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Introduction

This book is the content of the 1st Big Bioacoustics Data [NIPS4B] that took place at Tahoe lake,
Nevada, in december 2013, during the NIPS international conference. The 40 attendies provided further
insights into the analysis of large scale bioacoustic data and modeling of animal sounds, not only from a
neuro- perspective, but also by highly reinforcing the need to approach these unique signals within the
machine learning community.

As aresult both the bioacoustics community and the mainstream NIPS community met, leading to
new collaborations: the communications ranged from the complexity of bioacoustics to scaled analyses,
from understanding and monitoring bird song ontogeny, to cricket auditory neural functions, from use of
sparse architectures for whale sound classification, to range estimation and bat tracking...

Although, in recent years, the majority of the existing applications lend themselves to advanced
acoustic signal processing methodologies, our efforts are successfully integrating robust processing and
machine learning algorithms for scaled analysis of these abundant recordings. Major issues such as data
repositories and the need for standardizations within the bioacoustics field discussed and addressed.

We exchanged ideas on how to proceed in understanding bioacoustics to provide methods for
biodiversity indexing, and to open a novel paradigm toward a Bioacoustic Turing Test: one might model
animal communication before tackling the original Turing test for human being.

The scaled bioacoustic data science is a novel challenge for artificial intelligence that requiere
new methods. For example Minke whales, observed all around the planet have been recorded by
Kindermann's acoustic observatory at the ice shelf around Antarctica during 8 years. Big data scientists
are today invited to look into that data using advanced methods to definitely new knowledge about this
important species.

Similarly, large cabled submarine acoustic observatory deployments permit data to be acquired
continuously, over long time periods. For examples, Neptune observatory in Canada, Antares or Nemo
neutrino workshop on Neural Information Processing Scaled for observatories in Mediterranean sea are
'big data' challenges to the scientists. Automated analysis, including the classification of acoustic signals,
event detection, data mining and machine to discover relationships among data streams are techniques
which promise to aid scientists in discoveries in an otherwise overwhelming quantity of acoustic data as it
is presented in this book.

Antarctic Minke Vocalisation — 2 Year Scale

Antarctic Minke Vocalisation — 5 Minute Scale

Mmke whale Fourzer time- frequency representatzon, on 5 minutes scale ( left) versus on two years scale (right),
showing season effect and global frequency shift [from L. Kindermann 2013, in this book].
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1.1 Objectives

Bioacoustic data science aims at analyzing and modeling animal sounds for neuroethology / biodiversity
assessment. However, given the complexity of the collected data along with the different taxonomies of the
different species and their environmental contexts, it requires original approaches. In recent years, the field
of bioacoustics has received increasing attention due to its diverse potential benefits to science and society,
and is steadily required by regulatory agencies as a tool for timely monitoring and mitigation of
environmental impacts from human activities. The increased expectations from bioacoustic research have
been coincident with a dramatic increase in the spatial, temporal and spectral scales of acoustic data
collection efforts. One of the most promising strategies concerns neural information processing and
advanced machine learning.

The features and biological significance of animal sounds, while constrained by the physics of sound
production and propagation, have evolved through the processes of natural selection. Additional insights
have been gained through analysis and attempts of modeling of animal sounds as related to critical life
functions (e.g. communicating, mating, migrating, navigating, etc.), social context, and individual, species
and population identification. These observations have led to both quantitative and qualitative advancements,
as for example MRIs for monitoring bird song ontogeny. These yieled to new paradigms such as prococesses
that underlie song learning and their modelisation. Although, the majority of the existing applications lend
themselves to widely used, advanced acoustic signal processing methodologies, the field has yet to
successfully integrate robust signal processing and machine learning algorithms, applied for example to bird,
insect, or whale song identification, source localisation, (neural)modelisation of the biosonar of bats or
dolphins...

Figure: Sperm whale tracking demo', more informations here”.

This NIPS4B workshop has helped to introduce and solidify an innovative computational framework in the
field of bioacoustics by focusing on the principles of neural information processing in an inheretly
hierarchical manner. State of the art machine learning algorithms have been explored in order to draw
physiological parallels within bioacoustics, while an applicative framework has address classification tasks.

For example, new sparse feature representations have been pursued by using both shallow and deep
architectures in order to model the underlying highly complex data distribution. Cost creation and hyper-
parameter optimization in architectures such as Deep Belief Networks (DBN), Sparse Auto Encoders (SAE),
Convolutional Networks (ConNet), Scattering transforms, ..., have provided insights in the analysis of these
complex signals. Any interesting new learning technique for this type of bioacoustic signal is very welcome.

NIPS4B has encouraged interdisciplinary, scientific exchanges and foster collaborations among the
workshop participants for the bioacoustic signal analysis and understanding of the auditory process. NIP4B
aims at bringing together experts from the machine learning and computational auditory scene analysis fields

1 http://www.youtube.com/watch?v=0Sz03gdiTRk
2 http://glotin.univ-tln.fr/oncet/
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with experts in the field of animal acoustic communication systems to promote, discuss and explore the use
of machine learning techniques in bioacoustics for signal separation, classification, localisation,... It has
concerned researchers in modeling the auditory cortex, neurophysiological process in perception and
learning, machine listening, signal processing, and computer science to discuss these complementary
perspectives on bioacoustics.

Scaled bioacoustics is a new challenge that requiere new methods that will be discussed in this book. For
example antarctic Minke whales are today observed all around the planet. Long term recordings from
Kindermann's acoustic observatory at the ice shelf show its acoustic emission around Antarctica during
years (see figure below). Tenth of thousands of hours of this sound have been recorded during the last 8
years. Big data scientists are today invited to look into that data using advanced methods to extract
definitely new knowledge about this important species.

The large cabled submarine acoustic observatory deployments permit data to be acquired continuously,
over long time periods. For examples, the current running ones are the Neptune observatory in Canada(see
M.H. talk in this book), Antares or Nemo neutrino observatories in Mediterranean sea (see H.G.'s talk).
This capability presents a “big data” challenge to the scientist using and accessing the data. Automated
analysis, including the classification of acoustic signals, event detection, data mining and machine learning
to discover relationships among data streams are techniques which promise to aid scientists in making
discoveries in an otherwise overwhelming quantity of acoustic data as it will be prensented in this book.

1.2 Overview of the Bird Challenge

Challenge 1: Bird Song Classification / Kaggle web site now available

This Bird NIPS4B competition asks participants to identify which of 87 sound classes of birds and their
ecosystem are present into 1 000 continuous wild recordings (from different places in Provence France -
nearly 2 hours of recordings, frequency sample = 44.1 kHz, SM2 system). The data is provided by
the BIOTOPE' society (having the largest collection of wild recordings of birds in Europe). The training set
matches the test set conditions.

This challenge is a more complex task than our previous one at ICML4B challenge’ for which 77 teams
participated - see proceedings at sabiod.org’.

This enhanced challenge opens the 2nd of october. The metrics is the Area Under the Curve, as for our
previous previous® challenge.

1/ SOUND FILES: WHOLE WAV FILES. TRAIN and TEST, 138 Mo’

http://www.biotope.ft/

http://www.kaggle.com/c/the-icml-2013-bird-challenge/

http://sabiod.univ-tln.fr/ICMLAB2013 proceedings.pdf
http://www.kaggle.com/c/the-icml-2013-bird-challenge/

http://sabiod.univ-tln.fr/nips4b/media/birds/NIPS4B_BIRD CHALLENGE TRAIN TEST WAV.tar.gz
http://sabiod.univ-tln.fr/nips4b/media/birds/NIPS4B_ BIRD CHALLENGE TRAIN TEST MFCC.tar.gz

AN AW
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http://sabiod.univ-tln.fr/nips4b/media/birds/NIPS4B_BIRD_CHALLENGE_TRAIN_LABELS.tar
http://sis.univ-tln.fr/~glotin/Kaggle_BIRD_challenge_ICML4B_MFCCcomputation.m
http://sabiod.univ-tln.fr/nips4b/media/birds/NIPS4B_BIRD_CHALLENGE_TRAIN_TEST_MFCC.tar.gz
http://sabiod.univ-tln.fr/nips4b/media/birds/NIPS4B_BIRD_CHALLENGE_TRAIN_TEST_MFCC.tar.gz
http://sabiod.univ-tln.fr/nips4b/media/birds/nips4b2013_birds_file_0002.wav
http://www.kaggle.com/c/the-icml-2013-bird-challenge/
http://sabiod.univ-tln.fr/ICML4B2013_proceedings.pdf
http://www.kaggle.com/c/the-icml-2013-bird-challenge/
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2/ SUGGESTED FEATURES: we provide baseline features of these train and test .wav files, computing
optimized MFCC for bird's sound representation, as distributed in ICML4B 2013 bird challenge : MEL
FILTER CEPSTRA COEFFICIENTS (MFCC) of WHOLE TRAIN and TEST FILES (158 Mo)' The format
is a matrix 17xN: 17 cepstral coefficients x N frames, frame size 11.6 ms, frame shift 3.9 ms, one line per
frame. You may compute their speed and acceleration by simple line differences. These suggested features
minimize the signal reconstruction error in average on bird species. The script which produced these MFCC
is:MFCC SCRIPT for BIRD SOUND REPRESENTATION (please cite if you use these features).

3/ LABELS:Here are the tables of the 87 classes to learn (.csv. xIs, html)?.

** This archive also includes the TRAINING LABELS of the 687 train files (.csv, xIs, html)’.

For some species we discriminate the song to the call (and to the drum). We also include some species living
within with these birds: 7 insects and a batracian. Each of these 87 classes in this table are to be predicted in
the 1000 test files. Some training files are empty (background noise only called 'empty class') to tune your
model, this class is not to be predicted. The training set contains 687 files. Each species is represented by
nearly 10 training files (within various context / other species).

4/ EXAMPLES: The test set is composed of 1000 files. All the species into the test set are in the training set.
We give here two samples containing each two species: Sylvia cantillans (which is singing) and Sylvia
melanocephala (which is calling)” .

Second sample: Sylvia cantillans (which is also singing) and Petronia petronia (which is calling)’

We give in Fig 1 the winning score table that is depicting the scores species by species on a dev set
selected by Lasseck, see details in his paper in this book.

