transform preprocessing 

approach. Another method gaining popularity in the research literature in the implementation of 

passive acoustic monitoring (PAM) of bat echolocation is the process of heterodyning the input 

signal. Ingemar Ahlén states in his paper titled Heterodyne and the time-expansion methods for 

identification of bats in the field that “[heterodyning] is perhaps the best system to detect the most 

bats. The narrow frequency band that is transposed to audible sound must be tuned to the sounds 

made by the bat” [38] [39]. 

In the same way that heterodyning is used to bring ultrasonic bat calls down to audible 

frequencies to hear and detect, in this study we utilize heterodyning to shift the ultrasonic porpoise 

clicks down to audible hearing so that we can reduce the sample rate, which has the effect of 

reducing the number samples in each observation to feed to the neural network models. 

3.2. Machine learning 

  

https://www.zotero.org/google-docs/?N73GEz
https://www.zotero.org/google-docs/?pYVKCU
https://www.zotero.org/google-docs/?TCEFBT
https://www.zotero.org/google-docs/?RXS1bu
https://www.zotero.org/google-docs/?4Qiade
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 Before discussing recent advances in deep learning of bioacoustic signals, it is important 

to review the prior successes of non-DL algorithms in the area of bioacoustics. Returning to 

Fristrup and Watkins’ efforts in summarizing the best practices in marine mammal feature 

extraction, discussed in the previous section, a follow-up study published a year later (1993), titled 

“Marine Animal Sound Classification” [40], used decision trees with a feature vector including 

various outputs of low-level feature extraction calculations mentioned in [33]. These decision trees 

were implemented to combine the strengths of the individual low-level feature extraction 

algorithms. 

 Years later, many bioacoustic classification studies successfully implemented random 

forests, which are built upon many decision trees (as discussed in Section 2.3) [41, 42]. Similar 

success has also been reported with other machine learning models such as logistic regression [43], 

support vector machines [44] and multilayer perceptrons [45]. 

 More specifically with cetacean clicks and pulses, studies such as Caruso et al. [46] show 

that ML algorithms are still effective in addressing detection of cetacean species. A feature vector 

including pulse duration, peak frequency, centroid frequency, bandwidth, QRMS, zero crossings 

and inter-pulse interval was used to train a cubic support vector machine (SVM) to detect Indo-

Pacific humpback dolphins. Using five-fold cross-validation with a total of 51,238 examples, their 

SVM model reached a test accuracy of 89.9%. Consentino et al.’s PorCC model [47] is another 

ML approach that instead builds on the industry standard, PAMGaurd’s [48] click detector, and 

utilizes a combination of a variation of an if/else tree and logistic regression coefficients to detect 

harbor porpoise clicks off the west coast of Scotland. The PorCC model uses the output of the 

PAMGuard Click Detector and then performs a series of logical selection statements combined 

with two logistic regression equations to detect if the signal was in fact a click. PorCC 

outperformed PAMGuard’s classifier with an overall sensitivity index 3.4 vs. 2.0, respectively.  

 

3.3. Deep learning 

Building on the success of ML models mentioned in the previous section, recent DL models 

have also provided significant contributions to marine mammal bioacoustic detection and 

classification problems. Because of the advances in DL, and more specifically convolutional 

neural networks (CNN) and long short-term memory (LSTM) recurrent neural networks (RNN), 

https://www.zotero.org/google-docs/?IzJ6L8
https://www.zotero.org/google-docs/?hSP9EW
https://www.zotero.org/google-docs/?9kb5yp
https://www.zotero.org/google-docs/?mH2ugg
https://www.zotero.org/google-docs/?9GJIyb
https://www.zotero.org/google-docs/?HVPFML
https://www.zotero.org/google-docs/?iwLBVR
https://www.zotero.org/google-docs/?SzFv0u
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low-level signal processing and feature extraction approaches have been superseded by the short 

time Fourier transofrom (STFT) and mel-frequency cepstral coefficients (MFCCs). Shiu et al. [49] 

explored five industry standard DL models (LeNet [50], BirdNet [51], VGG [28], ResNet [52] and 

a Conv1D + GRU) to detect right whale up-calls. Their results showed that LeNet, the most 

shallow of the pure CNNs, “had the highest precision and lowest number of false positives for a 

given recall.” It is important to note that BirdNet performed almost as well as LeNet but it was a 

more complex model that took longer to execute, showing that shallower, less complex models are 

suitable for detecting many marine mammal bioacoustic events. Other approaches that have begun 

to implement deep learning have also seen a lot of success and not only in classification of the 

existence of the particular species but in identifying the individual mammals that are making the 

clicks. Berment et al. [53], for example, used spectrograms with a CNN to successively classify 

sperm whale clicks but used an LSTM with time series audio to classify short repeated patterns of 

clicks (known as codas), vocal clans and individual sperm whales. 

The next two subsections, 3.3.1 and 3.3.2, will review related works using strictly CNN 

and LSTM for bioacoustic classification, respectively. 

3.3.1. CNN 

 With many variations and improvements over the years, CNNs have been successfully 

applied to solve many complex image classification problems [28, 54, 55]. Therefore, it is not 

surprising to see CNN architecture has also found success in bioacoustics tasks when combined 

with STFTs to create spectrograms. 

 Thomas et al., for example, use two staple CNNs, ResNet-50 and VGG-19, to classify three 

different types of whales, ambient and non-biological noise in a bay in Nova Scotia, Canada [56]. 

Using STFT spectrograms (with interpolation) as inputs, they see an accuracy of 94.4% and 95.9%, 

for the ResNet and VGG, respectively. Another study, by Duan et al., classifying chirps and 

whistles of dolphins used a custom CNN [57]. This model achieved a precision and recall of 91% 

and 84%, respectively. Given the size of this model, and the models used in Thomas et al., it further 

demonstrates that CNN models are effective for this classification task when they have a relatively 

small number of layers. 

 

 

https://www.zotero.org/google-docs/?N1y2E5
https://www.zotero.org/google-docs/?2WEtWO
https://www.zotero.org/google-docs/?7xRdhD
https://www.zotero.org/google-docs/?fRRs2n
https://www.zotero.org/google-docs/?2UO4SG
https://www.zotero.org/google-docs/?fAkt31
https://www.zotero.org/google-docs/?2ofR04
https://www.zotero.org/google-docs/?QGbyXq
https://www.zotero.org/google-docs/?98RL6R
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3.3.2. LSTM 

Given their popularity in analyzing time-series data [58], LSTMs have also been given 

significant attention in bioacoustic research. For example, Gong et al. compare the performances 

of a deep neural network and LSTM on the classification of 35 different amphibians [59]. With 

MFCCs as input, their LSTM architecture consists of one LSTM layer with 10,240 timesteps that 

output to 35 predictive targets for each amphibian species. They concluded that the LSTM 

outperformed the deep neural network (an MLP with multiple hidden layers) showing greater 

precision and also a reduction in training time. Weninger and Schuller also compared an LSTM 

against variations of support vector machines and hidden Markov models in classifying biological 

orders including songbirds, non-songbirds, cats, dogs and primates [60]. Again, with MFCCs as 

input, the LSTM performed the best of all the classifiers when classifying two biological orders of 

the five. However, when the models were tasked to classify all five orders, the hidden Markov 

model outperformed the LSTM by 2.3%. 

 In regards to cetacean vocalization specifically, there have been creative ways of 

implementing LSTMs. Duan is one such that, after processing the spectrogram, implements a line 

detector and a Frangi filter for preprocessing before inputting into an LSTM [61]. He compares 

this proposed method with the traditional TKEO approach established by Kandia et al. [14], 

discussed in section 3.1. The LSTM in Duan’s approach has a variable length input such that the 

beginning time step corresponds to the lowest frequency of the line. The last time step corresponds 

to the highest frequency of the line. Given this 1-dimensional feature vector of STFT values 

corresponding to a detected line in the spectrogram, the LSTM classifies it as one of three beaked 

whales that are observed in the dataset. Duan finds that the LSTM with this unique preprocessing 

approach outperforms the TKEO algorithm showing higher precision and recall at lower signal-

to-noise ratios. 

 

 

 

https://www.zotero.org/google-docs/?i4dUg6
https://www.zotero.org/google-docs/?Lczuj4
https://www.zotero.org/google-docs/?FJ2Yqr
https://www.zotero.org/google-docs/?k8bbXh
https://www.zotero.org/google-docs/?ykn8wl
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3.4. Summary 

The previous sections highlighted the various contributions to the problem of autonomous 

marine mammal bioacoustic classification. Starting with low-level feature extraction approaches 

summarized by Fristrup and Watkins in the early 90s, many of these approaches that found success 

are still being used today in the ever-changing environment of DL. In an approach similar to 

Mirzaei et al., we perform a comparative analysis of the different preprocessing approaches that 

were used in the aforementioned studies (MFFCs, STFT spectrograms and heterodyning with 

TKEO). Along with this comparison of preprocessing approaches, we compare the performance 

of a stand-alone CNN and LSTM to empirically compare their performance with different input 

data abstractions. Building on top of how these stand-alone models perform, we then analyze the 

performance of the ensemble on all the models (LSTM and CNN each with the three preprocessing 

approaches) to observe how they behave together. Similar to PorCC and Fristrup et al.'s 

implementation of decision trees, we stack a random forest on top the outputs of our individual 

DL models to utilize their individual strengths. 
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4. Data 

The previous chapter reviewed the current state of the art approaches to cetacean and 

marine mammal bioacoustics. In this chapter we introduce the harbor porpoise data used in this 

study. This chapter is composed of three sections. Section 4.1 discusses all that was involved in 

the collection of data. Section 4.2 enumerates the processing steps performed on the collected data. 

Lastly, Section 4.3 summarizes all of our data by providing quantitative and qualitative 

observations.  

 

4.1. Data collection 

All of the audio used in this study was collected by the Fundy Ocean Research Center for 

Energy (FORCE) via their deployment of a JASCO Applied Sciences Autonomous Multichannel 

Acoustic Recorder (AMAR). This study’s [62] goal was to assess the operational limitations 

relative to other passive acoustic monitoring (PAM) instruments when attempting to detect harbor 

porpoise clicks. The AMAR hydrophone was mounted on a subsea platform and deployed in Minas 

Passage in the Bay of Fundy, Nova Scotia, Canada. Figure 4.1.1 shows a seafloor elevation map 

where the platform was deployed. Figure 4.1.2 shows a map showing clearly where the Bay of 

Fundy is relative to the rest of Nova Scotia. Figure 4.1.3 shows the AMAR hydrophone on the 

platform before it was deployed. 