1 http://sabiod.univ-tln.fr/nips4b/media/birds/NIPS4B_BIRD CHALLENGE TRAIN TEST MFCC.tar.gz
2/3 http://sabiod.univ-tin.fr/nips4b/media/birds/NIPS4B_ BIRD CHALLENGE TRAIN LABELS.tar

4 http://sabiod.univ-tln.fr/nips4b/media/birds/nips4b2013 birds_file 0001.wav

5 http://sabiod.univ-tln.fr/nips4b/media/birds/nips4b2013_birds file 0002.wav
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We give in Fig 1 the winning score table that is depicting the scores species by species on a dev set 
selected by Lasseck, see details in his paper in this book.
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Table 1: Number of selected features and estimators per sound class plus AUC scores

Class Faatures
Wu, | Mame Ll Marmne File Segeent egment | Dsticebors LIH
Statistics Statistics Prohbilitias
i | Asprau call Aegithalos raudatus Ak 13 143 A58
1 | &lazv song Abauds arversis 68 12 213
A | Anttei_comg it Iriviskis Rk i1 27
4 | Butbut call GE | 12 131
5 | Convan_call linans ni| [l M
G | Caran_song Linariz tannakbirg 58 13 137
F | Carzar_all | caniuslis mrdduehs .1} 11 15
g | Carcar song Carcualis cardualis GE 13 Eald
3 Zerthis brachydactyla L3} 11 153
[ brachydactyla (] 131 >4
1L [ 12 22
12 [ | i1 T
pE] GE | 12 240
TE [TH i |
15 Jurcidis GE | 13 113
18 | calpal_sang Zulemnba palumbes L1} 11 1T
17 | Carcar_call Coreus carane Ak | 13 153
12 | Dermal call De=ndraccgsas malar 03 | 13 17
1% | OFr i Beadrarnpas majar AR 131 53
2 Emkcir call Erniberiza cid 68 | 12 208
i s I [ | | 251
I Erfthacus rubeculs 68 | 12 35
| b sang | krithezus by By | 18|
4 | Fricoe_gall Fringlila coclans GE | 13
n | F & _Long 1] 12
6 | Galoricall Ak 13
iT | Galorl sang Falerica cristata [ 13
M| Galihe ool | Galeria theklae Rl i1
5 | Galthz song Zalorica thekdae GE 12
| Garglu cs8l Gantalus glarclarige ni | 11
Hirnus_cail Hinndn nustica 6 | JE
Jynilor_song Iy lorgualls L.} 14
Loperi cafl Lophaphanes oris 3 13
34 | Lomcur call Loxis oarvirastra [ 11
| lularb song Iullids srbaones Ak i3
26 | Lusmeg call nla megarfy e | 12
7l nu‘:.-{_- L ciis (P iy Rl | 13 |
E: Lyrplc_song Lyristes plebe|us GE | 12
1 ; [ Mutsilla ciner ea ol | T |
40 | Busstr_call Muscicapa ] GE 13
43 | owiom_gall driolus onclus 1] 11
42 | ovicei song arialus orinlus [ 13
43 | Parzte call Periparus akar ag 12
Parale sons Ak 13
Parcaz_call 6 | 12
E Farime song Al | 1}
Parmal Panus miafor 68 | 13
44 Farma)_s | Ve majoe (1) 13
43 | Pasdam_gall Passar domestious GE 13
0 | Palgra csll Prlophylax 6 grad) [ 12
1 | Petpat_all PRMONIA Pl 1 13
52 | Petpet oo | Petronla petrond [} | 12
E1 | ematar pholslopiers fa el Ak | il
54 | Prvpeal Phylicssopus cedlybita GE | :
5 | Fiyoul pung |_#hylhezoupus albdnts Tl 13
5 | Plpic_call Plea plca 19 | 13
55 | Plaafl_sorg Platydeis affenis [TH 11
53 | Plasab song Platyrlets ssbalosa 13 | 13
L Fospal zall Poecil= palustriz [:1:] | 13
s | Paspal_snep Precile pahistis AR 11 251
51 GE | 12 =4
& b1 | T [
6 | Pyrpwer_call Myrhula pyrhuks GE | 12 130
2 | Hepgn ol | Reguluz grcspsdlus 1] 14 20
55 | Faglgn song Regulus ignicapiilus 56 | 13 375
B% | Serser cafl [} 12 17
&7 | serser_sang 1] | 13 455
2 | sitour el [ | 147
5t | Siteur I Al 46
73 | Strdoc song G2 | oG
. ; | LTl 118
71 6B | 155
e ] wylvin abncapalle 1] 1M
7 Zyluia atricapilla [ 152
73 tylvia cantillans () 13 22T
i Byluia cansillan< Ak 11 ]
b Al GE 12 2T
-';1' ylvin » nli | 1 i
78 Sylund call Sylvla undata GE | 12 43
| sylund_somg | wylvis wlals [TH| 14 154
2L | Tatpyg song Tedtlgettuls pygmea 6B | : 21
L=l Tikiom song Tésicina tormertoza (1] 13 135
2 | Tratro song Tregloaytes troplodgtes 1] 13 &0
E4 | Turmer zall Tuncus merula 68 12 253
& | Turmer snnp | T ala [T 11 i
25 Turphi_call Tunchus philemzics [TH 12 2
55 | Turph song el b | 11 s

D0 ] 4o O S0 1006
Fig 1 : The list of the species of the challenge, with their AUC score from the winning solution,
on a dev set of the author Lasseck (see chap. in this book)
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Fig 1 : The list of the species of the challenge, with their AUC score from the winning solution, 
on a dev set of the author Lasseck (see chap. in this book)
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The overall Kaggle public leaderboard is given Fig 2 below to be compared to the private
score that has been processed on blind test (on unseen data).

10

11

12

13

14

15

16

17

18

19

21

Alw

Team Name

les bricoleurs
Rafael

Mario
ELM@KE
ABIA

bB2
KazAnova
Luca Massaron
danstowell
Maxim Milakov
beluga

jajo

The Corvids

Martin Martin

Euclides Fernandes Filho

Alberto Bosko Boschetti

still_no_name

sleepy red panda

Jingwei Zhang
SABIOD team

Alessio Tamburro

0.90104
0.90091
0.89740
0.89636

0.89575

0.87020
0.86084
0.86023
0.84809
989060
0.83675
082567

0.80800

Entries

34

38

29

21

15

25

33

20

12

15

10

11

3

10

Last Submission UTC (Best - Last Submission)

Sun, 24 Nov 2013 1?':41 :35 {-11.44d)
Sun, 24 Nov 2013 22:10:12 (46.4h)
Sun, 24 Nov 2013 17.09:34

Sun, 24 Nov 2013 23:53:51

Sul"!, 24 Mov 2l_]1 3 23:56:01

Sun, 24 Nov 2013 21:24:45 (-0.2h)
Wed, 20 Nov 2013 14:38:43 (-5.6h)
Sat, 23 Nov 2013 07:38:09

Sat, 23 Nov 2013 08:32:06 (4c)
Sun, 24 Nov 2013 18:28:56 (-2.50)
Fii, 22 Nov 2013 20:46:08 (-2.24)
Tue, 19 Nov 2013 18:53:46 (-1.6h)
SI_Jn. 2_4_ _ND\"_ED'I 3 1_ I ;1E:Dﬁ {-2.51‘_!}
Sun, 24 Nov 2013 12:24:19 (4.90)
!I'_Jed: U_E ND'\_«' 2{_]13 {Jl_3_:i;ll 116 {-2-_1:El'l!
Sun, 24 Now _2013_ 2]_:3_3:0'_.!"

S_a‘l,_ES_ NDV 2013 17:11 .'4_‘3

Wed, 13 Nov 2013 17:30:48 (-24.1h)

Fig 2 : Top of the public leaderboard (test on unseen data during the whole challenge)
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The overall Kaggle public leaderboard is given Fig 2 below to be compared to the private 
score that has been processed on blind test (on unseen data).
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Fig 2 : Top of the public leaderboard (test on unseen data during the whole challenge)
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Looking at the repartition of the scores (number of trail , AUC) we see that the
best models have not used too much runs. The comparison with the private
leaderboard shows that the models generalized well (see Fig3).

# Alw Team Name Score | Entries Last Submission UTC (Best - Last Submission)
1 12 Mario 0.91752 29 Sun, 24 Nov 2013 22:10:12 (-3.8h)
2 11 les bricoleurs 0.91578 34 Sun, 24 Nov 2013 23:58:03 (-24h)
3 1 Rafael 091252 38 Sun,24Nov2013 174135 (114d)
4 13 DB2 0.89624 15 Sun, 24 Nov 2013 23:53:51

5 . Maxim Milakov 0.89568 12 Sat, 23 Nov 2013 07:38:09

6 new ELM@KE 0.89525 8 Sun, 24 Nov 2013 17:09:34

7T 13 KazAnova 0.89411 25 Sun, 24 Nov 2013 23:56:01 (-25.2h)
8 18 ABA 089374 21 Sun24Nov2013223223

9 13 beluga 0.89320 15 Sat, 23 Nov 2013 08:32:06 (-44)
10 1 Luca Massaron 0.89041 33 Sun, 24 Nov 2013 21:24:45 (-0.2h)
11 - dansiowel 0.88503 20  Wed,20 Nov2013 14:38:43 (-56n)
12 14 jajo 0.87644 10 Sun, 24 Nov 2013 18:28:56 (-2.5d)
13 13 Martin Martin -;'.SE" 9_2 5 Tue, 19 Nov 2013 18:53:46 (-1.6h)
14 11 The Corvids 0.86601 1 Fri, 22 Nov 2013 20:46:08 (-2.2d)
15 12 Alberto Bosko Boschetti 0.85384 31 Sun, 24 Nov 2013 12:24:19 (-4.9d)
16 14 still_no_name 0.85237 10 Sun, 24 Nov 2013 21:34:01 (-16d)
17 new FEuclides Fernandes Filho 0.85088 7 Sun, 24 Nov 2013 11:12:06 (-14.1h)
18 new Jingwei Zhang 0.84556 5 Sun, 24 Nov 2013 21:38:07

19 15 sleepy red panda 0.83820 5 Wed, 06 Mov 2013 03:01:16 (~43.6h)
20 1z SABIOD team 0.82421 13 Sat, 23Nov2013 17:1149
21 12 Gilberto Titericz Junior 0.80030 10 Sat, 23 Nov 2013 10:55:21 (-47.2h)

Fig 3 : Top of the private leaderboard (last test on the selected runs by the challengers)

Organizers:

*Pr. H. Glotin' - Institut  Universitaire de  France’,  CNRS LSIS’ and USTV®, FR
Email: glotin@univ-tln.fr

*Q. Dufour’ - CNRS LSIS, FR

*Dr. Y. Bas - BIOTOPE®, FR

http://glotin.univ-tln.fr/
http://iuf.amue. fr/iuf/presentation
http://www.lsis.org/
http://www.univ-tln.fr/
http://dyni.univ-tin.fr/~odufour/
http://www.biotope.ft/
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Looking at the repartition of the scores (number of trail , AUC) we see that the 
best  models  have  not  used  too much runs. The  comparison with the private 
leaderboard shows that the models generalized well (see Fig3).
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Fig 3 : Top of the private leaderboard (last test on the selected runs by the challengers)
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1.3Whale Song Clustering Challenge

Challenge 2: Whale Song Processing

It is well documented that Humpback whales produce songs with a specific structure. We provide 26
minutes of a remarkable Humpback whale song recording produced at few meters distance from the whale in
La Reunion - Indian Ocean, by our "Darewin" research group in 2013 (frequency sample = 44.1kHz, 32 bits,
mono, wav, 130MB). Upload here 26 minutes of a remarkable Humpback whale song recording'.

ey
(:’-}
= |

Figure: Spectrum of around 20 seconds of the given song of Humpback Whale (start from about 5'40 to 6'.
Ordinata from 0 to 22.05 kHz, over 512 bins (fft on 1024 bins), frameshift of 10 ms.

We also give the usual Mel Filter Cepstrum Coefficients of this wav file (octave / matlab v6 format)’. The
parameters of extraction of these MFCC are given here.’.

For this challenge, you may propose any efficient representation of this song that helps to study its structure,
discover and index its song units. You can find an interesting preliminary approach in: Pace, F., Benard, F
Glotin, H., Adam, O., and White, P. (2010)_Subunit definition for humpback whale call classification’,
Jjournal Applied Acoustics, Elsevier, 11(71)
The workshop allows discussions over the proposed representations (clustering, indexing, sequence
modeling etc.). Your representation of this song file shall be sent to nips4b@gmail.com in usual
format (.xml, .csv or .mat ...). The size (bytes) of your representation and its quality (MSE on the
reconstructed signal of interest) are used to rank it.

Figure: Humpback Whale

Organizers:

Doh Yann (UTLN), Joseph Razik (UTLN) and Hervé Glotin (UTLN & IUF)
We thank Darewin for the recording.

1 http://sabiod.univ-tln.fr/nips4b/media/NIPS4B_Humpback Darewin LaReunion Jul 03 2013-001 26min.wav

2 http://sabiod.univ-tln.fr/nips4b/media/NIPS4B_Humpback Darewin LaReunion Jul 03 2013-001 26min 1024 CORRECTED.mat
3 http://sabiod.univ-tln.fr/nips4b/media/NIPS4BparametersMFCChumpbacksongsample.txt

4 http://sabiod.univ-tln.fr/nips4b/media/Pace_etal APAC2010.pdf
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http://sabiod.univ-tln.fr/nips4b/media/Pace_etal_APAC2010.pdf
http://sabiod.univ-tln.fr/nips4b/media/NIPS4BparametersMFCChumpbacksongsample.txt
http://sabiod.univ-tln.fr/nips4b/media/NIPS4B_Humpback_Darewin_LaReunion_Jul_03_2013-001_26min_1024_CORRECTED.mat
http://sabiod.univ-tln.fr/nips4b/img/NIPS4BHumpbackspectrogramsample.png
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1.4 Neurosonar Analysis

Example of topic of interest (non restrictive) : BioSonar - new files to upload since 30th sept

One of the possible (non restrictive) topic of interest in this workshop is the biosonar analysis (mostly from
bats or dolphins): Which neural processes underlie pulse train emission of biosonar? Are there pulse
categories? What is the high / social information content of these sonar, and if any, at which scale? Which
could be the efficient decompositions / self-learned representations for these complex sounds?

Some samples and paradigms of sonar sequences of wild dolphin and bats are given below, more are
available, please ask to nips4b@gmail.com.

Here a .pdf with the summary of some dolphin data and suggested topic of interest.'
First we provide these clear recordings of Stenella dolphin sonar from the Port-Cros National Park, Cote

d'Azur [USTV-PELAGOS DECAV project 2011-12]:

*file a’ (SMB)
ofile b*(11MB).

The two next files contain sonar of another dolphin species, the biggest one, i.e. Physeter macrocephalus (15
meters, 40T): file ¢* (28MB), and file d’ (high signal to noise ratio, recorded at Toulon in 2012-DECAV
SABIOD, FS=48kHz, 55MB).

Nice 25 minutes of one Physeter have been recorded on 5 channels in Bahamas by NATO, and we have
precisely computed the 4D positions of this whale [Glotin 2008]° with its real animation on YouTube’. The
whole recordings 25 minutes x 5 channels at 48kHz and the positions and references are in this archive® (500
MB) (here is one sample of 5 min’). You find a sparse coding representation of these clicks in [Paris et

20137°.

1 http://sabiod.univ-tln.fr/nips4b/media/NIPS4B_Humpback Darewin LaReunion Jul 03 2013-
001 26min 1024 CORRECTED.mat
http://sabiod.univ-tln.fr/nips4b/media/DECAV_20110607 073535 _v2 raccourcie_bateauenfond v2.wav
http://sabiod.univ-tln.fr/nips4b/media/DECAV_ 20120916 174818 v2 raccourcie propre2.wav
http://sabiod.univ-tln.fr/nips4b/media/DECAV_20121006 171343 v2 dauphin_cachalot assez propre org.wav
http://sis.univ-tln.fr/~glotin/DECAV_ 20120917 135935.wav
http://sis.univ-
tin.fr/~glotin/NIPS4B_MATERIAL/DATA_ WAV_POSITIONS/BAHAMAS/GLOTIN_etal Whale Cocktail Party
Int JOURN_CANADIAN_ACOUSTICS_spring2008.pdf
http://www.youtube.com/watch?v=0Szo3gdiTRk
8 http:/sis.univ-

tln.fr/~glotin//NIPS4B MATERIAL/DATA WAV _POSITIONS/BAHAMAS Physeter 4channels.tar.gz
9 http://sis.univ-

tln.fr/~glotin/NIPS4B_ MATERIAL/DATA_WAV_POSITIONS/BAHAMAS/HYDRO10/10S_ch5_10-15.wav
10 http://arxiv.org/pdf/1306.3058v1
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mailto:nips4b@gmail.com
http://sis.univ-tln.fr/~glotin/NIPS4B_Dolphins_Inia_and_Tursiops_Summary_Data_and_Subjects_of_Interest.pdf
http://arxiv.org/pdf/1306.3058v1
http://arxiv.org/pdf/1306.3058v1
http://sis.univ-tln.fr/~glotin/NIPS4B_MATERIAL/DATA_WAV_POSITIONS/BAHAMAS/HYDRO10/10S_ch5_10-15.wav
http://sis.univ-tln.fr/~glotin//NIPS4B_MATERIAL/DATA_WAV_POSITIONS/BAHAMAS_Physeter_4channels.tar.gz
http://www.youtube.com/watch?v=0Szo3gdiTRk
http://sis.univ-tln.fr/~glotin/NIPS4B_MATERIAL/DATA_WAV_POSITIONS/BAHAMAS/GLOTIN_etal_Whale_Cocktail_Party_Int_JOURN_CANADIAN_ACOUSTICS_spring2008.pdf
http://sis.univ-tln.fr/~glotin/DECAV_20120917_135935.wav
http://sabiod.univ-tln.fr/nips4b/media/DECAV_20121006_171343_v2_dauphin_cachalot_assez_propre_org.wav
http://sabiod.univ-tln.fr/nips4b/media/DECAV_20120916_174818_v2_raccourcie_propre2.wav
http://sabiod.univ-tln.fr/nips4b/media/DECAV_20110607_073535_v2_raccourcie_bateauenfond_v2.wav

Fig: The sonar sample given below is from Nicky, here with her calf, recorded at Shark Bay'Australia (cred.
Giraudet 2013).

This Tursiops sonar sample”is from the wild dolphin called Nicky, 37 years old, visiting nearly daily
Monkey Mia Bay (frequency sample 96kHz, 32 bits, with CR55 hydrophone of Cetacean Research). Here is
its time-amplitude representation:

0,00 0,10 0,20
| f |

x[nps4s w10
Mono,96000HE o9
32 bits flottan
Muet [ Sole | 9.8

= +

{: 0,7
G o D] o6

0,5-

0.4

o ll'.{

- (

-0,3

-0,4

-0,5-

-0,6

-0.7

Fig: The time-amplitude representation of this Nicky's sonar short sample (0.7 sec).

Here we give a longer sequence of Nicky® (same FS=96kHz, 32 bits, 19MB), recorded at 2m from her noise.
You may use Audacity* or GNU Octave’ to read it.

http://www.monkeymiadolphins.org/

http://sabiod.univ-tln.fr/nips4b/media/NIPS4B_sonar_S1.wav

3 http://sabiod.univ-
tln.fr/nips4b/media/Tursiops_truncatus Nicky SHARKD 0002S34D12 day3 aug2013 SABIOD 96kHz 32bits a
fter19min_nips4bfile e.wav

4 http://audacity.sourceforge.net/

5 http://www.gnu.org/software/octave/

N —
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http://www.gnu.org/software/octave/
http://audacity.sourceforge.net/
http://sabiod.univ-tln.fr/nips4b/media/Tursiops_truncatus_Nicky_SHARKD_0002S34D12_day3_aug2013_SABIOD_96kHz_32bits_after19min_nips4bfile_e.wav
http://sabiod.univ-tln.fr/nips4b/media/NIPS4B_sonar_S1.wav
http://www.monkeymiadolphins.org/
http://sabiod.univ-tln.fr/nips4b/img/sample_nips4b_time_amplitude.png

a Tursiops_truncatus_Nicky SHARKD_0002534D12_ day3 aug2013 SABIOD_96kHz_32bits_after19min OE)
Echier Edition Affichage Pistes Générer Effet Analyse Aide

s 5 10 15 20 P 30 35 a0 as 50 55 1:00 1:05 1:10 1:15 1:20 125 1:30 135 1:40
lz[i.myuv],ﬂﬂ
ono,6000rz
0,90
ot | sas 0,85

- o e

0.7
£o0-2l%
065
lo,60.
o5
lo,50.
0.45
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035
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.05
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0,10
015
0,20
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o555
0,60
0,65
o, 70
0.7
80
085
0,90

Fig: Longer time-amplitude of Nicky's sonar (100 sec.): same file e'.

In [Ryabov 2011]* it is shown that Tursiops dolphin are producing the packs of coherent and non-coherent
broadband pulses. The waveform and spectrum of coherent pulses are invariable within a pack (see fig.
below), but considerably varies from a pack to a pack. The waveform of each non-coherent pulse vary from a
pulse to a pulse in each pack, therefore their spectrum also vary from a pulse to a pulse and have many
extrema. It is very likely that the non-coherent pulses play a part of phonemes of a dolphin spoken language
and the probing signals of dolphin's non-coherent coherent sonar. Efficient feature extraction and
classification on sonar sequences are requiered for such studies.

46 V. RYABOV
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Figure 4. Example of the time dependence of interpulse interval in the pack of coherent pulses (a) that Yana produced from
16.8th up to 17.6th sec (ny, Figure 2) and a magnification of the area from 17.185th up to 17.23th sec represented in the time
(c) and frequency (d) domain. The single pulse (b) at the expanded time scale of 200 psec/div. Along X-axis are pulses location
on the time axis of Figure 2(a). Along Y-axis are SPL in dBs relatively 350 Pa and frequencies in kHz, respectively. The rela-
tive amplitudes scale of sonogram is the same as in Figure 3.