 

 

 

https://www.zotero.org/google-docs/?smOroD
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Figure 4.1.1. Map of the AMAR (courtesy of Map data Google, ©2022 CNES / Airbus) 

hydrophone deployment location. The circle is where the Fundy Advanced Sensor Technology 

(FAST) platform that carried the hydrophone is located. The square is the location of a nearby 

water turbine that was never operational during the collection of the audio. 

 

 

Figure 4.1.2. Map of the coast of Nova Scotia (courtesy of [70]). The Bay of Fundy covers all of 

the region covered in light blue. 
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Figure 4.1.3. The AMAR hydrophone (courtesy of [62]) connected to the platform before 

deployment. The four arrows associated with the AMAR are pointing to its four channels. The 

remaining four devices are other PAM instruments used in the deployment to compare their 

effectiveness in collecting harbor porpoise audio.  

 

There were a total of two deployments in 2019 in which the hydrophone recorded 

continuously, from June 4th to July 29th and September 5th to September 13th, resulting in a total 

of 47 days of audio. The hydrophone recorded at a sample rate of 512 kHz to fully capture the 

porpoise clicks that exist between approximately 110 kHz and 150 kHz (although energy from 

clicks can occasionally extend below and above these limits. 

4.2. Data harvesting and processing 

This continuous audio stream was stored as two-minute segments (henceforth referred to 

as “segments” for the rest of this work). From these segments, individual clicks were harvested. 

https://www.zotero.org/google-docs/?42aeP9
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Figure 4.2.1 shows a long term spectral average (LTSA) plot of a specific segment in which clicks 

were harvested.  

 

 

Figure 4.2.1. LTSA of a segment in which a total of 557 click examples were collected. Notice 

that higher energy pulses existing between 110 and 160 kHz. These are the result of a high 

amount of harbor porpoise click activity. 

 

Of the 47 days of audio recorded from the AMAR, we selected eight days to label harbor 

porpoise clicks. From these eight days, 4,143 clicks were collected from a total of 25 segments. 

We used the energy detector in the bioacoustic analysis software Ishmael [63], via Matlab, to 

collect these clicks. The Ishmael porpoise detector ultimately detects possible clicks when the ratio 

of the energy of the porpoise click frequency to energy in a lower frequency band (below 110 kHz) 

is greater than a detection threshold chosen heuristically so as to have a false-negative rate of less 

than 5%. Based on these detections, timestamps were generated and were manually checked (by 

D.K. Mellinger and S. Fregosi) to confirm they were in fact clicks. With these timestamps, we then 

created a half-second window centered on each of these clicks. We defined these half-second 

windows to be the positive examples in the dataset because they contain clicks in them. These 

https://www.zotero.org/google-docs/?pxqELq
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positive examples belong to the click class. Each one of the eight days had varying numbers of 

click examples and were harvested from varying numbers of segments.  

We defined the negative class, called noClick, when there is not a click present. The 

Ishmael detector was again applied to identify noise peaks but this time on segments that had been 

manually confirmed to not have clicks in them [62]. From these segments, which were from the 

same set of days as the click segments, the same number of noClicks were harvested resulting 

in a balanced dataset of click and noClick examples. These noClicks were harvested from 

segments near the click segments in an attempt to maintain consistent background noise. After 

building our final dataset, all the 8,286 click and noClick examples were then individually 

normalized to a level of -0.1 dB relative 0 dB with Sox [64]. 

 

4.3. Data analysis 

 Tables 1 and 2 in Appendix A summarize the profiles for the clicks and noClicks 

datasets, respectively, for the root-mean-square of all the samples (RMSs) values across all 0.5 

second observation windows that were collected. The RMSs of each example was calculated with 

the following formula: 

𝑅𝑀𝑆 =  √
1

𝑛
∑ 𝑥𝑖

2

𝑖

 

Here, n is the number of samples in example x, which in our case is 256,000. Figure 4.3.1 

shows the distribution of the RMSs values for each day for clicks (top) and noClicks 

(bottom). We notice that two days stick out from the rest of the six days. Figure 4.3.2 presents a 

kernel density estimation (KDE) plot with Guassian representation and Scott bandwidth estimator 

that shows a clearer visualization of this phenomenon. Particularly for the clicks, all the days 

except 07/14 and 09/07 peak between an average RMSs of 0.30 and 0.40. However, note that 07/14 

has two peaks at around 0.35 and 0.70 and has a much wider distribution than the other days. 

  

 

 

https://www.zotero.org/google-docs/?Mn0ikG
https://www.zotero.org/google-docs/?OeSMKU
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Figure 4.3.1. Histogram of RMSs distributions of all examples broken up by day, over 40 bins. 

Notice the peak on 09/07 (green) and 07/14 (blue) deviate from the rest of the days. 
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Figure 4.3.2. KDE Gaussian representation of the RMSs distribution using scott bandwidth 

estimator. From this plot, it is clearer than Figure 4.3.1 that 09/07 and 07/14 have unique 

distributions for clicks that differ from other days. It is also visible now that 09/10 has another 

unique density distribution for noClicks but not for its clicks. 

 

 One possible reason why 07/14 is significantly different from the rest is that it was recorded 

almost two months before the other days. The noise environment could be different because of 

changes in tide trends and patterns during that time of the year. Given this significant covariate 

shift in our dataset, it is necessary for our system to learn how to classify porpoise clicks in various 

noise environments if we hope to generalize for deployment in a real-time setting.  

Figure 4.3.3 shows the LTSA plots of each entire day, the locations of the selected 

segments, and ultimately the locations where the clicks and noClicks were harvested. From 

these LTSAs, we observe that the high noise regions (the yellow bumps) are smoother and the 

broadband noise pulses (yellow columns) are less prominent on 07/14 with respect to the rest of 

the days. From these LTSAs, we can qualitatively verify that we are gathering a diverse set of 

examples from segments across different noise regions types and times of day. For example, 

segments selected in 09/05 and 09/07 are in similar noise regions as we see an initial spike noise 
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where these segments exist. That background in those segments is significantly different from the 

segments in 07/14. The segments on day 07/14 at around hour 15 is during a relatively quiet period 

with regards to that background noise. With this variation in noise profiles, we hope to establish a 

dataset that effectively models the real world. This would lead to training robust DL models that 

may better generalize to new unseen data. 
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Figure 4.3.3. 24-hour LTSAs of each day with markers locating where the click and 

noClick segments exist. Note that 09/05 was not a complete day as it was the first day of 

recording for the month of September. The y-axis of each LTSA linearly spans from 0 to 256 kHz. 
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5. Experimental design and methods 

In this chapter we present the experimental approaches taken in our exploratory investigation to 

address the porpoise click classification problem. Since our time series dataset, as described in 

Chapter 3, showed varying inter-day distributions of RMSs sample values, Section 5.1 will 

describe the exploration and approach in deciding which cross-validation (CV) method to use for 

the remainder of our research. Section 5.2 then discusses the design and implementation of the 

CNN and LSTM models trained on datasets preprocessed using MFCC, STFT and TKEO. Lastly, 

Section 5.3 explains how we added a final, post-classification stacking ensemble step to further 

improve classification performance. 

 

5.1. Establishing cross-validation with baseline ML 

This section motivates how and why we chose to use cross-validation (CV) for the training 

of our classifiers in this study. It also provides initial baseline results for naively classifying harbor 

porpoise clicks. Section 5.1.1 introduces the ML model and feature extraction techniques. Section 

5.1.2 then discusses the three different training approaches that are examined in the experiment as 

well as the general structure of the experiment. Section 5.1.3 then provides results followed by 

discussion of implications of these results. 

5.1.1. Introduction 

To better understand the challenges of the porpoise dataset while securing an initial 

baseline result for reference, we trained a random forest (RF) classifier on our dataset. The RF was 

built using the Scikit Learn library [65] and had the following parameters: 

 

● 100 trees with bootstrapping  

● Gini criterion 

● no limits on leaves and height  

   

https://www.zotero.org/google-docs/?zHDWw8
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The following feature extraction methods were used to generate a feature vector for each 

observation: 

 

● amplitude envelope (AE) 

● root mean square (RMS) 

● zero crossing rate (ZCR) 

● spectral centroid (SC) 

 

These four low-level feature extraction algorithms were taken from the approaches 

described in Section 3.1. Each of these features was calculated over a sliding window across each 

half-second audio clip. There were a total of 19 frames with 50% overlap for each clip (frame size 

= 25,600 samples or 50 ms, hop size = 12,800 samples or 25 ms). A total of 19 frames were chosen 

because the porpoise’s minimum inter-click interval is observed to be roughly 30 ms (see Figure 

2.1.2). This meant that there are at most 17 to 18 porpoise clicks in a half-second audio clip 

observation (500 ms / 30 ms ≈ 17).  

Within each of the 19 frames, each of the four feature extraction methods listed above were 

extracted across a smaller sliding window (frame size = 1,024 samples or 2 ms, hop size = 512 or 

1 ms). Each of these smaller windows was centered, with zero padding to attain uniform length. 

The average across all of these smaller windows was calculated to produce a single average value 

for each of the 19 windows. Since we had 19 windows corresponding to every feature extraction 

method, we were left with a total of 76 features. 

 

5.1.1. Experimental approach 

 

 Chapter 4 identified variable noise profile distributions in the observations across the eight 

days. These varying distributions across time are what cause covariate shifting. A covariate shift 

in data is when the distribution of data shifts between training and testing. Simply running a 

randomized test/train/validation split on the entire data, that we suspected to have covariate shift, 

could result in a misleading test performance. Because of this, it was imperative to implement a 

cross validation (CV) strategy to obtain the most reliable test results.  
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We experimented with two forms of CV and compared them against the RF without CV 

(i.e., a randomized held-out train/test split). The two CV approaches we experimented with are 

traditional k-fold CV and the other we refer to as “leave-one-day-out” (LODO) CV.  

K-fold CV is when the entire dataset is randomly split into k subsets, referred to as folds. 

Each fold is used successively to train a classifier using the fold as the test set with remaining data 

as the training set. This results in k different iterations of training and k classifiers, each with 

unique test sets. For this experiment we chose 7 folds and shuffled our data prior to partitioning. 

LODO is similar to k-fold CV in that there are unique test sets at each fold. Each of these 

folds of LODO, however, a single day is dedicated for testing, while the other remaining days are 

used for training. Through this process, a new classifier learns on a different set of days at each 

fold. Since we have eight days over our entire dataset, we have eight folds corresponding to each 

day that is held out for testing. We refer to running LODO on all eight days as 8-LODO.  

Aside from these two CV approaches, we also implemented training without CV where we 

shuffled the data and then split it with 70% for training and 30% for testing. To compare these 

three different validation approaches, we selected one entire day to be the held-out day to test on. 

In other words, this day was not included in the CV methods nor was it seen in the traditional 

70/30 split. For the LODO approach, this meant that we used 7-LODO (instead of the 8-LODO 

mentioned previously). We intentionally chose the day 07/14 to be this held-out day for two 

reasons: (1) First, it is almost two months apart from the rest of the data. This is important because 

one of the main reasons for covariate shift is significant changes over time (in this case, almost 

two months). (2) Also, a closer look at Figure 4.3.3 in chapter 4 reveals that 07/14 has the most 

distinctive RMSs distribution among the rest of the days, with two prominent peaks at 0.35 and 

0.70 average RMSs per observation. The goal of this experiment is to observe the difference 

between the sampling method’s accuracy on its dedicated test set and its accuracy on the held-out 

day 07/14.  
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5.1.1. Results 

 To discuss our results more clearly, we visualize performance through confusion matrices 

to get a better understanding of the classifiers’ performance. From the confusion matrices, we can 

calculate accuracy, precision, recall and F1-score [66]. Figure 5.1.1.1 shows the test results as 

confusion matrices for the three different approaches. Table 5.1.1.1 shows the metrics for each 

confusion matrix. These test results are from only the seven days in September. For the traditional 

training without CV (labeled “No CV”), this means that 30% of the examples from September 

were randomly selected for testing. For the 7-fold CV, all the examples from September were 

shuffled and then seven unique test sets were selected. This means that every fold of testing was 

1/7th the size of the dataset of September (n = 919 - 920). Because 7-fold CV trains seven distinct 

RFs, the results correspond to the summation of all of the folds. For 7-LODO, every day from 

September was used as an individual test set. Just like the 7-fold CV experiment, the test results 

were summed across all of the seven folds. 

  

 

Figure 5.1.1.1. Results from the RF tests in September. These three confusion matrices compare 

test results of the three different training paradigms for the Random Forest model. No CV is 

tested on 30% of the examples in September resulting in n = 1,932. For both CV approaches, 

the summation of all fold results were calculated meaning n = 6,438. 

 

 

 

https://www.zotero.org/google-docs/?FD4S63
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 No CV 7-Fold CV 7-LODO Mean 

Accuracy 0.857 0.865 0.500 0.741 

Precision 0.825 0.839 0.500 0.721 

Recall 0.904 0.903 0.761 0.856 

F1 Score 0.863 0.870 0.603 0.779 

Table 5.1.1.1. Results from the RF tests in September. Each row corresponds to the results metric 

calculated from the confusion matrices in Figure 5.1.1.1 

 

These results correspond to the test days that were trained in the same month of 

September. The following Figure 5.1.1.2, and its accompanying table 5.1.1.2, show the results 

and metrics for each training approach’s performance predicting on the held-out day, 07/14. The 

same models that were trained and tested in September are now tested on the sole day in July. 

Since both of the CV approaches have seven RFs associated with them, their results are the 

summation of all their models that were trained on the seven days of September.  
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Figure 5.1.1.2. Results from the RF held-out test day in July, 07/14. These three confusion 

matrices compare test results of the three different training paradigms for the Random Forest 

model that was trained on days in September only. No CV only has one RF resulting in n = 

1,848. For both CV approaches, the summation of all RFs results were calculated meaning n = 

12,936. 

 No CV 7-Fold CV 7-LODO Mean 

Accuracy 0.570 0.561 0.550 0.560 

Precision 0.542 0.536 0.532 0.537 

Recall 0.910 0.921 0.832 0.888 

F1 Score 0.679 0.677 0.649 0.668 

Table 5.1.1.2. Results from the RF tests in July. Each row corresponds to the results metric 

calculated from the confusion matrices in Figure 5.1.1.2. 

 

5.1.1. Discussion 

The best training method is defined to be the one that has the least difference between its 

test day results and the left-out day results. This ultimately translates to reliable test results that are 

generalizable to real-world harbor porpoise data. This is an important factor of our study because 

in comparing the DL architectures with the different preprocessing approaches, it is necessary that 
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we capture behavior that is consistent with new unseen acoustic data from a highly noise variant 

environment such as the Bay of Fundy. 

Figure and Table 5.1.1.1 show that a RF with no CV (85.7% accurate, n=2,486) and 7-fold 

CV (86.5% accurate, n=8,286) greatly outperform 7-LODO (50.0% accurate, n=8,286) on their 

respective test data. From this we might be tempted to conclude that 7-LODO is the least successful 

training method of the three. Considering Figure and Table 5.1.1.2, however, we see a different 

outcome. Now, no-CV (57.0% accurate, n clicks=1848) and 7-fold CV (56.1% accurate, 

n=12,936) only slightly outperform 7-LODO (56.0% accurate, n=12,936) when predicting 

examples on the held-out day, 07/14. 

We observed in, chapter 4, a covariate shift in the RMSs distributions between 07/14 and 

the rest of the days in September. This variation of noise is to be expected in the ocean soundscape 

and conclusions made from this study must be derived from reliable training methods that 

accurately emulate behavior consistent in the real world environment.  

With an accuracy difference between the test set and held-out set of 28.7% and 30.4%, it 

is clear that no-CV and 7-fold CV, respectively, greatly misled us from their September test results 

suggesting that the RFs are performing relatively well. 7-LODO, on the other hand, shows an 

accuracy difference of only 6% between the test and held-out results. Although 7-LODO 

performed slightly worse (~1%) than its competing training methods on the 07/14 examples, it is 

the most reliable training method for this dataset and is therefore used in the following 

experiments. 

  

5.2. CNN and LSTM 

This section is divided into three subsections to discuss our formulation of experiments 

involving DL to address the porpoise click classification problem. Subsections 5.2.1. and 5.2.2. 

describe the CNN and LSTM architectures, respectively. Subsequently, section 5.2.3. will 

elaborate on the three different preprocessing approaches that are applied to both DL models. 

5.2.1. CNN Architecture 

 The CNN architecture we use is from a model implemented in an application [56] to predict 

the genre of music given an audio snippet as input [67] using Tensorflow-Keras python libraries. 

https://www.zotero.org/google-docs/?xZF7NA
https://www.zotero.org/google-docs/?WqjMFW
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We adapted this architecture for our task by removing an entire convolution-pooling layer to avoid 

overfitting on our small dataset as well as reducing the widths of the two final fully connected 

layers to 32 neurons and one neuron (for binary classification) with a final sigmoid activation 

function and a binary cross entropy loss function. Figure Figure 5.2.1.1 visualizes CNN 

architecture using the DL model visualizer tool, Netron [68]. 

 

  

 

Figure 5.2.1.1. The CNN architecture. Input dimensionality varied for each of the preprocessing 

approaches mentioned in the next section. 

 

5.2.2. LSTM Architecture 

 Similarly, we also adapted the LSTM from a music genre classification model [69]. We 

found a slightly better performance in increasing the width of the second-to-last fully connected 

layer to 256 neurons. Similarly to the CNN model, the last layer is a single neuron with the sigmoid 

activation function for classification with the binary cross entropy loss function. Figure 5.2.2.1 

visualizes the LSTM, again, using the Netron tool. 

 

 

https://www.zotero.org/google-docs/?XpgpRK
https://www.zotero.org/google-docs/?GVqPxA
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Figure 5.2.2.1. The LSTM architecture. The input dimensionality varied for each of the 

preprocessing steps. 

 

5.2.3. Preprocessing 

 In a comparative analysis, three separate preprocessing approaches were applied to the data 

for input into the CNN and LSTM. To further discuss their implementation, this section will be 

divided into three subsections:  

 

1. MFCCs 

2. STFTs 

3. heterodyned-TKEO  

 

Our aim is to empirically compare the effectiveness of these approaches on the porpoise click 

signals. As mentioned in chapter 3, each observation is made up of 256,000 samples, which equates 

to 512 KB. Since this is a relatively large input for an LSTM to process, we are also considering 

how much these preprocessing approaches reduce the size of our data while at the same time 

representing the audio effectively. Figure 5.2.3.1 and 5.2.3.2 show examples for a click and a 

noClick for the three preprocessing approaches, respectively. 
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Figure 5.2.3.1. Click example shown for the three different feature sets: (a) MFCC, (b) STFT and 

(c) heterodyned TKEO.  

 

Figure 5.2.3.2. noClick example shown for three different feature sets: (a) MFCC, (b) STFT 

and (c) heterodyned TKEO.  

 



 

 

42 

 5.2.3.1. MFCC 

 We generated the MFCCs using the Python Librosa library function, feature.mfcc. The 

MFCC is calculated on the normalized wav file examples, introduced in Chapter 4, and saved as a 

two-dimensional array. The MFCCs were calculated with the following parameters: 

 

● 128 mels 

● Mel conversion applied to 100-160 kHz frequency band 

● STFT parameters: 

○ 2,048 sample DFT frame size (frames are centered so the signal is reflection 

padded to accommodate the beginning and end frames) 

○ 512 sample hop length 

○ Hanning window (of the same length as the frame size) 

● 13 MFCCs 

 

 These parameters result in a final MFCC matrix shape of (13, 501). The thirteen rows 

correspond to the final output of the DCT we defined and the 501 columns are the DFT bins that 

are generated at every 512 samples. The extra 501st bin is the result of the reflection padding for 

the frame centering used initially for the STFT calculation. This MFCC matrix results in a total of 

6,513 values and a final file size of 26 KB. Figures 5.3.2.1.a and 5.3.2.1.b show grayscale 

visualizations of click and noClick examples, respectively. For the sake of clarity, the first 

coefficient is removed because it is a constant offset for the entire MFCC. Since this constant is 

significantly smaller than the rest of the MFCC values, it greatly impacts the normalization of the 

grayscale, leaving the remaining coefficients hardly visible. 

 

5.2.3.2. STFT 

 Similarly to the MFCCs, STFTs were calculated using Librosa’s STFT function. Given a 

normalized half-second waveform from our porpoise dataset, the STFT returns a complex valued 

two-dimensional array that represents the audio in the time-frequency domain. The STFT 

parameters are almost identical to the STFT parameters used for the MFCC with the exception of 

the frame size being 1,028 samples instead of 2,048, as the smaller frame size, from visual 
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inspection, resulted in a clearer image when visualized with a spectrogram. This results in a two-

dimensional array of the shape (515, 501). 

 After calculating the STFT matrix, it is then converted to decibels via Librosa’s 

power_to_db function so that we can see the units of the STFT on a relative log scale. This 

function uses the following equation: 

 

�̂�𝑑𝐵(𝑚, 𝑘) = 10𝑙𝑜𝑔10(�̂�(𝑚, 𝑘)) 

  

 After converting the STFT to decibels, only the matrix rows representing the 100 - 150 

kHz band are kept. This results in a reduced matrix shape of (140, 501). With 70,140 values, the 

saved file representing each observation as an STFT is 275 KB. Figure 5.2.3.1.a and 5.2.3.2.b both 

visualize a click and noClick example as an STFT spectrogram. 