1 http:/sabiod.univ-
tln.fr/nips4b/media/Tursiops_truncatus Nicky SHARKD 0002S34D12 day3 aug2013 SABIOD 96kHz 32bits a
fter19min_nips4bfile e.wav

2 http://www.scirp.org/journal/PaperDownload.aspx?paperID=7397
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http://sabiod.univ-tln.fr/nips4b/img/tursiops_Nicky_96kHz_TA_file_e.png

Sonar of Dolphin River

We give also Amazone dolphin river (Inia) recorded by David E. Bonnett (bonnettde@gmail.com)': Inia,
2007. 96kHz FS. 600Mo”, and Inia. 2009. 96kHz FS. 300Mo®, and Inia, 2011, 96kHz FS. 300Mo*

We also give some Indian River bottlenos dolphins record, recorded by M. Trone (DRS).
Indian River Dolphin, 2013a, 96kHzFS, 358 Mo’ and Indian River dolphin, 2013b, 500kHz FS, 1Go°
From these recordings, you may try to learn features that may correlate with some morphological difference,
here are some point of interest on river files.’

Similar paradigm applies to bats' sonar: [Kno 2012] shows that if bat echolocation is primarily used for

orientation and foraging, it also holds great potential for social communication.

Fig: Bat's sonar share many properties with cetacean one's

http://sis.univ-tln.fr/~glotin/DRS_and Microtrack Recording System_Descriptions.pdf
http://sabiod.univ-tln.fr/nips4b/media/Amazon 2007 96kHz.zip
http://sabiod.univ-tln.fr/nips4b/media/Amazon 2009 96kHz.zip
http://sabiod.univ-tln.fr/nips4b/media/Amazon 2011 96kHz.zip
http://sabiod.univ-tln.fr/nips4b/media/Indian_River Lagoon 2013 96kHz.zip
http://sabiod.univ-tln.fr/nips4b/media/Indian_River Lagoon 2013 500kHz.zip
http://sis.univ-tln.fr/~glotin/nips4b_dolphin_river point of interests.pdf

NN DN AW~
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http://sis.univ-tln.fr/~glotin/nips4b_dolphin_river_point_of_interests.pdf
http://sabiod.univ-tln.fr/nips4b/media/Indian_River_Lagoon_2013_500kHz.zip
http://sabiod.univ-tln.fr/nips4b/media/Indian_River_Lagoon_2013_96kHz.zip
http://sabiod.univ-tln.fr/nips4b/media/Amazon_2011_96kHz.zip
http://sabiod.univ-tln.fr/nips4b/media/Amazon_2009_96kHz.zip
http://sabiod.univ-tln.fr/nips4b/media/Amazon_2007_96kHz.zip
http://sabiod.univ-tln.fr/nips4b/media/Amazon_2007_96kHz.zip
http://sis.univ-tln.fr/~glotin/DRS_and_Microtrack_Recording_System_Descriptions.pdf
http://sabiod.univ-tln.fr/nips4b/img/ryabov_coherentpulses.png

* Myopterus bat's sonar sample (credit Cyberio)' (frequency sampling=250kHz, duration=4 seconds,
2MB)

0.8 | _

0.6 |- i

0.4 | .

0.2 i

-0.2 | =

04 | .

-0.6 | #

-08 =

L 1 1 L
0 200000 400000 600000 800000 1e+06

time x 250K (sec)

Fig: The time-amplitude representation of this bat sonar sample. The nearest point of approach (NPA) to the
microphone corresponds to the highest amplitude (near the sample #400K). Before NPA, the bats flies in
direction to the microphone, after NPA the bat emits in the opposite direction.

The communicative function of echolocation calls is still largely unstudied, especially in the wild. The vocal
signatures encoding social information in echolocation calls has not been up to now well studied. The
authors found pronounced vocal signatures encoding sex and individual identity : free- living males
discriminate approaching male and female conspecifics solely based on their echolocation calls. Males
always produced aggressive vocalizations when hearing male echolocation calls and courtship vocalizations
when hearing female echolocation calls; hence, they responded with complex social vocalizations in the
appropriate social context. Advanced statistics may reveal other dependences into biosonar sequences...

1 http://sabiod.univ-tln.fr/nips4b/media/MyopterusECORx 091612 223528COMP1.wav
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http://sabiod.univ-tln.fr/nips4b/media/MyopterusECORx_091612_223528COMP1.wav
http://sabiod.univ-tln.fr/nips4b/img/myopterusnips4bsample_TA_250Kfs.jpg

(a) echolocation calls of male flying towards the roost hark and territorial song of roosting harem male

} —+ + e —t Hiy %

N 60 " v
T 50 r k"
40 L2 v i o
30 - - -
20 - - iim— -
10
(b) echolocation calls of female flying towards the roost courtship song of roosting harem male
TR g b } Pbbe o o N ~off ‘
100
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30 e T il ~
20 o - s il
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s

Figure 3. Vocal responses of male S. bilineara to conspecifics’ echolocation calls. Oscillograms and spectrograms depict
vocalizatdons of a roosting §. bilineata harem male in response to the echolocation calls of conspecifics approaching the
roost. Echolocation calls of approaching males always triggered aggressive vocalizations ({a) territorial songs and barks),
whereas echolocation calls of approaching females triggered benign vocalizations ((b) courtship songs). This demonstrates
thar harem males were able to sex conspecifics solely based on their echolocation calls and to respond with vocalizations in

the appropriate social context. FRom Knoernschild et al. 2012 Bat echo. calls faciliitate social com. RSPB

Fig: The sonar sequence dependencies illustration (from [Kno 2012]).
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Chapter 2

Natural Neural Bioacoustic [.earning_

2.1 Physiological brain processes that underlie song learning............................ccoonn 22

Tchernichovski O.

2.2 Neuroethology of hearing in crickets: embeded neural process to avoid bat, .. ... .. .
Pollack G.
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2.1 Physiological brain processes that underlie
song learning

Ofer Tchernichovski- Hunter College - CUNY, NY, USA

Human language, as well as birdsong, relies on the ability to imitate vocal sounds and
arrange them in new sequences. During developmental song learning, the songbird brain
produces highly variable song patterns, which allow vocal exploration to guide learning.
Tracking song development continuously show that exploratory variability is regulated in
fine time scales, such that each song element becomes less variable independently when
approaching the target (adult tutor) song. Therefore, multiple localized reinforcement-
learning processes can explain how the bird learn to match specific song elements.
However, we found that vocal exploration alone cannot explain how birds learn to match
vocal combinatorial sequences. Combining an experimental approach in zebra finches with
an analysis of natural development of vocal transitions in Bengalese finches and pre-lingual
human infants, we found a common, stepwise pattern of acquiring vocal transitions across
species. Results point to a common generative process that is conserved across species,
suggesting that the long-noted gap between perceptual versus motor combinatorial
capabilities in human infants may arise partly from the challenges in constructing new
pairwise vocal transitions. Therefore, learning vocal sequences is likely to be constraint by a
neuronal growth process, perhaps of establishing connections between representations of
song gestures.
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Neuronal mechanisms of vocal

Ofer Tchernichovski
Dept. of Psychology, Hunter College
The City University of New York

Song imitation

10 kHz

Songbird neuroanatomy

Pallium (‘Cortex’)
B Motor pathway

“50 Anterior forebrain
pathway

Syrinx 2
e Basal ganglia

Fee, Scharff, 2010

23

Jarvis & Nottebohm 1998
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Each HVC premotor neuron is a clock

Motif no.
1 2 3
HVC(RA) J | I
e A
¥ " .u-,] f
0] (i) (iii)

1s

From: Hahnloser RHR, Kozhevnikov AA, Fee MS, NATURE 2002

An array of clocks in HVC
Explicit representation of song time

Motif
(el
: ¥
]
P
[
L] l sl
: K,
: |
. k

Hahnloser RHR, Kozhevnikov AA, Fee MS, NATURE 2002

Here is our “music box”

HVC synfire chain and how they may be learned

There good evidence for sysnfire chains of
bursting neurons in HVC which may fire in
sequence during a stereotyped syllable,
e.g Long, Jin, Fee 2010

a Synaptic chain
@@

Such HVC synfire chains can be learned
with (Fiete, Senn, Wang, Hanloser 2010)

correlated external inputs STDP heterosynaptic competition

A randor fluctuating input 8

Variability in song production

TTX ar
muscimel

From: Bence P. Olveczky, Aaron S. Andalman, Michale S. Fee, PLOS 2005
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Learning by experimentation

Befors LMAN inactivation

From: Bence P. Olveczky, Aaron S. Andalman, Michale S. Fee, PLOS 2005

Learning by experimentation

During LMAN inactivation

From: Bence P. Olveczky, Aaron S. Andalman, Michale S. Fee, PLOS 2005
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HVC

Accurate patterns
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HVC is sparse in time o
- ———— o -

Egll’l i

nois

LMAN activity is noisy
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Motif #

Song production

Fee, Goldberg, 2011

HVC

SNR=T31aN

Negative reinforcement during
singing, targeting a specific
svllable:
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noise
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Motif 2

Ali ... & Olveczky, Neuron, Dec 2013

The production variability in
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So, how to bird imitate their song?

Several people think about vocal learning as an
instance of reinforcement learning algorithm

| will show evidence that birds control SNR

adaptively as learning progresses: this will tell us
at what time scales RLA operates

And then | will show that at the level of acquiring
combinatorial abilities — we have a problem...

Experimentally controlled song learning

days 7-30:
Young raised by their mother
e

day 31-:
Social and acoustic isolation

el

day 43: Start training

%

> A

Birdsong lab
@ Hunter College

Analysis of an entire song learning

-1 \

n=1,200,000 syllables

Probability
density

0 100 200 300
Syllable duration (ms)
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Sound Analysis Pro (GNU public license )
http://SoundAnalysisPro.com
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fn

16571
17000
17189
17761

Duration

76
54
58
51
58

Mean Amp
0216472968
052569139
0135118335
0.124977574
0.144002378

Mean Pitch M
769.9150391
687.6394043
864.5578613
752.3527222
1021.027527

lean Entropy

-2.356431723
-1.956387162
-2.363121986

-1.94250226

-2.258356094

Mean FM
39.29466629
37.81315613
31.00643349
36.36558151
40.53672409

Mean Continuity

0.794104338
0.616944551
0.858065724
0.691144586
0.708231866

47

0.066938281
0.066276349

0.335276693

1339.068604
1847.560913

858.1080933

-1.668018103
-2.551876307

-1.750756502

46.29984665
38.55633545

46.40740204

0.69986397
0.805839062

18219 66 0.511499882
18536 69 0.261755675  890.3964233  -1.860459447  42.50422668 0.500995994
19446 46 0.15915972 993.3217773  -1.601477981  43.11263275 0.527124286
20405 51 0.193706796  800.2883911 -1.413753867  41.22149277 0.428571522
20644 65 0.24410592 802.0982666  -1.589150429  39.50386429 0.429761887
20729 61 0.166723967  901.6841431 -1.771348119  47.49161148 0.556119919
20847 51 0.198818251 852.6430664  -1.053611994  48.11198425 0.44106108
23287 68 0.178408563  784.8914185  -2.134843588  41.99195862 0.656920671
24243 70 0.185866207  990.8589478  -2.562700748  39.49663925 0.763919473

Show song development movies

What'’s the scope of vocal exploration ?
Can the bird control exploratory noise locally?