 

5.2.3.3. Heterodyned-TKEO 

 This preprocessing approach differs significantly from the previous two approaches in that 

it stays in the time domain rather than transforming to the time-frequency domain. Before 

normalizing, the heterodyne function (courtesy of D.K. Mellinger [71]) was applied to each 

observation using a variation of Matlab’s signal processing toolkit1 fir2 function for the 

bandpass and lowpass filtering The parameters for the heterodyne are the following: 

 

● Heterodyne band frequency: 100 - 150 kHz 

● New bottom frequency: 0 Hz 

● FIR Filter length: 512 samples 

● Transition bandwidth: 1,000 Hz 

● Roll off dB: 60 dB 

● Decimation: every 5 samples 

 
1 https://www.mathworks.com/products/signal.html 
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 Figure 5.2.3.3.1 shows the frequency response of the heterodyne with these parameters. 

This operation ultimately results in a final waveform of 51,200 samples that is audible to the 

human ear. Figure 5.2.3.3.2 shows the waveform, before (a) and after (b) heterodyning. 

 

 

Figure 5.2.3.3.1. Example of a frequency response of the FIR bandpass filter. 
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Figure 5.2.3.3.2. Waveforms of each step of the heterodyned-TKEO process. (a) The raw audio 

that holds 256,000 samples. (b) The result of heterodyning and then normalizing the raw audio 

example, which has 51,200 samples. (c) The result of using the TKEO operator on the 

heterodyned audio, also 51,200 samples. 

 

Once heterodyned, all of the observations were then normalized as described in chapter 3. 

The TKEO operator was then applied to each observation. Figure 5.2.3.3.2 shows a heterodyned 

waveform before (b) and after (c) the TKEO operator. The final shape after the TKEO is still 

(1, 51200) since TKEO is just a signal conditioner. An input size of this shape, however, is still 

unfeasible for the LSTM since 51,200 timesteps would require too much memory to compile such 

a model on our hardware. We needed to transform the one-dimensional array to a two-dimensional 

matrix such that each column represented a block of samples but we did not know how many 

samples that block should be. These blocks, in turn, correspond to the timesteps used in the first 

layer of the LSTM. We devised a hyperparameter search assessment to decide the shape of the 

TKEO two-dimensional array. 

Given that porpoise clicks, at most, last a duration of 0.115 ms, a timestep resolution 

representing this duration would result in roughly twelve samples per timestep with around 4,348 
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timesteps. The following formulas define the relationship between the number of timesteps and 

samples within each timestep: 

    𝑁𝑡 =  
𝑡

𝑡𝑏
 

     𝑁𝑏 =  
𝑁𝑠

𝑁𝑡
 

such that:  

● Nt = number of timesteps (i.e. number of columns) 

● Ns = total number of samples in the audio clip (= 51,200) 

● Nb = number of samples in each time step (i.e. number of rows) 

● t    = total time of audio clip (= 500 ms) 

● tb   = time represented in each timestep 

 

 With these equations we performed a sweep across the height and width of our input shape 

(Nb and Nt, respectively) into the LSTM to find which shape best captured the porpoise clicks in 

accordance with the LSTM constraints. Since 4,348 timesteps is still large for the LSTM, we 

started our sweep at 1,600 timesteps (Nt). This results in a tb of 0.3125 ms. Since interclick interval 

has been reported to be as short as 1.5 ms in special cases (see chapter 2.1), this resolution is still 

appropriate to capture, at most, one click per timestep. Ultimately, this resolution translates to an 

input shape of (32, 1600), meaning that there are 32 samples per timestep. We ran the LSTM with 

this input dimension on all of the data with a 70/30 split to observe how it learned over 100 epochs. 

We then reduced the number of columns by half and retrained the LSTM with this new input 

dimension. We repeated this halve-and-reprocess operation three more times. Figure 5.2.3.3.3 

shows the validation accuracies and losses for the LSTMs with the different input shapes. From 

this figure, we can observe that the dimension (256, 200) is the best-performing shape. Each 

timestep holds 256 samples, which corresponds to 2.5 ms. Therefore, this is the shape we chose to 

use for the remaining heterodyned-TKEO experiments (shortened to just TKEO for the remainder 

of this work).  
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Figure 5.2.3.3.3. Validation accuracy and loss of the LSTM over varying input shapes. 

 The LSTM that had an input dimension of (256, 200) outperformed the other dimensions 

by having the lowest and highest test loss and accuracy, respectively. This is why it is the 

dimension we use for the remaining heterodyned-TKEO experiments. 

 

5.3. Ensemble learning 

 The experiments described in the previous made evident that models were distinctively 

learning particular characteristics of the audio. Based on this observation, we believed that 

assembling all of the models generated from the LSTM and CNN experiments would unite the 

strength of each model and lead to an overall better performance. 

 We designed a stacked ensemble with a Random Forest combiner with the same  

hyperparameters as defined in Section 5.1. With more traditional, simple, ensemble approaches, it 

is typical to see a variation of weighted average classification of all the models’ outputs. For our 

stacking ensemble method, however, each combiner classifier is trained on the predictions of all 

the models with LODO CV and then tested on the held-out day of 07/14 for comparison on unseen 

data. Figure 5.3.1 illustrates the difference between a traditional weighted ensemble and our RF 

stacked ensemble 
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Figure 5.3.1. Illustrative comparison of a simple weighted ensemble (left) and our stacked RF 

ensemble (right). The last step of the weighted ensemble simply takes an average (that could be 

weighted) on the output vector provided by the base models. The stacked RF ensemble uses the 

output vector as in the input the RF combiner. 

 

 The feature vector for our ensemble approach is simply the prediction of each of the base 

models. In our structure, these base models are the CNN and LSTM models that were trained from 

the preprocessing LODO CV experiments described in Section 5.2. Since LODO CV with a held-

out day has seven folds (a fold for each day), there are a total of seven models created for each 

preprocessing method. With the two architecture types, LSTM and CNN, and three preprocessing 

methods, there are a total 42 models created. Given an observation, the prediction of each of these 

models (click or noClick) makes up the feature vector, of length 42, that is the input into the 

stacked RF combiner. 
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6. Results & Discussion 

This chapter is organized into two sections that reflect the experimental procedures 

addressed in chapter 5. Within each section, there is a report of the observed results followed by a 

discussion of the interpretation of these results. The first section is concerned with the results 

comparing the different preprocessing approaches with the LSTM and CNN. Section 2 will 

provide the results of the stacked RF ensemble method and compare with the results of the previous 

section. 

6.1. Preprocessing approaches 

 This section is divided into three subsections. Sections 6.1.1, 6.1.2 and 6.1.3 report and 

discuss the results of the MFCC, STFT and heterodyned-TKEO approaches, respectively. Each of 

these sections will be further subdivided into CNN and LSTM discussions. These three sections 

will then be followed by a discussion, Section 6.1.4, that summarizes all of the findings of our 

preprocessing approaches. 

 Before examining the results of each approach, however, we will first summarize the 

overall results. Figure 6.1.1 and Table 6.1.1 present the results of every preprocessing approach 

for each architecture. The array of confusion matrices in Figure 6.1.1, and all of those that proceed, 

present the groundtruth (True) values on the y-axis and the model's predictions on the x-axis. From 

this orientation, the true positive (TP), false negative (FN), false positive (FP) and true negative 

(TN) classification types are displayed. Below each classification type label is its respective 

proportion of observations that are normalized across the truth. That is, each row of the confusion 

matrix sums up to 1. Hypothetically, the perfect model, for example, would have values of 1.0 and 

0.0 for TP and FN on the top row, respectively, while the bottom row contains values of 0.0 and 

1.0 for FP and TN, respectively. Table 6.1.1, and all the tables that proceed each confusion matrix 

array, summarize the metrics that can be derived from the confusion matrices. The four metrics 

we use are accuracy, precision, recall and F1 score, defined below: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑥𝑖𝑠𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Each column in the table is titled according to its corresponding confusion matrix that is visualized 

in the figure that precedes the table. 

In Table 6.1.1 and Figure 6.1.1, each model represents a collection of models via a seven-

day LODO (7-LODO) on all days but the held-out day, 07/14. There are seven models because 

each fold of LODO trains its own individual model based on the unique test/train/validation split. 

We assess the entire performance of a 7-LODO by first calculating the confusion matrix for each 

fold’s model on the held-out day, 07/14. Then we sum all of the confusion matrices from each of 

the seven models into one final confusion matrix. These final confusion matrices for each 

combination of preprocessing approach and DL model are displayed in Figure 6.1.1. 

MFCCs perform the best out of the three preprocessing methods. The STFT and TKEO 

approaches are then second and third best, respectively. These results are discussed further in 

sections 6.1.1.3, 6.1.2.3, 6.1.3.3 and Section 6.1.4. 
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Figure 6.1.1. Confusion matrices for the two DL models (CNN and LSTM) for each of the three 

preprocessing experiments on the held-out 07/14 day with 7-LODO. 

 

 MFCC STFT TKEO  

 CNN  LSTM  CNN  LSTM  CNN  LSTM  Mean 

Accuracy 0.935 0.956 0.858 0.887 0.850 0.798 0.881 

Precision 0.892 0.935 0.822 0.861 0.872 0.814 0.866 

Recall 0.989 0.981 0.913 0.922 0.822 0.772 0.900 

F1 Score 0.938 0.957 0.865 0.891 0.846 0.793 0.882 

Table 6.1.1. Result metrics for each of the six experiments on the held-out 07/14 day with 7-

LODO. The LSTM trained with MFCC input reported the highest accuracy predicting in 
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predicting the held-out day with an accuracy of 95.6%. The last column presents the mean of 

each metric across all experiments. 

 

6.1.1. MFCC 

 We found that the MFCC was the best performing preprocessing method on our held-out 

set with 7-LODO. The following two sections report the results of using MFCC input on our two 

models, CNN and LSTM with 8-LODO. The last section will interpret these results.  

 6.1.1.1. CNN 

Figure 6.1.1.1.1 and Table 6.1.1.1.1 show the CNN with MFCC input results for training 

with 8-LODO. For 8-LODO, each model in the confusion matrix array corresponds to only one 

model, where each model is tested on the day that was left out for that particular fold. This is 

contrary to the 7-LODO confusion matrix array presented in Section 6.1. The title of each 

confusion matrix in Figure 6.1.1.1.1, and all 8-LODO confusion matrix array figures that follow, 

is the day that was left out and used for testing for that fold. In other words, each model is named 

after its assigned test day. Table 6.1.1.1.1 shows, in each column, the four performance metrics for 

each model that are derived from their corresponding confusion matrices. Since each day has a 

varying number of examples, it should be noted that each confusion matrix in 8-LODO has a 

different number for n (c.f. Table 4.3.3). 
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Figure 6.1.1.1.1. Confusion matrices over each fold of 8-LODO CV for the CNN with MFCC 

input. Each model is named after its held-out test day. Days 09/05, 09/07, 09/08 and 09/10 are 

100% accurate on noClicks because they have a TN rate 1.0. Note, however, 09/05 and 09/08 

have the third highest and highest FN rates, respectively. 

 

 07/14 09/05 09/07 09/08 09/09 09/10 09/11 09/12 Mean 

Accuracy 0.952 0.986 0.991 0.974 0.979 0.994 0.975 0.975 0.978 

Precision 0.921 1.000 1.000 1.000 0.984 1.000 0.975 0.986 0.983 

Recall 0.989 0.972 0.982 0.948 0.973 0.989 0.975 0.965 0.974 

F1 Score 0.953 0.986 0.991 0.973 0.979 0.994 0.975 0.975 0.978 

Table 6.1.1.1.1. Results metrics for each day for the CNN with MFCC input. Each column 

corresponds to each model represented by the matrices in Figure 6.1.1.1.1. The mean over all the 

models for each metric is presented in the last column. The same days 09/05, 09/07, 09/08 and 

09/10 show 100% precision while 09/08 has the lowest recall at 94.8%. 09/10 has the best 

accuracy and F1-score of all the eight models. 
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6.1.1.2. LSTM 

 In the same format as the previous section, 6.1.1.1, Figure 6.1.1.2.1 and Table 6.1.1.2.1. 

show results for the LSTM architecture with MFCC input. Each fold’s confusion matrix is 

presented and named after its held-out test day. As previously with the CNN, each confusion 

matrix corresponds to the test results of each fold of 8-LODO where the set is all of the examples 

in its corresponding day. 

 

 

Figure 6.1.1.2.1. Confusion matrices over each fold of 8-LODO CV for the LSTM with MFCC 

input. Each model is named after its held-out test day. Days 09/08 and 09/12 have a perfect TN of 

1.0 but have relatively high FN rates. 09/07 holds the highest TP rate at 0.992. 
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 07/14 09/05 09/07 09/08 09/09 09/10 09/11 09/12 Mean 

Accuracy 0.948 0.974 0.995 0.984 0.979 0.972 0.982 0.989 0.978 

Precision 0.917 0.976 0.997 1.000 0.974 0.988 0.976 1.000 0.979 

Recall 0.985 0.972 0.992 0.969 0.985 0.955 0.989 0.979 0.978 

F1 Score 0.950 0.974 0.995 0.984 0.979 0.972 0.982 0.989 0.978 

Table 6.1.1.2.1. Result metrics for each day for the LSTM with MFCC input. Each column 

corresponds to each model represented by the matrices in Figure 6.1.1.2.1, so the date shown is 

the held-out day that was used for testing. The mean over all the models for each metric is 

presented in the last column. As is consistent with the confusion matrices, 09/08 and 09/12 have 

100% precision since their FP rates are both 0.0. The most accurate day by a significant margin 

is 09/07 with an accuracy and F1 score of 99.5%. 

 

6.1.1.3. Discussion 

 Across all days of 8-LODO, on average the CNN and LSTM are approximately equal in 

accuracy at 97.8% (n examples = 8,286). Although they are similar in accuracy, they misclassify 

different examples. Both models, nonetheless, struggle the most on the 7/14 fold as we initially 

hypothesized. It is surprising, however, that both CNN and LSTM architectures perform second 

best (99.1%) and best (99.5%), respectively, on 09/07 given that the peak RMSs distribution is 

almost 0.2 RMSs greater than the remaining days, excluding 07/14. Given that the 09/07 model is 

trained on data including 07/14, the diversity of RMSs that that day contributes could be the result 

of the performance improvement. 

 Another fold of interest, particularly with its performance with respect to its recall, is 9/10. 

Given its significantly different RMSs distribution of noClicks, it is not surprising to see the 

difficulty that the LSTM had in classifying the negative class for that particular day as 95.5% was 

the lowest recall of all the other days. The CNN however did not struggle seeing a recall of 98.9%, 

tied for the highest recall of all other folds.  

We should also point out the discrepancy between the 07/14 model (in which 07/14 was 

the test set for that model) in 8-LODO and the 7-LODO final held-out results (in which 07/14 was 

held-out entirely from the CV). Although the CNN achieves slightly better results in all four 
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metrics in the 8-LODO (< 0.5%), the LSTM in the 7-LODO outperforms the CNN by roughly 2% 

in accuracy and F1 score, and 3% in precision. Since the held-out day in July from 7-LODO has a 

significantly different noise distribution than the rest of the days in September, this indicates that 

the CNN is not generalizing to real-world data as well as the LSTM. 

In general, we find that both the CNN and LSTM have strengths and weaknesses on 

different days/folds. We have plotted the misclassification frequencies at each fold for both models 

in Figure 6.1.1.3.1. Each fold/day is split between its FP and FN, in red and blue, respectively. It 

is clear from these bar charts that both architectures struggle to classify noClicks since every 

day has some amount of FNs. The CNN, however, is perfect in not reporting any FP on 09/05, 

09/07, 09/08 and 09/10. On the other hand, the LSTM does not classify any FNs on 09/08 and 

09/12.  

Uncharacteristically, however, we found a majority of the misclassifications on 07/14, for 

both architectures, are FPs. Since the 07/14 RMSs distribution spreads to higher RMSs values than 

the rest of the days, we believe there could be strong enough signals to raise false alarms. Taking 

a closer look at these FNs in particular, the CNN and LSTM turn out to misclassify different 

examples. 
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Figure 6.1.1.3.1. Comparison of MFCC misclassifications between the CNN (left) and LSTM 

(right). The y-axis corresponds to frequency of misclassification (n of misclassifications/n of 

total examples in that day). The x-axis are the corresponding test days of the misclassifications. 

Both architectures struggle in classifying noClicks on 07/14 with a total misclassification rate 

of 0.05. 

 

 Figure 6.1.1.3.2 shows the set differences and intersections of the misclassifications for the 

CNN and LSTM. The leftmost plot depicts the misclassifications that only the CNN made but the 

LSTM did not. The middle plot shows the set of misclassifications that either the CNN and LSTM 

made (i.e., the intersection of the misclassifications). The rightmost plot shows the 

misclassifications made by the LSTM but not the CNN. From inspection of these three plots, 07/14 

shows a significant reduction of FP frequency when both architectures, in intersection, misclassify 

the same examples. Another significant reduction that should be noted is on 9/10, the day on which 

there is an RMSs distribution covariate shift in the noClicks. The CNN has no 

misclassifications on 9/10 when we discount any example that the LSTM has also misclassified. 

In other words, the CNN never misclassified an example that LSTM didn’t also misclassify. In 

comparing and observing the predictions of the CNN and LSTM such as this one, it is evident that 

both models provide their own forms of robustness throughout the eight days of 8-LODO.  
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Figure 6.1.1.3.2. Set differences (left and right) and intersections (middle) of the MFCC 

misclassifications from the CNN and LSTM. The set differences present the unique 

misclassifications of each architecture while the intersections show misclassifications that both 

architectures had in common. The CNN has no unique misclassifications on 09/10. It should also 

be noted that both architectures have a significant number of unique misclassifications remaining 

in 07/14. 

 

6.1.2. STFT 

 Similar to the organization of Section 6.1.1, this section is dedicated to the results and 

discussion of how the CNN and LSTM performed with STFT input. Overall, we observed the 

STFT to be the second-best preprocessing approach (after the MFCC) with an accuracy on the 

heldout 07/14 with 7-LODO of 85.8% and 88.7%, for the CNN and LSTM, respectively. The mean 

accuracy for CNN and LSTM on 8-LODO are 91.5% and 90.1%, respectively. 

  

 6.1.2.1. CNN 

 Figure 6.1.2.1.1 and Table 6.1.2.1.1 show the performance of the STFT input on the CNN 

on 8-LODO CV. Each confusion matrix in the figure results from a separate model trained and 

validated on all days except the day that it is named. For example, the bottom-right confusion 
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matrix, 09/12, is the model corresponding to the fold where 09/12 was left out for testing, and 

therefore the bottom-right confusion matrix is the result of the model training and validating on all 

days except 09/12. Table 4 then provides the metrics for each confusion matrix represented in 

figure 3.  

 

 

Figure 6.1.2.1.1. Confusion matrices over each fold of 8-LODO CV for the CNN with STFT 

input. Each model is named after its held-out test day. The model tested on 09/05 had the highest 

TP rate of 0.985 but had one of the lower TP rates of 0.887. The model tested on 09/08 showed 

the highest TN rate of 0.919.  
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 07/14 09/05 09/07 09/08 09/09 09/10 09/11 09/12 Mean 

Accuracy 0.900 0.936 0.934 0.939 0.858 0.899 0.910 0.942 0.915 

Precision 0.889 0.897 0.899 0.922 0.867 0.883 0.863 0.914 0.892 

Recall 0.913 0.985 0.977 0.958 0.846 0.920 0.975 0.976 0.944 

F1 Score 0.901 0.939 0.936 0.940 0.856 0.901 0.916 0.944 0.917 

Table 6.1.2.1.1. Results metrics for each day for the CNN with STFT input. Each column 

corresponds to each model represented by the matrices in Figure 6.1.2.1.1. The mean over all the 

models for each metric is presented in the last column. As is consistent with the confusion 

matrices, 09/05 has the highest recall and 09/08 has the highest precision at 98.5% and 92.2%, 

respectively. The most accurate day, however, is 09/12 with an accuracy of 94.2% and F1 score 

of 94.4%. 

 

6.1.2.2. LSTM 

 The results for the LSTM are presented in the same manner as the CNN results in which a 

figure of confusion matrices accompanied with a table of metrics derived from those confusion 

matrices are shown below. Figure 6.1.2.2.1 and table 6.1.2.2.1 provide the results for each fold 8-

LODO with STFT input into the LSTM. 
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Figure 6.1.2.2.1 Confusion matrices over each fold of 8-LODO CV for the LSTM with STFT 

input. Each model is named after its held-out test day. The 09/05 fold had the significantly 

highest TP rate of 0.988. This same fold also had the highest TN rate of 0.919. The 09/09 

struggled the most noClicks seeing a FP rate of 0.215. 