Deregnaucourt et al, Nature 2005

lewmhemii?ration ‘I
explor ility to
Rycirt(RI qzﬁcha}:need

|mprovement?

How is song syntax learned?
Can the bird explore at the syntax level?

o

B—'A—'C—’
NN

Altered-target
training
technique

Dina Lipkind

Altered target training

First tutor song
Source

wf))) song 1

Second tutor song
Target

wgy) song 2

o

A<

Day 50-60

Day 35

Day 100

Design source and target songs to
present the bird with a specific
imitation task
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Can the bird control vocal exploration locally?

ered farget fraining

=

‘onflicting demands

Need exploration

Primoz Ravbar

Dina Lipkind
A ? A 95 A B A B .Dlina Lipkind
gunos 2
<J I_\I/ —L_>
Song model 1 Song model 2
g
Day 90
Syllable duration
The high variance of the newly
C  ows  oww  owsw  owm learned syllable does not leak to
g e B other sounds
don [|fm
- 8 0.5
g % &
g PRE. i -
100 Fi] Before B B B End

Duration (ms)

appearance  introduction Appearance point
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At fine time scales of vocal gestures variability
correlates better with local similarity to the target song

DIFFERENCE FROM END-POINT

An explanation: the bird partition the
learpring trel to ceveral small

Inject noise

v
Compute error

But how is the song compared to
the model template?

But how is the song compared to
the model template?

training: ABC-ABC -> AC+B-AC+B
Learning:

ABC-ABC -> ABC+-ABC+ -> AC+B-AC+B

Conclusions

Birds seem to be capable of locally controlling exploratory
variability and confine vocal exploration to parts of the
continuous actions that need improvement

- This may suggest that the continuous singing action is learned
by virtually segmenting the song to short units (several ms) that
can be learned independently

In each segment, variability is gated by local error

* The bird can compare song elements to its model memory
template out of context (not published yet)

Ravbar et al, Journal of Neuroscience, 2012

What about sequence
rearrangement?

Gary Marcus
NYU Doug Bemis

Hunter College, CUNY Ny

Dina Lipkind

/ \/ \./ \/
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A

Rearrange syllable order
(permutation task)

Insert a new syllable into
a string
(insertion task)

Source lulor song

ofi) ABC

e
—

”~

Source tutor song

o) AAAA

e

A R

Target tuter song

ofi) Ace

ABC

Target tutor song

o) ABAB

AAAA ABAB

e I

l

Rearrangement of syllables

First tutor song Second tutor song

Source Target
) ABC ) ACB
_ABC T
o o LT
e "‘T,'.';':._
Day 35 Day 50-60 Day 100

Can the bird rearrange syllables at
all?

YES: in more than 90% of the cases

Hypothesis 1: Direct syllable swap:

ABCABC ABC

R/NB A{“\E
Hypothesized
grammar: k J j
c c
Predicted ,
onrfoake: ABC ABC ACB ACB
Source Target
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Hypothesis 2: Randomize & select
§:>A_—I>g_‘ ﬁ_‘

A=l B—>A—>C

Hypothesis 2: Randomize & select

ﬁ:v;&qﬂ‘\r_rﬁ_

A—C—B~A~C

Hypothesized
grammar;

N N
N/ TR TN

CAB ACC

Predicted ABC ABC BAC ABC ACB ACB
outcome: ACB ACB
BCA CBC

Hypothesis 3: New transitions must
be leaced

These three hypotheses are not

necessarily the appropriate way of

thinking about the problem:
- We do not know what are the units that the bird
samples and learns

* The bird appears to accurately represent the

ey N B {“q B f‘/_\a - f’fﬁ\a frequencies of transitions
grammar; \ \ \
Kcv/ k‘cxj \.."‘-\’CJ \>L) I .
- Therefore, one should distinguish between the
ABCACA CBCACB oge . . oy
Prediced 0 o e sy L e capability of performing a certain transition, and
ACABCA ACBCAB of adjusting its frequency to match a model
The transition from source New syntax is gradually assembled from
to target syntax individual pair wise syllable transitions
09 : . : : . a S_M'u.anﬂln_rnetw o b Targed bigrams c Source bigrams
ACB,ACB... N f N '
ABC,ABC... fmen. | |'| e
0.5¢f 5 _&'?/15 ) o 1'0"5" % BLm
o Ae o o4 c Ac e sle
(=2
=]
g ——Source
S — Target
™10 15 20 25 30

Days after switching to target

In: proc. of int. symp. Neural Information Scaled for Bioacoustics, sabiod.org/nips4b, joint to NIPS, Nevada, dec. 2013, Ed. Glotin H. et al

31




Bird 2 Mr\/\hm |

Bird 3

Birda -\

Bird5 . /‘\\

a Leamed source

Speed of frequency adjustment

£

Speed of bigram extinction

K

What about birds that failed to
~ imitate the target?
s } .
[]
° 151 znd 3"! 15! 2nd 3rd
Bigram
os| ABC,ABC...
b
Leamed source A . B [

o -ACB,ACB...

Frequency
- e
2 =

\'l!'w\],

W, |

R D
Days after switching to target
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Question: how AAAA # ABAB

d Task 2: adding a new syllable Syntax
| PR [ [ DRI ISR L )
Source tutor song Target tutor song
Source tutor song Target tutor song @) AMA o) ABAS
oQ) AAAA () ABAB _AMMA L agag
: - /e S Vs o
fh

i) =

M /

P,

ol =S

Answer: In two stages

Source and target songs Target bigrams

- If A¥B is learned first:

first - ...AAAAB-stop {AB, but not BA} : \ N 1
then- ..ABAB... {AB & BA} £ T A

e

Days a mer mmumamt

Al
- — i
m _ 3 = kS .

If B# A is learned first:
First - stop-BAAAA... {BA, but not AB}
then: ...ABAB... {AB & BA}

: The ontogenetic origin of
Bengalese finches song syntax L 2
bi-directional transitions

e
0.8
|~ __,\’__/__-\JI'
GA f
f |
04 't NS
[ ac
(]
ot 4
70 . 100 130 . 160

o

o

-
G
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What about early speech
development?

Gary Marcus
NYU NYU

Doug Bemis

- Classical studies identified a transition from
predominantly reduplicated to variegated babbling

* These results have not been reliably replicated in
later studies

Hypothesis: babbling development is
shaped by a stepwise process of
acquiring transitions to and from a
syllable

- Syllable types appear one by one during babbling
development

* We therefore need to align the developmental data
according to appearances of syllable type (time zero =
the first time we see the syllable)

Stepwise transition to variegation

Performance of reduplicated transitions

By developmental stage

FNMITT
;ég m“”” it

-32 -24 =16 -8 0
Time before arriving at 50% speech (weeks)

Edge effect:

Performance of syllables at utterance edge

4 by Example of one child b Across children
3 Poe.t.,,” ,
ég a0 'ou o §§p0‘§{’*§f {'
£ i f
38 .4 ° 5£3 o 141 1
5 os 0 5EE o 1
i H il
1 o 3k
= | A ¥ v v wE
§ ba bewr harbe 1besigr g =
% 8 16 24 0 8 16 2 32

Time from syllables’ first appearance (weeks) Time from syllables first appearance (weeks)

Addition of novel transitions

i
'”Hhﬂ“w

o

(normalized units)

03

Mew transition types per syllable

0.4

0 8 16 24 32

Time from syllables’ first appearance (weeks)
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Summary

Head-to-tail connections of chains
of neuronal activity (endpoint)

Dezhe Z. Jin: Generating variable birdsong syllable
sequences with branching chain networks in avian

atar nueclaiie LN [Dhiie Do 20N00)

The starting point may be sparse:

Rearranging is also sparse:

A simple model: A slow growth
process of constructing chains

Adding elements:
A—B EEp A—B—C

‘emoving elements:

A—B—C HE) A—B

A simple model: A slow growth
process of constructing chains

Swapping elements:

A—B—C (g A—C—B

Inserting elements into chains:

A—A —m@) A—B—A
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Summary:

In zebra finches: a balanced process of adding
& -

Gary Marcus

and removing transitions Dina Lipkind_ Primaz Ravbar Doug Bemis o

Hunter College ~ City College & GC NYu

In Bengalese finches (complex song): more
additions, resulting in branching chains

Supported by grants from NIH(NIDCD) & NSF
In human infants: many (but slow) additions of

vocal transitions, leading eventually to an all-
to-all network

h a n k yo u * a Task 1; rearranaing the pesilions of song syllables d  Task2: adding a new syllable
Source tulor song Target tusor song Soures tutar song Target bulce seng
i) ABC i) ace i) Anan i) ABas
ABC ACE ARAA =
- e e oY o e
- -~ — =
-~ & & il - =
# >, A £ o b

= Syntas in sdultheed
a g L) ——— [ .
et -
® ki A
e L » B
E Y
s ¥ - F c
L o
L o
b Develapment of bidirectional
rassitians
o o4
" a8
i
{ P oo
: b | )
| 1
'
} ' = 5 L o
= ¥ C Pr—

A Do o i of e

| I T o iy e
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Performance of syllables at utierance edge Addition of novel transitions

;1 Banvesemens %f‘ﬁf "“"’T” 5 ]J
i i l*ii} l li a1 }‘ I
25 N ;‘E‘g i o }[{ H ,EE MH} H}H[l |
EE 2 m;'.'b( = s -“Ic'v [’y T3 ;;- . :: iH - by !