 

 07/14 09/05 09/07 09/08 09/09 09/10 09/11 09/12 Mean 

Accuracy 0.872 0.951 0.905 0.906 0.873 0.901 0.880 0.919 0.901 

Precision 0.856 0.920 0.909 0.877 0.817 0.877 0.838 0.908 0.875 

Recall 0.894 0.988 0.900 0.943 0.961 0.934 0.941 0.933 0.937 

F1 Score 0.875 0.953 0.905 0.909 0.883 0.905 0.887 0.920 0.905 

Table 6.1.2.2.1. Results metrics for each day for the LSTM with STFT input. Each column 

corresponds to each model represented by the matrices in Figure 6.1.2.2.1, so the date shown is 

the held-out day that was used for testing. The mean over all the models for each metric is 

presented in the last column. As is consistent with the confusion matrices, 09/05 has the highest 

recall and 09/09 has the lowest precision at 81.7%. The most accurate day by a significant 

margin is 09/05 with an accuracy 5% greater than the mean of all folds. 
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6.1.2.3. Discussion 

 Similar to the results we observed from MFCCs shown in Figure 6.1.1, the LSTM 

outperformed the CNN on the held-out 07/14 day, with 7-LODO, by 2.9%. 8-LODO has a 

contradicting result, however, in that the CNN, on average, is 1.4% more accurate than the LSTM. 

This suggests, again, that the CNN is not generalizing as well as the LSTM is. 

 Surprisingly, in 8-LODO we see the CNN struggle on 09/09 with an accuracy of 85.8% (n 

examples = 1662). This is not a day identified from our observations of RMSs and visual 

inspections of the LTSAs that seemed particularly anomalous given it follows a similar distribution 

as the other days. 09/09 does contain examples with the lowest RMSs seen throughout the entire 

data set (see Tables 1 – 3 in appendix A). This could indicate that the CNN on this particular fold 

overfit to the higher RMSs values and thus associated less background noise with noClick 

classifications as we can see a significant increase in FN rate (15.4%, n clicks = 831). The LSTM 

on this same day performs at an accuracy 1.5% greater. Conversely, the CNN performs better on 

07/14 (2.8% greater, n examples = 1848), the day that we did identify as challenging. This is 

counterintuitive, given that, as mentioned previously, the CNN performs worse on this same day 

when it is held out with 7-LODO. This further supports that the CNN is not generalizing well to 

unseen data. 

 Given that we see unique behaviors from the CNN and LSTM performances on the 8-

LODO test days, Figure 6.1.2.3.1 shows the misclassification frequency of both models. We can 

more clearly see from Figure 6.1.2.3.1 that not only does the LSTM have a lower misclassification 

frequency on 09/09, it has significantly less FNs than its CNN counterpart on this day.  
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Figure 6.1.2.3.1. Comparison of STFT misclassifications between the CNN (left) and LSTM 

(right). The y-axis corresponds to frequency of misclassification (n of misclassifications/n of 

total examples in that day). The x-axis are the corresponding test days of the misclassifications. 

Both architectures struggle in classifying examples in 09/09, although the LSTM has a lower 

misclassification rate. The CNN, however, achieves a 0.025 lower misclassification frequency 

than the LSTM. 

 

Similar to Figure 6.1.1.3.2, Figure 6.1.2.3.2 shows the set differences and intersections of 

the misclassifications for the CNN and LSTM. The left and right plot correspond to the unique 

misclassifications of the CNN and LSTM, respectively. The middle plot is then the intersection of 

the misclassifications or in other words, the misclassifications that the CNN and LSTM both made. 

We observed from these bar plots that the misclassifications on 09/09 that the LSTM and 

CNN make are mostly unique in that we see a much lower misclassification frequency when we 

perform the intersection of the CNN and LSTM misclassifications. In their intersection, we also 

see that not only are the misclassifications significantly reduced on the 09/10 folds, but that day 

(fold) no longer has any FPs. 
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In removing all of the common misclassifications that the LSTM had with the CNN, 07/14 

and 09/09 see a significant reduction in misclassifications as well. In comparing Figure 6.1.2.3.1’s 

CNN misclassifications (left) with the set difference CNN – LSTM in Figure 6.1.2.3.2 (left), there 

is an approximate reduction of 0.03 in the misclassification frequency. 

Ultimately, both the CNN and LSTM individually perform better and worse on different 

days throughout 8-LODO. When we examine the unique examples that they misclassify, however, 

we observe significant reductions in their misclassification frequencies such as 07/14 and 09/09.  

 

 

Figure 6.1.2.3.2. Set differences (left and right) and intersections (middle) of the STFT 

misclassifications from the CNN and LSTM. The set differences present the unique 

misclassifications of each architecture while the intersections show misclassifications that both 

architectures had in common. The set differences (left and right) of the misclassifications are all 

higher than their respective intersections. It should also be noted the intersection at 9/10 has FPs 

meaning that the LSTM and CNN did not have any FP misclassifications in common. 

 

6.1.3. Heterodyned TKEO 

 Of the three preprocessing approaches, the TKEO was the least effective preprocessing 

method in classifying the held-out day, 07/14, on 7-LODO. Similar to the previous two 

preprocessing sections, 6.1.2 and 6.1.3, this section will be divided into three subsections. Section 
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6.1.3.1 and 6.1.3.2 serve to report the performance of the CNN and LSTM with the TKEO input 

on 8-LODO, respectively. Lastly, section 6.1.3.3 will discuss the meaning of the results and 

identify the differences between the DL architectures. 

 6.1.3.1. CNN 

 Figure 6.1.3.1.1 and Table 6.1.3.1.1 show the results after running 8-LODO on the TKEO 

input to the CNN. Figure 6.1.3.1.1 displays the confusion matrix of test results of each fold of 8-

LODO such that every fold (day) is named after the day that is left out. Table 6.1.3.1.1 supports 

Figure 6.1.3.1.1 by providing the metrics (accuracy, precision, recall and F1 score) for each fold.  

 

 

 

Figure 6.1.3.1.1. Confusion matrices over each fold of 8-LODO CV for the CNN with TKEO 

input. Each model is named after its held-out test day. The 09/09 fold has a concerning FP rate of 

0.604 meaning that it misclassified noClicks more than it classified them correctly. This 

model however classified many of the examples as clicks which resulted in it having the 

highest TP rate of 0.971. The 09/07 fold, on the other hand, reported no FPs. The, however, 

comes at the cost of its TP rate which is the lowest at 0.815.  
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 07/14 09/05 09/07 09/08 09/09 09/10 09/11 09/12 Mean 

Accuracy 0.860 0.829 0.908 0.829 0.684 0.756 0.784 0.854 0.813 

Precision 0.830 0.758 1.000 0.801 0.617 0.694 0.713 0.807 0.778 

Recall 0.905 0.967 0.815 0.877 0.971 0.915 0.951 0.930 0.916 

F1 Score 0.866 0.850 0.898 0.837 0.754 0.789 0.815 0.864 0.834 

Table 6.1.3.1.1. Results metrics for each day for the CNN with TKEO input. Each column 

corresponds to each model represented by the matrices in Figure 6.1.3.1.1, so the date shown is 

the held-out day that was used for testing. The mean over all the models for each metric is 

presented in the last column. As is consistent with the confusion matrices, 09/09 has the worst 

precision by a significant margin with precision 16.1% lower than the mean precision across all 

folds. Precision of the 09/07 fold, on the other hand, has the highest perfect precision and is 

22.2% higher than mean. Although it has one of the lower recall of the days, 09/07 still has the 

highest accuracy of 90.8%. 

 

6.1.3.2. LSTM 

 Following the same format as the previous section showing the results of the CNN, this 

section reports the results of TKEO input into the LSTM. Figure 6.1.3.2.1 and Table 6.1.3.2.1 

show the confusion matrices and their corresponding metrics of each fold in 8-LODO. 
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Figure 6.1.3.2.1. Confusion matrices over each fold of 8-LODO CV for the LSTM with TKEO 

input. Each model is named after its held-out test day. The 09/05 fold has a concerning FP rate of 

0.510 meaning that it misclassified noClicks more than it classified them correctly. This 

model however classified many of the examples as clicks which resulted in it having the 

highest TP rate of 0.970. The 09/10 fold performs exceptionally well relative to other folds as it 

reports the highest TN rate of 0.944.  

 

 07/14 09/05 09/07 09/08 09/09 09/10 09/11 09/12 Mean 

Accuracy 0.886 0.730 0.853 0.843 0.824 0.930 0.833 0.812 0.839 

Precision 0.950 0.655 0.885 0.819 0.789 0.942 0.800 0.769 0.826 

Recall 0.816 0.970 0.811 0.880 0.884 0.915 0.887 0.893 0.882 

F1 Score 0.878 0.782 0.847 0.848 0.834 0.929 0.841 0.827 0.848 

Table 6.1.3.2.1. Results metrics for each day for the LSTM with TKEO input. Each column 

corresponds to each model represented by the matrices in Figure 6.1.3.2.1, so the date shown is 

the held-out day that was used for testing. The mean over all the models for each metric is 

presented in the last column. As is suggested from the confusion matrices, 09/05 has the worst 

precision by a significant margin with precision 17.1% lower than the mean precision across all 

folds. Accuracy, precision and F1 score of the 09/10 fold, on the other hand, is the highest 

amongst all of the folds. 
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6.1.3.3. Discussion 

 On average, the LSTM is 2.6% more accurate (83.9%, n examples = 8,286) than its CNN 

counterpart (81.3%, n examples = 8,286) in our 8-LODO experiment. This conflicts with the 

results of performance in 7-LODO, where we see the CNN outperform the LSTM by 5.2% in 

accuracy (n examples = 1,848). Even though the accuracy is higher for the LSTM, the average 

recall reported for the CNN’s 8-LODO, however, is 3.4% higher than that of the LSTM. The CNNs 

recall is also higher in the 7-LODO result as well. This means that the CNN has less FNs which 

means that it is better at not missing positive classifications (clicks).  

 In analyzing the particular folds of 8-LODO for both models, and contradicting our 

hypothesis that 07/14 would be a challenging day, TKEO does not particularly struggle with 07/14 

relative to the other folds. 09/09 for the CNN, for example, was by far the most challenging fold 

of the eight with an accuracy of only 68.4% (n examples = 1662), a 12.9% deviation from the 

average accuracy of the folds. This means that CNN on this fold learned to have a low threshold 

for probability of the existence of a click resulting in a high false alarm rate. From Figure 4.3.3, 

we can see from the 09/07 LTSA that the examples are extracted from a time of day (between 2 

am to 4 am) where the onset of noise is just beginning. Since this day was used explicitly for 

testing, the absence of examples (n examples = 1,662) with this type of noise in the training could 

have negatively affected the way in which the CNN learned. It also should be explicitly noted that 

although the RMSs values for 09/09 are not on average the lowest, this particular day does still 

hold some of the lowest RMSs values out of the entire dataset and this could have been a reason 

for this relatively poor performance. 