Common final path to RA (“motor cortex”)

An example from speech
development

* Grapes = ANAVIM (Hebrew)

First production: VIM-ANA
Then: ANA-VIM-ANA

Finally: ANA-VIM-ANA

Asymmetry between perceptual
and production combinatorial
capabilities

- Along delay between infants’ precocious

ability to perceive complex grammars, and
their limited ability to produce vocal
sequences

Gary Marcus
NYU

What are the evidence for
combinatorial constraints in

A A,U

- Classical studies identified a transition from
predominantly reduplicated to variegated babbling

* These results have not been reliably replicated in
later studies

The development of combinatorial
capacity

* HO: Vocal combinatorial capacity is the starting

point of vocal learning

* H1: Vocal combinatorial capacity is gradually

acquired via an elaborated generative process
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A comparative study:

Three species, whose vocal behavior span a
broad range of combinatorial capabilities:

Zebra finch: Bengalese finch: Pre-lingual human infants:
sings mostly linear sequences  songs include branching an extraordinary vocal
sequences combinatorial capabilities

Lipkind et al, Nature 2013

In zebra finches we tested how they solve
different types of combinatorial tasks

In Bengalese finches, we explored the
ontogenetic origin of combinatorial plasticity,
looking at specific vocal transitions

In human infants we examined statistically,
how vocal diversification of thousands vocal
transitions comes about
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2.2 Neuroethology of hearing in crickets: embeded
neural process to avoid bat

G¢érald Pollack- McGill University, Montréal, CA

Many behavioral studies on crickets have identified the relationships between signal
structure and behavioral effectiveness, and the neural basis for sound reception and analysis.
We'll present the behavioral studies on signal recognition; relationships between stimulus
structure and behavioral effectiveness; roles of sound frequency, stimulus temporal
structure; positive and negative phonotaxis to cricket-like and bat-like signals, respectively
Early auditory processing: separate channels for processing mate-attraction signals and
predator-derived signals (ultrasound); temporal response properties of receptor neurons and
first-order interneurons. And descending brain neurons: conveying the results of processing
in the brain to motor centers that control behavior.
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Summary
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increases in ultrasound amplitude
« For cricket song: accurate encoding of species-typical
rates of amplitude modulation
« In both cases, timing of receptor-neuron spikes seems to
determine stimulus encoding by interneurons
« Intrinsic properties of interneurons appear to play little
role (so far)
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Abstract

We study the problem of identifying bat species from echolocation calls in order
to build automated bioacoustic monitoring algorithms. We employ the Dynamic
Time Warping algorithm which has been successfully applied for bird flight calls
identification and show that classification performance is superior to hand crafted
call shape parameters used in previous research. This highlights that generic bioa-
coustic software with good classification rates can be constructed with little do-
main knowledge. We conduct a study with field data of 21 bat species from the
north and central Mexico using a multinomial probit regression model with Gaus-
sian process prior and a full EP approximation of the posterior of latent func-
tion values. Results indicate high classification accuracy across almost all classes
while misclassification rate across families of species is low highlighting the com-
mon evolutionary path of echolocation in bats.

1 Introduction

In many tropical ecosystems, bats are keystone species as they act as important pollinators, seed
dispersal agents and regulators of insect populations [1]. In spite of their importance, most bat
population studies in the tropics have been short term and the lack of long term bat monitoring pro-
grams is a result of their inherent difficulty. Bats produce unique sounds at frequencies that usually
do not overlap with other species and most bat species have evolved species-specific echolocation
calls [2, [3, 4]. However, their calls also show great interspecific variation and flexibility caused
by habitat, geography, sex, age, etc. and in other cases there is a great overlap of call structures
between species which makes species identification complicated [3, 16, [7]. Developing automatic
identification tools would therefore assist in creating long term acoustic monitoring programs for
biodiversity.

This work is a first step towards this direction. Our aim here is not to do an exhaustive comparison
of methods but to show that using state of the art algorithms from the Machine Learning literature
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and with no significant tunning or heavily engineered feature extraction methods good identification
rates can be achieved.

In this study we use data of 21 species collected in North and Central Mexico and treat bat call
identification as a supervised classification problem where a representative set of bat calls is used
to train a classification model which is then applied to classify novel instances of bat calls. We
employ a Multinomial probit regression model with Gaussian process prior [8] which can achieve
good generalization capabilities with moderate to low numbers of training data. We also utilize a
kernel representation of the data that directly compares the calls’ spectrograms and thus it requires
minor tunning.

2 Methodology

We approach bat call identification as a classification problem where the class response variables
yn € {1,...C} indicate the species id for the n'" call in the library and = € R? is a D-dimensional
vector representation of the call, e.g. features extracted from the call’s spectrogram.Species’ ids from
all calls in the library are collected in a vector y = [y1, . . . , Y] and all call vector representations are
collected in the matrix X = [z1,...,zy]T. of size N x D. In Sectionwe will define a proba-
bilistic model for the conditional probability p(y| X, @) where 6 denotes a vector of unknown model
parameters with an associated prior distribution p(8). The id for a new call, y*, with vector represen-

tation «* is obtained by the class with highest probability from p(y* |ac X, v, 9) where parameter
estimates @ are obtained by maximizing the posterior distribution, i.e. 0= argmax p(0| X, y).
6

2.1 Multinomial Probit Regression with GP prior

The probablhstlc model assumes a latent function f : RP? — R with latent values f(x,) = f,, =

[fE £2 ..., fS]7 such that when transformed by a sigmoid-like function give the class probabilities
p(yn|f, ). Here we use a the multinomial probit function, Equation (1)), which is convenient for
deriving the EP approximation and Gibbs sampling [[18}, 8]].

ponl ) = [ a0, 1) T @+ 12 — i, M

J=1,j#yn

For the latent function values we assume independent zero-mean Gaussian process priors for
each class similar to [14]. Collecting latent function values for all calls and classes in f =
o a2 f%  FE o fS)T the GP prior is p(f]X,0) = N (£]0, K(0)) where
K(0) is a CN x C'N block covariance matrix with block matrices K'(8),..., K (), each of
size N X N, on its diagonal. Elements K ; define the prior covariance between the latent function
values ff, f¢ governed by a covariance function k(z;, x;|@) with unknown parameters 6.

Optimising the unknown kernel parameters 6 involves computing and maximising the posterior

(61X, y) x p(6) / Py )p(£1X.0)df. @)

Making predictions for a new call, y., x., involves two steps. First computing the distribution of
the latent function values for the new call

D(F e X, y,0) = / o(F @, X, 0)p(fIX g, 0)df 3)

and then computing the class probabilities using the multinomial probit function
2.2 Full EP approximation

Unfortunately exact inference is not possible and we have to either resort to numerical estimation
through Markov Chain Monte Carlo or use approximate methods. Due to the large number of classes
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(21 species in our data) in this work we consider the latter approach and use Expectation Propagation
(EP) [19] to approximate the posterior of the /atent function values p(f|X,y, @) in Equations
and (3 while for computing the integral in () we can again use the EP algorithm.

The EP method approximates  the  posterior using g¢gp(f|X,y,0) ~
7P (F1X, O TIy Tn(fl Zas iy ) whete Tu(FalZns b £0) = ZaN (Falitns En
are local [likelihood approximate terms with parameters Zn, [T . The approxi-

mation parameters  are updated by first computing the cavity distribution q_,(f,,) =
aer(£,)X,9,0)t0(fr|Zn, by, £n) " and then matching them with the moments of the

tilted distributlon .
A(fn) = 2y a—n(F)0(ynl £ 1) (5)

Unlike the binary probit case, where the rilted distribution (5) is univariate and thus its moments
are easy to compute, the tilted distribution for the multinomial probit model is C-dimensional. Pre-
vious work on EP approximations for the multinomial probit model [16] further approximated the
moments of the filted distribution using the Laplace approximation which assumes that the distribu-
tions can be closely approximated my a multivariate normal.

In this work we show that a full EP algorithm can be derived by augmenting the latent function
values f with the auxiliary variables u,, from Equation and permuting both the augmented
variables and the covariance matrix K (0). This results in the same algorithm as the “nested” EP
approximation presented by [17]], however this presentation clearly shows why a single iteration of
the inner EP for the tilted distributions using the moments estimated from the previous iteration of
the outer EP is enough for the algorithm to converge.

We introduce the new variables w which are formed by augmenting f with w,, and permuting

such that w = [fi,..., fC ur, f3, .., 1S uay ooy fars ooy £, un]®. Similarly we augment the
covariance matrix K (@) and permute accordingly such that the new covariance matrix V' (6) is a
(C 4+ 1)N x (C + 1)N block matrix with blocks V'(6); ; = diag([K} .. .,Kfj, 1)), 4,j €
{1,...,N} of size C + 1 x C' + 1. Now we can write the posterior for w as
N c
p(w|X,y,0) <« N (w0, V) [[ [ @@wlb.,) (6)

n=1j=1,j#yn

where w,, = [fL,..., f$, u,)T and b, ; = [(e,, — €;),1]T with e; a C-dimensional vector of
zeros and the j** element set to 1.

The EP approximate posterior for w follows as

N c
Gep(w) = ZZSN (wo, V) [T ] toi(wlbn;) (7)

n=1j=1,j#yn

where t,, ;(wlb, ;) = Z;i./\f (wanyj |Bn7j, an,j) are the local approximate terms with param-

eters Zn i En j» Gp ;. This corresponds to an approximate posterior with NV(C' — 1) local approx-
imation terms which have to be updated by matching their moments with the corresponding tilted
distributions

G(whbn;) = 2, hq n j(wh by, ;)@ (whb, ;) (8)

where ¢_,, j(wlb, ;) = qep(wlb, ), j(wlb, ;)" are the cavity distributions. Calculating the
moments for the tilted distribution can now be done analytically as Equation (8)) resembles the tilted
distribution of the probit model [[14}[17]].

2.3 Spectrogram Features

The vector representation x,, for each call is constructed by extracting call shape parameters from
the call’s spectrogram similar to [9]. The spectrogram of a call is calculated by using a hamming
window of size 256 with 95% overlap and an FFT length of 512. The frequency range of the
spectrogram is thresholded by removing frequencies below 5kHz and above 210kHz. An example
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Figure 1: Example of a call’s spectrogram. See  Figure 2: Class sorted optimal alignment scores
text for details on spectrogram computation. using the DTW.

of a call’s spectrogram is illustrated in Figure [I] In total 32 parameters are calculated including
the call’s duration in miliseconds, the highest and lowest frequencies of the call, its total frequency
spread, the frequency with maximum amplitude, the frequencies at the start and end of the call etc.
We do not give a full list of the call parameters here due to luck of space but a complete list can
be found in [9]].All 32 call parameters are concatenated in the vector «,, and a squared exponential
kernel with individual length scales is used for the GP prior.

2.4 Dynamic Time Warping Kernel

Although extracting call shape parameters from the spectrogram of a call captures some of the call’s
characteristics and shape, there is still a lot of information that is discarded, e.g. harmonics. An
alternative to characterising a call using predefined parameters is to directly utilise its spectrogram.
However due to the differences in call duration the spectrograms will need to be normalised in order
to have the same length using some form of interpolation. In this work we borrow ideas from speech
recognition [11] and previous work on bird call classification [13]] and employ the Dynamic Time
Warping (DTW) kernel to directly compare two calls’ spectrograms.