  The LSTM did not exhibit the same difficulties for this particular fold but rather struggled 

on 09/05 with an accuracy of 73.0% (n examples = 674), deviating from the mean accuracy by 

10.9%. Similar to CNN’s struggle with 09/09, however, the LSTM also had a high recall, meaning 

that it did not have many FNs reported. Table 4.3.3 shows that 09/05 has a mean RMSs across all 

of its examples of 0.320, the lowest of all the days and 0.027 lower than 09/09. This indicates that 

the TKEO input influences the CNN and the LSTM to overfit to the background noise resulting in 

poor test performances across all of the folds. 
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 Because both of these models have differing performances on different folds, a comparison 

of their misclassification frequencies is visualized in Figure 6.1.3.3.1. Besides 09/09 having the 

most misclassifications for both architectures, we also note that 09/07 for the CNN has no FPs. 

The LSTM on the other hand, not only has more FNs, it also has FPs. Both architectures are 

learning considerably different characteristics of the audio.  

 

 

Figure 6.1.3.3.1. Comparison of TKEO misclassifications between the CNN (left) and LSTM 

(right). The y-axis corresponds to frequency of misclassification (n of misclassifications/n of 

total examples in that day). The x-axis are the corresponding test days of the misclassifications. 

The CNN misclassified significantly more on 09/09 than the LSTM did with a difference in 

frequency of approximately 0.16. The CNN, however, did struggle nearly as much on 09/05 as 

the LSTM with a difference in misclassification frequency of approximately 0.1. Also, the CNN 

did not make any errors on click examples on 09/07. 
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To further explore the characteristics of the audio that these architectures are learning, 

Figure 6.1.3.3.2 displays the set differences and intersections of the misclassifications for the CNN 

and LSTM. From left to right, the bar charts represent the unique CNN misclassifications 

(excluding the what LSTM misclassified), the misclassifications that LSTM and CNN both agreed 

to, and lastly the unique LSTM misclassifications (excluding what the CNN misclassified). 

From these plots, we can see that the intersection (middle plot) of the CNN and LSTM 

results in a reduced misclassification frequency across all days. The errors made in the more 

challenging days for the CNN and LSTM models are substantially reduced. Investigating the 

challenging days, 09/09 and 09/05 the CNN and LSTM, respectively, we see substantial 

reductions. 09/09 from the exclusive CNN misclassification rate (left plot) drops from 0.25 to 0.10 

when intersected (middle plot) with the LSTM. The frequency from the exclusive LSTM 

misclassifications (right plot) for 09/05 model drops from 0.20 to 0.10 when intersected (middle 

plot) with the CNN. Additionally, 09/07 has no FPs when both models’ misclassifications are 

intersected. Overall, although the CNN outperforms the LSTM on 7-LODO, our 8-LODO results 

provide a different perspective and show strengths and weaknesses of both models. Our 

observations of the misclassification frequencies at each fold provide insight into the benefits of 

comparing the outputs of both models such as the exclusively strong performances on 09/07 and 

09/10 for the CNN and LSTM, respectively.  
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Figure 6.1.3.3.2. Set differences (left and right) and intersections (middle) of the TKEO 

misclassifications from the CNN and LSTM. The set differences present the unique 

misclassifications of each architecture while the intersections show misclassifications that both 

architectures had in common. The set differences (left and right) of the misclassifications are all 

higher than their respective intersections. 09/10 has a significantly low intersection rate (middle) 

meaning that the errors the CNN and LSTM make are mostly on different examples. 

 

 

6.1.4. Discussion 

 After the analyses of results of using three different preprocessing approaches, MFCC, 

STFT and TKEO, as input into two different models, the CNN and LSTM models, we conclude 

that the MFCC performs the best on both 7-LODO and 8-LODO CVs. In particular, the LSTM-

MFCC has the highest accuracy at 95.6%. With respect to the 7-LODO accuracies, the next best 

accuracy after LSTM-MFCC to be the LSTM-STFT at 88.7%. Table 6.1.4.1 shows the 7-LODO 

and 8-LODO accuracy results for all the preprocessing approaches. 
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Architecture 8-LODO mean accuracy across all 

folds 

7-LODO accuracy on held-out day 

07/14 

 MFCC 

CNN 0.978 0.935 

LSTM 0.978 0.956 

                     STFT 

CNN 0.915 0.858 

LSTM 0.901 0.887 

                         TKEO 

CNN 0.813 0.850 

LSTM 0.839 0.798 

Table 6.1.4.1. 7-LODO and 8-LODO mean accuracies for all preprocessing approaches. Notice 

that of the 8-LODO mean accuracies are greater than the 7-LODO held-out accuracy except for 

the CNN-TKEO experiment. 

 

Given that an MFCC example requires the least amount of memory at 26 KB per example 

(see Section 5.2.3), it is surprising to see how successful MFCCs were with respect to other 

preprocessing methods. Its success over the STFT could be attributed to the fact that the STFT 

calculation alone is too simple. The MFCCs add additional steps after the STFT such as the 

conversion to the mel scale and the inverse DCT (see Section 2.2.2) that could be serving to capture 

harbor porpoise click characteristics.  

The STFT and TKEO have sparser data than the MFCC data because the click signals are 

more finely embedded in the data. Given that our architectures are shallow, the MFCC’s smaller 

size (and as a result less sparse) could then also contribute to better generalization with respect to 

the other models because there is less opportunity for the models to overfit the data. This successful 

performance in the MFCCs is consistent with the explorations discussed in Section 3.3 and further 

reinforces why MFCCs remain the state of the art preprocessing approach for DL bioacoustics 

classification.   
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The CNN results might mislead us to believe that the MFCC performs equivalently and the 

STFT outperforms the LSTM in 8-LODO. In 7-LODO, however, we see that the LSTM’s seven 

folds generalize better due to the fact that the LSTM predicts the held-out 07/14 more accurately 

than the CNN. This is not the case for the TKEO however.  

For TKEO, the CNN outperforms the LSTM by 5.2% on 7-LODO. This is surprising for 

two reasons. The first is that, for the first time, the LSTM has a higher accuracy in 8-LODO (2% 

increase) than the CNN. Secondly, given that the LSTM had recurrent feedback connections, it 

might be expected that it would perform better on sequential data. Since TKEO stays in the time 

domain (unlike the MFCC and STFT that transform to the time-frequency domain), the LSTM 

should especially be better equipped than the CNN to handle this data. Nonetheless, we see the 

CNN generalize better to 07/14 than the LSTM. More empirical hyperparameter tuning is needed 

on both the LSTM architecture and heterodyning to further investigate why the CNN is performing 

better with TKEO. 

 

6.2. Ensemble Learning 

 After observing the strengths and weaknesses of the different variations of the models in 

Section 6.1, this section reports and discusses results of the stacked ensemble RF combiner that 

unites these models. Section 6.2.1 will report the results of the different RF combiners with 

confusion matrices and a table of metrics derived from them. Section 6.2.2 will then discuss these 

results. 

 

6.2.1. Results 

 The predictions of models trained from every 7-LODO fold of the three different 

preprocessing approaches on the CNN and LSTM were used as the training data for the RF 

combiner. That means that each example is a feature vector of length 42 (3 preprocessing 

approaches x 2 deep learning models x 7 models for each fold). Figure 6.2.1.1 and Table 6.2.1.1 

show the results after 7-LODO on 07/14 with the RF stacked ensemble combiner.  
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Figure 6.2.1.1. Confusion matrices of the RF stacked ensemble combiner on 7-LODO. The left 

and middle columns of the confusion matrices correspond to the results of the RF combiner 

trained on the CNN and LSTM family of models, respectively. Each family of models consists of 

the seven models corresponding to each fold of the 7-LODO. The last column to the right, 

labeled “Both”, represents the results of the RF combiner when trained on both the CNN and 

LSTM families of models (a total of 14 models).   
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M
F

C
C

 

 CNN LSTM Both 

Accuracy 0.937 0.975 0.962 

Precision 0.894 0.960 0.934 

Recall 0.992 0.992 0.994 

F1 Score 0.941 0.976 0.963 

S
T

F
T

 
 CNN LSTM Both 

Accuracy 0.888 0.917 0.932 

Precision 0.844 0.878 0.904 

Recall 0.952 0.969 0.966 

F1 Score 0.895 0.922 0.934 

T
K

E
O

 

 CNN LSTM Both 

Accuracy 0.898 0.861 0.906 

Precision 0.896 0.901 0.910 

Recall 0.902 0.810 0.902 

 

Table 6.2.1.1. Results metrics for RF stacked ensemble combiner on 7-LODO. The left column 

specifies the base models’ preprocessing approach and the three columns to the right specify the 

architectures of the base models. We observed the highest accuracy at 97.5% when the RF 

combiner was trained on the outputs of LSTM trained on the MFCC inputs. For the STFT base 

models, the RF combiner did the best when it was trained on the outputs of both architectures 

with an accuracy of 93.2%.  

 

 6.2.2. Discussion 

Our RF combiner achieved the best accuracy on the held-out day, 07/14, when the RF it 

was trained on only the seven models of the LSTM MFCC family of models with an accuracy of 

97.5%. This is a 1.9% improvement, or a 56.8% reduction in error, from its initial DL model 

described in section 6.1. For the CNN family of LSTM models, however, we see only a 0.2% 

improvement. In combining both the CNN and LSTM families of models, we surprisingly see a 

1.3% reduction in accuracy with respect to the LSTM accuracy. Since the CNN performed 2.1% 
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worse in accuracy than the LSTM, the addition of the seven CNN model’s predictions could have 

confused the RF. It should be noted, however, that although the accuracy decreases when we 

combine the LSTM and CNN, we see a 0.2% increase in the recall, meaning that we see less FNs.  

 For the STFTs, combining both the CNN and LSTM family of models results in a 4.5% 

increase in accuracy, or a 60.2% reduction in error, with respect to the initial DL LSTM STFT 

family of models. This contradicts the results of the RF with the MFCCs, in that combining the 

CNN and the LSTM family of models (88.8% and 91.7%, respectively) improves our accuracy to 

93.2%. 

Similarly for the TKEO, we also see that combining the CNN and LSTM family of models 

results in the best performance. The RF combiner improves the most accurate architecture, which 

in the case of TKEO is the CNN, by 5.6% or a 62.7% reduction in error. 

Overall, every RF combiner that used both families of models in its training has a better 

accuracy than either of its original DL families of models that it is built from. This supports our 

hypothesis that the addition of an ensemble network of decision trees would help reduce the harbor 

porpoise misclassifications across the three preprocessing methods. 

Furthermore, we observe that the misclassification frequencies observed in the set 

differences (left and right plots of Figures 6.1.1.3.2, 6.1.2.3.2 and 6.1.3.3.2) are proportional to the 

increases in accuracy observed by the RF combiner. In other words, when the models have more 

unique misclassifications (and consequently, less intersection amongst their misclassifications), 

the RF combiner is more likely to improve performance relative to its base models. Figure 6.2.3.1 

shows a scatter plot with the y-axis corresponding to the 7-LODO accuracy of the stacked RF 

combiner models and the x-axis corresponding to 7-LODO of the original DL models (prior to 

stacking). These trends indicate that with the lower accuracy that the initial DL models had, a 

greater improvement was captured by the RF combiner.  
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Figure 6.2.3.1. Scatter plot of the accuracies of the original DL and stacked RF. The y-axis 

represents the final accuracy of the stacked RF combiner and the x-axis corresponds to the 

accuracies of the base DL models. The CNN models are marked with triangles and the LSTM 

models are marked with circles. This plot indicates that the lower accuracy that the initial DL 

models had, the greater the improvement captured by the RF combiner.  
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7. Conclusion 

In this study we implemented multiple ML approaches, all of which investigate the 

challenge of effectively predicting the presence of ultrasonic harbor porpoise clicks directly from 

noisy ultrasonic audio data. Our first experimentation of cross-validation strategies supports the 

existence of a covariate shift in our time-series data across the eight days of audio recording in the 

Bay of Fundy, Nova Scotia, Canada. Our implementation of LODO CV was the most accurate 

representation of how our models would perform in the real world that we can create from our 

limited set of human annotated observations. LODO CV was needed in order to address the 

covariate shift seen in our dataset. We observed only a 6% difference between the 7-LODO fold 

accuracy and the distinctive held-out test day (07/14) accuracy. Training without cross-validation 

and k-fold, in comparison, had a difference of 28.7% and 30.4%, respectively.  

After establishing the need for LODO CV on our data, we compared six different models: 

an LSTM and CNN, each trained with MFCC, STFT and heterodyned-TKEO preprocessed 

features and methods. From this experiment, we found that the LSTM with MFCC (LSTMMFCC 

where the subscript is the preprocessing method) input was the most robust model achieving the 

highest accuracy on our held-out test day, 07/14. Other than the MFCCs, the next highest 

accuracies were achieved by the LSTMSTFT, CNNSTFT and CNNTKEO models with accuracies of 

88.7%, 85.8% and 85.0% on the held-out dataset, respectively.  

In the analysis of these results with LODO CV, however, we also discovered that some 

models performed better on different days. This observation informed our last experiment that 

explored different methods of combining all the models in an ensemble, including each LODO 

fold’s model, with the goal of leveraging the learned strengths of each individual model and 

ultimately further improving the overall accuracy of our system. Our hypothesis was correct in 

that the stacked ensemble improved the performance and led to almost perfect prediction of harbor 

porpoise clicks. We found that accuracies of the baseline models were inversely proportional to 

the improvement that the random forest (RF) combiner contributed. Consequently, the RF 

combiner trained on both the CNNTKEO and LSTMTKEO model outputs showed the greatest 

improvement from the held-out test set, 07/14, with an increase in accuracy of 6% with respect to 

the CNNTKEO base models. The RF combiner trained with CNNSTFT and LSTMSTFT models showed 
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a 4.5% improvement in accuracy with respect to the CNNSTFT base models. The RF combiner 

trained with the CNNMFCC model outputs resulted in a 1.9% improvement in accuracy. 

The analysis of these results build upon related works discussed in Chapter 2. LODO is a 

common approach seen in time series data and our study proposed applying this cross-validation 

approach when training models on harbor porpoise clicks in order to potentially improve 

generalizability to real-world conditions. Heterodyning is a common processing method for bat 

call analysis and our study introduces this approach as an implementation for classification of 

marine mammals. Decision trees and RFs have previously been used in harbor porpoise 

classification and our investigation proposed implementing an ensemble of the outputs of 42 

models as the inputs to a RF to improve the robustness of our classifier and increase potential 

generalization.  

The inclusion of this ensemble method in the pipeline, however, is an extra step in 

processing and may not be as readily feasible in real-time inference due to processing time 

constraints. Future work should include further tuning of the preprocessing methods’ parameters 

to observe whether a similar performance improvement can be attained without the 

implementation of an ensemble. Another limitation that should be noted is the limited number of 

examples collected in July. We collected a total of 1,848 examples in July while, in comparison, 

6,438 examples were collected in September. Beyond the month of July, our models could be 

significantly more robust if they were trained on a more balanced dataset, representing multiple 

days and conditions throughout the entire year. Future research should include more annotations 

from different times of the year to get the best representation of the soundscape.  

Future investigations should also examine the correlation between tide cycles in the Bay 

of Fundy and the general background noise in our audio. From the LTSAs in Figure 4.3.3, we see 

four distinct periods of noise (yellow humps) that we believe correspond to the inflow and outflow 

of the tides. Including weather and hydraulic information such as speed, direction, acceleration 

and water level could better inform our classifier to interpret the noise from any given example 

and could potentially lead to higher accuracies on signals with low signal-to-noise ratios. 

The energy from these tides that we are observing in the form of noise in our signal (see 

LTSAs in Figure 4.3.3) is being harnessed by water turbines in the Bay of Fundy. These water 

turbines pose a serious threat to the well being of the harbor porpoises inhabiting the area. Not 

only can the blades of the turbines damage the porpoises passing by, the mechanical noise also 
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disrupts their echolocation and can prevent them from successfully navigating and foraging in this 

human-altered marine environment. The results of this research help build towards the larger goal 

of creating an effective classifier that can autonomously and quickly detect porpoise clicks in the 

soundscape. Approaches such as the classifier developed in this study could be incorporated into 

a real-time system that can send a halt signal to the water turbines whenever a porpoise click is 

detected. Such a system would enable the water turbines to safely harness tidal energy while 

greatly reducing the threats to the local harbor porpoise population. 
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Appendices 

A. Dataset tables 

 

timestamp count mean std min 50% max 

07/14 

144050 313 0.623 0.081 0.421 0.637 0.796 

144250 326 0.670 0.096 0.323 0.676 0.843 

184650 285 0.343 0.048 0.225 0.343 0.479 

09/05 

222446 314 0.308 0.040 0.181 0.310 0.416 

233646 23 0.274 0.058 0.193 0.272 0.447 

09/07 

112847 212 0.534 0.072 0.247 0.556 0.625 

113047 557 0.482 0.147 0.058 0.550 0.628 

09/08 

115047 21 0.370 0.039 0.321 0.359 0.435 

142847 313 0.328 0.068 0.070 0.340 0.454 
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09/09 

013247 522 0.351 0.047 0.249 0.348 0.462 

013447 25 0.388 0.056 0.273 0.396 0.481 

020847 240 0.341 0.054 0.196 0.337 0.480 

021047 44 0.327 0.049 0.244 0.331 0.442 

09/10 

022648 213 0.346 0.044 0.216 0.345 0.456 

09/11 

030849 147 0.466 0.067 0.346 0.459 0.638 

031249 214 0.369 0.040 0.232 0.371 0.466 

132049 46 0.332 0.043 0.273 0.325 0.416 

09/12 

091449 17 0.530 0.223 0.273 0.677 0.819 

092649 50 0.745 0.064 0.601 0.766 0.822 

094449 22 0.621 0.075 0.452 0.601 0.714 

100249 93 0.381 0.047 0.290 0.386 0.479 

100449 12 0.371 0.064 0.260 0.397 0.443 
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162049 60 0.427 0.040 0.353 0.425 0.505 

162449 24 0.371 0.091 0.202 0.394 0.498 

163249 50 0.365 0.053 0.287 0.352 0.497 

Table 1. Click dataset profile of the average RMSs statistics for each segment of each day. The 

50% is the 50th percentile is equivalent to the median of RMSs in that that given segment. 

 

 

 count mean std min 50% max 

07/14 

144450 313 0.609 0.101 0.391 0.582 0.819 

144850 326 0.687 0.079 0.273 0.701 0.826 

185550 285 0.349 0.050 0.217 0.343 0.475 

09/05 

222246 314 0.333 0.047 0.160 0.332 0.451 

233446 23 0.335 0.062 0.228 0.332 0.459 

09/07 

110247 212 0.409 0.061 0.346 0.421 0.488 

111847 557 0.485 0.035 0.391 0.483 0.539 

09/08 
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115247 21 0.330 0.065 0.158 0.350 0.394 

143247 313 0.351 0.044 0.103 0.354 0.456 

09/09 

012847 522 0.353 0.049 0.224 0.356 0.452 

013847 25 0.313 0.111 0.042 0.339 0.436 

020647 240 0.338 0.065 0.039 0.346 0.465 

021447 44 0.340 0.077 0.089 0.349 0.465 

09/10 

021048 213 0.557 0.080 0.338 0.605 0.630 

09/11 

025049 147 0.668 0.140 0.099 0.726 0.792 

033849 214 0.344 0.063 0.050 0.345 0.456 

132249 46 0.343 0.075 0.092 0.350 0.458 

09/12 

075249 17 0.294 0.104 0.045 0.329 0.436 

080249 50 0.347 0.066 0.195 0.348 0.443 

080849 22 0.355 0.058 0.192 0.373 0.437 



 

 

90 

110449 93 0.347 0.056 0.066 0.350 0.455 

111049 12 0.286 0.108 0.052 0.325 0.409 

153049 60 0.385 0.069 0.235 0.378 0.514 

154049 24 0.455 0.061 0.367 0.471 0.601 

173049 50 0.332 0.046 0.250 0.327 0.426 

Table 2. noClick dataset profile of the average RMSs statistics for each segment of each day. 

The 50% is the 50th percentile is equivalent to the median of RMSs in that given segment. 
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Day count mean std min 50% max 

07/14 1848 0.555 0.163 0.217 0.587 0.843 

09/05 674 0.320 0.047 0.160 0.320 0.459 

09/07 1538 0.480 0.103 0.058 0.502 0.628 

09/08 668 0.340 0.058 0.070 0.350 0.456 

09/09 1662 0.347 0.055 0.039 0.347 0.481 

09/10 426 0.452 0.124 0.216 0.417 0.629 

09/11 814 0.430 0.143 0.050 0.389 0.792 

09/12 656 0.410 0.133 0.045 0.382 0.822 

Table 3. Dataset profile of the entire dataset, per day. This includes clicks and noClicks. 
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