Given two calls i, j from the library and their spectrograms S;, S;, where S; € C"*W with F
being the number of frequency bands and 7' the number of windows, the dissimilarity matrix D"’ €
RW>W is constructed such that

Si(:,w)TSj(:,v) )
\/Si(:, w)TS;(;,w)S,;(:,v)TS;(:,v)T

DY (w,v) =1= ©)

DTW uses the dissimilarity matrix in order to stretch or expand spectrogram S; over time in order
to match S; by calculating the optimal warping path with the smallest alignment cost, ¢; ;, using
dynamic programming. For each call we construct a vector representation ,, by computing the op-
timal warping paths with all IV calls from the library and concatenating the alignment costs such that
Zn = [Cn1,...,Cn,~N]. We then use the squared exponential covariance function for the covariance
matrix of the GP classifier. Figure 2] shows the optimal alignment scores for the training data used
in this study.

2.5 Multiple Kernel GP

GP classifiers allow for integrating information from different sources or different representations of
the data by combining covariance functions. Although both representations discussed in the previous
sections are extracted from a call’s spectrogram, some of the call parameters used in Section
involve non-linear and complex transformations of the spectrograms by utilising prior knowledge of
bat call shapes. Since such knowledge is important for bat call identification and is not present in the
DTW representation we combine both kernels by a weighted sum and treat the weights as unknown
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Table 1: Dataset statistics

Species Samples  Calls Species Samples  Calls
Family: Emballonuridae Family: Phyllostomidae
1 Balantiopteryx plicata 16 384 8 Artibeus jamaicensis 11 82
Family: Molossidae 9 Desmodus rotundus 6 38
10 Leptonycteris yerbabuenae 26 392
2 Nyctinomops femorosaccus 16 311 11 Macrotus californicus 6 53
3 Tadarida brasiliensis 49 580 12 Sturnira ludovici 12 71
Family: Mormoopidae Family: Vespertilionidae
4 Mormoops megalophylla 10 135 13 Antrozous pallidus 58 1937
5 Pteronotus davyi 8 106 14 Eptesicus fuscus 74 1589
6 Pteronotus parnellii 23 313 15 Idionycteris phyllotis 6 177
7 Pteronotu personatus 7 51 16 Lasiurus blossevillii 10 90
17 Lasiurus cinereus 5 42
18 Lasiurus xanthinus 8 204
19 Myotis volans 8 140
20 Myotis yumanensis 5 89
21 Pipistrellus hesperus 85 2445

parameters. The kernel weights are jointly optimized along with the individual kernel parameters by
maximizing the marginal likelihood.

3 Experimental Setup and Data

3.1 Data

Bat echolocation calls were recorded across North and Central Mexico. Live-trapped bats were
measured and identified to species level using field keys [20,21]] and bat taxonomy followed in [22].
We constructed an echolocation call library by recording the calls of captured individuals using two
different techniques: 1) bats were recorded while released from the hand about 6 to 10 m from the
bat detector in open areas and away from vegetation, 2) bats were tight to a zip-line and recorded
while flying along the zip flight path. The bat detector was set to manually record calls in real time,
full spectrum at 500 KHz. Each recording consists of multiple calls from a single individual bat.

In total our dataset consists of 21 species, 449 individual bats and 8429 calls. Table |1 gives a
summary of the dataset. Care must be taken when spiting the data to training and test sets during
cross-validation in order to ensure that calls from the same individual bat recording are not in both
sets. For that we split our dataset using recordings instead of calls. For species with less than 100
recordings we include as many calls as possible up to a maximum of 100 calls per species.

3.2 Experiments

We compare the classification accuracy of the multinomial probit regression with Gaussian process
prior classifier using the three representations discussed in Sections The values of the call
shape parameters are normalised to have zero mean and one standard deviation by subtracting the
mean and dividing by the standard deviation of the call shape parameters in the training set. For
the 33 covariance function parameters, o2 and A1, . .., A32 we use independent Gamma priors with
shape parameter 1.5 and scale parameter 10. For the DTW representation each call vector of optimal
alignment costs is normalised to unit length and independent Gamma (1.5, 10) priors are used for the
magnitude and length-scale covariance function parameters. The weights for the linear combination
of the DTW and call shape kernel functions are restricted to be positive and sum to 1 and a flat
Dirichlet prior is used.

3.3 Results

Table [2] compares the misclassification rate of the three methods. Results are averages of a 5-fold
cross validation. We can see that the DTW representation is significantly better for characterising
the species variations achieving a better classification accuracy. However, results can be improved
by also considering information from the call shape parameters. Moreover, the optimised weights
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for the kernel combination significantly favor the DTW covariance function with a weight of ~ 0.8
in contrast to the call shape parameters with weight ~ 0.2. If we fix the the weight parameters to
equal values we obtain a classification error rate of 0.22 4= 0.031 highlighting the importance of the
DTW kernel matrix.

The independent length scales allow us also to interpret the discriminatory power of the call shape
parameters. In our experiments the frequency at the center of the duration of a call, the characteristic
call frequency (Determined by finding the point in the final 40% of the call having the lowest slope
or exhibiting the end of the main trend of the body of the call) as well as the start and end frequencies
of the call have consistently obtained a small lengthscale parameter value indicating their importance
in species discrimination. This coincides with expert knowledge on bat call shapes where these call
shape parameters are extensively used for identifying species.

Table 2: Classification results, smaller values are better.

Method Error rate Std.
Call shape parameters 0.24 +0.052
DTW 0.21 +0.026
DTW + shape parameters 0.20 +0.037

Confusion Matrix

Output Class

8 9

0 11 12 13 14 15 16 17 18 18 20 2t
Target Class

Figure 3: Confusion matrix of the best classification. Classes are in the same order and grouped as
in Table[T]

In FigureE]the confusion matrix from the best classification results, 15% misclassification rate, are
shown. There is an overall high accuracy for all classes with the exception of species Lasiurus
xanthinus, class 18, which is often misclassified as Antrozous pallidus, class 13, which needs to be
investigated further. In contrast, the very similar call shapes of the Myotis species are easily discrim-
inated. Finally, misclassification rates are higher to within family species compared to species from
other families indicating a common evolutionary path of bat echolocation.

4 Conclusions and Future Work

Previous works highlight the complexity to discriminate species from the Phyllostomidae family,
while others recognized Myotis species hard to classify as well. The high accuracy obtained in this
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study to separate species in the Phyllostomidae family from other families and its ability to discrimi-
nate between Myotis species sets the ground for a further development of an automatic identification
tool for Mexican bats. Although only a small set of Mexican bat species was used in this study, it
shows promising applications to a bigger set of species. Despite these limitations, the development
of a national call library of full-spectrum calls together with the echolocation classification tool will
set the foundations to establish a long-term National Bat Acoustic Monitoring Program. This is a
feasible alternative for developing countries to create biodiversity monitoring programs and develop
volunteer networks because they are easier and less costly to implement at broad scales and long
term compared to other monitoring techniques.
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3.2 Whale songs classification using Sparse
Coding

Hervé Glotin, J. Razik, S. Paris, O. Adam and Y. Doh - USTYV, Institut Universitaire de France,
CNRS LSIS

The humpack whale songs relies on the ability of these whales to copy and
recombine vocal sounds and to arrange them in new sequences, around many
tropical sites all over the planet. We present the advantages of the sparse coding to
represent these song sequences in order to track their structure and evolution, and
to automatically recognize the area from where this song has been emitted. This
representation may also help to understand learning processes that can explain
how the whale build new songs. Demonstrations are conducted on true recordings
(we thank C. Clark and O. Lammers for sharing some of their samples).
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Scaled Acoustics Biodiversity
Mastodons Big Data

total

location technical properties data tasks
Go/month
Array of 6 hydrophones 2000 9000  Inventory of Humpback whales in the
sampling frequency : 44 kHz or Indian Ocean
192 kHz, coded by 16 or 24 bits Estimation of the trend of the size of the
population
Impact of the human activities
Impact of the global change
Guadeloupe Single hydrophone 200 t0 2000 Inventory of the different species of
resident/non resident cetaceans
" sampling frequency : 44 kHz o Presence in the new sanctuary AGOA of
192 kHz, coded by 16 or 24 bits marine mammals
Imgact of the human activities (touristic,
fishermen, harbour)
St Pierre et Miquelon 2 single hydrophones 350  -Inventory of the different species of
sampling frequency: 32 iz, resident/non resident cetaceans
BT | | coded by l()%ils -Migration routes / feeding areas
Akl -
800 Go to 11
To/month

A challenge : Classification on large number of classes,

with high class variability

* Usually organized (Hierarchical or Graph) through ontology
*  Examples : DMOZ (> 600 000) classes, Wikipedia, etc
«  Often multilabel

* Quantitative change implies a qualitative change in methods

* Problems
= Which criterion to use for training ?
*  What to do to perform fast inference ?

* Connexion to on-line learning, learning
with imbalanced data, large scale
learning, ...

Prelude : 20 minutes far from univ. Toulon, live Physeter macrocephalus, Minke
whale, dolphin, fin whale,...

Neural Information Processing in Marine Mammals ?
Which representations ?

‘Sperm Whale

* New trend in machine learning and data mining

Thousands of classes

Large Scale Classification : which model ?

* Approaches
* Flat (none relational information between classes e.g. one vs all classifiers)
Accurate but slow at test time O(# classes)

* Hierarchical (modeled on the taxonomy)
Less accurate than flat methods but fast inference O(log(# classes))

— In between methods
Compromise wrt accuracy and inference time between the two extremes

[L Cai, T Hofmann, Hierarchical document categorization with support vector machines, CIKM 2004

K. Weinberger, O. Chapelle, Large Margin Taxonomy with an Appl to Document C: Neural Proc. Sys. NIPS 2008

J. Weston, S. Bengio and D. Grangier, Label Embedding Trees for Large Multi-Class Tasks, NIPS 2010

M. Cissé, T. Artiéres, P. Gallinari, Learning compact class codes for fast inference in large multi class classification, ECML 2012 ]
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l. Introduction

Il. Single hydrophone 'etho-acoustics’
lll. 3D RT Single whale tracking by PA
IV. 3D RT Multiple whale tracking by PA
V. Classification by sparse coding
VL. Tracking by sparse coding

VII. Conclusion: Scaled passive Acoustic SABIOD

Predation and Moon effect ?

BOUSSOLE project

* Definition of the click detector and noise iltering

Detection results

Conclusion on ICI at new-moon versus full-moon

BOUSSOLE project

periods of recording:
15 october to 9 december 2008
5 january au 2 march 2009
15 april au 15 juin 2009
16 july au 1 september 2009

BOUSSOLE Buoy

q.

5 minutes audio files recorded every quarter of an hour by
the Ecological Acoustic Recorder (EAR, cf LAMMERS)

— 6000 files of 19Mo

Fe =32000Hz

18 monthes of recording south Antibes

Légende
W Buoste Bousase
e

Profondesr
om

. . 200 m

, 1000,

ET

The Pelagos Sanctuary for Mediterranean Marine Mammals is a special marine protected
area extending about 90.000 km2 in the north-western Mediterranean Sea between ltaly,
France and the Island of Sardinia, encompassing Corsica and the Archipelago Toscano.

An Inter-Click Interval study

on Physeter catodon | Clics and echos and Inter Click Interval |

Click detector and noise filter

For scaled processes, we designed a quadratic detector.
=>2h30 to process one month of data.

followed by a filter in order to remove chain noises.

High pass filter

Detector Post-treatment. Filtered time
detection
Temps
x(t) | Filtrage sur la bande de | %(t) 2 . | détection —— Dates de détection
fréquence & considérer Deteteuy des cétacés
threshold .

x(t)

étermination du seuil | %{t)
P e bt

(high pass filter 5000Hz ; window length: 40 ms)
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Detection results
Continuous detection on 15 hours of one Physeter !

Série du 28 mai 2003
450

400 |
Coherent detections =0r
profile according to the ¥ Ee
resting time at surface E 20t
and diving periods : § ook
E 150 1
&
100
No acoustic activity SO
\\\\ 0
— [i]
T
\\\\‘ . Time (hour)
om
500 - 2000 m

i 45 min. i E 45 min. i

[ Laran ...Glotin in Boussole Pelagos report 2008 ]

Inter-Clic Interval (ICI)
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Statistics on ICl distribution
new moon versus full moon

ICI Histogram full/new moon (by night)

215 —_— /
£}
5o ® Full moon
®  New moon
0,05 l L i
o L ‘ e ol
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Again, Kolmogorov Smirnov test positive for p < 0,01.
nb : Recordings with more than 1 sperm whale are processed.

[ Laran ...Glotin in Boussole Pelagos report 2008 ]

? . ICl(new-moon) >> ICI(full moon)

New moon Full moon

Interpretation : full moon light could result in a higher prey
concentration at small depth water layers.

Thus, sperm whales are more often predating in this
higher prey density at full moon, than at new moon.

? Moon effect on social dialects ?

Inter Pulse Interval : proposition for robust IPI estimator
application on 2011-2012
DECAV PELAGOS project (each detection has its size est.)

o= Sperm whale size estimation by acoustics - DECAV PELAGOS PROJECT
st ONline CEtacean Tracking, CHRS SABIOD - hittp:/iglotin.univ-tin.frjoncet

2013 Abeille Phd, Coll G. Pavan
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Allometric rules on IPI => Sizes distribution

Dvstritadion ders Laslles da cachalols & lwge o8 ToulonHyeres

25}
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o
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[ In Abeille, Glotin, Giraudet. IEEE OCOSS 2013 ]

l. Introduction

Il. Single hydrophone ‘etho-acoustics'

ll.3D Real Time Single whale tracking by PA
IV.3D RT Multiple whale tracking by PA

V. Classification by sparse coding

VI. Tracking by sparse coding

VII. Conclusion: Scaled passive Acoustic SABIOD

TDOA Time Delay of Arrival
But multi-reflections (surface...) => directs + indirects

TDOA filtering ? Filtering the combinations between N local max
Criteria : MSE on the residual of TDOA transitivity system

.Q‘. [Glotin Giraudet Bénard patent 2007, PCT 2009-2011, USA, EU.]
L3 . . .
‘0’ ¢ . 2 hydrophones time window (10 sec) and cross corr ~ Glotin Canadian Acoustics 2008
*
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ONCET : Online Cetacean Tracking = Etho-acoutics ?

l. Introduction

Il. Single hydrophone ‘ethoacoustics’

lll. 3D RT Single whale tracking by PA

IV. 3D Real Time Multiple whale tracking by PA
V. Classification by sparse coding

VI. Tracking by sparse coding

VII. Conclusion : Scaled Acoustic SABIOD project

[ Patent Glotin et al. Multiple whale tracking PCT USA, ... 2008-2012 . . .
Glotin et al. Whale Cocktail Party, Canac Acoustics, 2008 Online demo at http://sabiod.org

Bénard Glotin, Neutrino whale tracking, Applied Acoustics 2011 ] RANGE [ 500 to 5000 m] prec :15m

2nd Challenge : Simultaneous clicking whales... .
ne : & Second step 2006 : DYNI vs SOEST Hawai
- First results 2005 : (abandon US Navy)
i o | el
i o o i ¥
o o
N e — :‘/; 7
P W+ -y . ! /8P al;
o ‘ L 'w\""
* 4 whales localization without TDOA selection ... | #4 e ‘!'b'
12 13 14 15 18 17 i 19 -
* g .10t - .
Dyni (BLACK) VS SOEST (Hawai
Blue ( V> 100km/h )

2009 : final ONCET model (Stochastic Adaptive Filtering)

Demonstrations on line at :
PIMC-DYNI (rouge)
SOEST Hawai contenant des fausses détections

http://sabiod.univ-tin.fr/oncet
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Astrophysics meets bioacoustics
Run 3D tracking on NEMO

Lat:  37°32.681"N Depth: 2060 m
Long: 15*23773'E

Cabda 1o shom
ﬁ Nerth
110°

HZ/ 1 e
i RN
I IR
o

f

Haight from seabed :
" H1,HZ, Hé:~26m H:~3Zm

Array = Only 2 meters long

LSIS results : 15 august 2005 15h00, Sicile Est :
2PC dive together from -400 m to -1000 m in 5 minutes

=000,

[ Benard Glotin Applied Acoustics 2011]

Acoustic module  Hydrophones

Once deployed on the sea floor
the frame was connected to the
optical cable by a ROV
(Remotely Operated Vehicle)

We thank INFN, NEMO,
Ricobenne and
G. Pavan for the record samples

Application to fin whales on fixed recording in Toulon area...

Raw recording from a single
. hydrophone fixed on the OBS at
the sea bottom ~2500 m

e
e C)
1 —
Detection
processing

o

ik
'.'I|.-",'f:-l.-'If"'J"I"“T, "-"II|'|'-I__ i

o I I
as ||

S Ee E

TEmis =

04 06 08 1 12 14 18 18 2 22

Tima 04 06 08 1 12 14 16 18

High spectral density around 20 Hz

Wide band spectrum

Possibly rorqual sound emission Possibly sperm whale sound emission

l. Introduction

Il. Single hydrophone ‘ethoacoustics’
lll. 3D RT Single whale tracking by PA
IV. 3D RT Multiple whale tracking by PA
V. Classification by sparse coding

VI. Tracking by sparse coding

VII. Conclusion : Scaled Acoustic Methods SABIOD

Humpback whale song sparse coding :
exploring song components

* Humpback songs are structured, but most of their
decomposition algorithm are using a priori informations

* An usual way to determine recurrent pattern in a data
flow in an unsupervised manner is to cluster the data.
However the main drawback of k-means clustering is that
the centroids of each cluster may not cover all the space
and unfortunately not suit to the data.

* In this study we investigate the hypothesis of « subunit »
and we propose a method to automatically identify these
subunit components of the song.
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Humpack whale songs' structure : [ Payne 1970 ]

Two song spectrograms : mostly unit of one second.

=> Unit patterns last nearly .1sec
=> The dictionnary is learned on 1 sec.frame window.

Sparse Coding ?

= Sparse Coding (SC) : unsupervised dictionnary generated from the
complete data set

= SC may be more adapted to the differenciation of natural acoustic
sources

= Development of methods for selecting and classifying relevant
dictionnary atoms

=> Applications :
* Supervised classification of whales

* Discovering spatio-temporal / 4D behavior patterns for (un)known
species

Sparse Coding by Lasso and K-SVD

Why Sparse Coding ? : More discriminative
Better generalization for new data
Reduction of the reconstruction error

N
org uin 3~ i~ Deil? + il st el =1
and Data compression
—Each data vector x; is expressed as a c, linear

combination of a dictionary D of size K (only one
in usual K-means)

Accuracy [%]

SC vs state of the art :
SC improves automatic speech recognition

65

60 E

85 E

50 B

45 E
GMM systermn ————

a0 SC/SVM system —a—

10 100 1000 10000 100000

Dictionary size
[ Razik, Paris & Glotin, ICPRAM 2011 ]

Material

* Songs have been recorded at Hawaii (Lammers),
Tonga (Clark), Madagascar (Adam & Doh), Reunion
(Darewin), Guadeloupe (Adam), NewCaledonia
(Glotin et al., Bachet et al.)...

* Each set contains clear song sequences of at least
10min, 44 kHz
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Features extraction

* 13 MFCCs
— 10 ms frameshift,
— 32 ms frame length.

* N windows are concatenated to get the desired scale
(e.g. N=25 for 250 ms).

* On those vectors we :

— Learn Unsupervised Dictionary : one codebook of 1024
words

— Filter these words (units) according maximum quefrency
movement (articulation).

— Project the song sets using this codebook.

SPARSE MFCC CODE :
Samples of the 1024 words, some are coding sea noise

g - ifE
1 - @E i

Time per patch =250 ms , ordinata = 12 MFCC

CODE SELECTION : the 16 most 'articulated' words (units)
criteria : selected by gabor filtering

K- -

Time (50 windows)
322, 10 831, 10 110, 10

I

zlz, 3

B

953, 3

=

007,39 T3z, 9 761,39 154,13

The 16 most "articulated’ words
according to max variance in time and quefrency => whale ARTICULATIONS

Lo 1=1--1- 2 ]
wooMman

NO@MEN
El=1-1- 2

s1am w029 L3RE]

oo s

L=

WHALE SONG CLASSIFICATION (preliminary results)

Song representation : filter 16 'most articulated codes' : C1...C16
Considering vector of N word couples = [. C(i,t)... C(j,t')... ]

Build bigrams B(i,j) in a short time window ( 10 seconds )

Song = Histogram of bigram mean activity B(i,j) into time window 10 sec.
sim(Sp,Sq) = Cosine similarity between Sp and Sq representation

_~ 100% correct
Validation : — ~ classification

Songs classification by sites

Material :
Hawaii
Tonga
Guadeloupe
Madagascar
Reunion

2

% comedt classficalion on the 11 sampies.
] ]

3

Task :
20 files of few min, bt
5 classes

o ) a0 au 0 oo w2 140

& of considered Cougle of wonds (10
Submitted to JASA Razik et al.

Conclusion

* We presented an algorithm to create by unsupervised dictionary
learning a proto-lexicon of the song of the humpback whale.

* These representations are more generic than manual segmentation
* Different unit types have been learned on MFCC vectors.

* Long term units that are variously composing the songs from one
year to another may be extracted systematically

=> WORLD SCALE BIOPOPULATION ANALYSIS
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Perspectives

* Within this new song decomposition method, we find common
patterns through time (subunits) and discover song differences
considering long time units.

* By computing these features on different recordings through
several years, we expect to find more efficiently stable
patterns, and patterns hire between different whale groups.

* Our approach is naturally applicable to any marine mammals,
and will be tested on dophin whistles.

l. Introduction

Il. Single hydrophone ‘ethoacoustics’
lll. 3D RT Single whale tracking by PA
IV. 3D RT Multiple whale tracking by PA
V. Classification by sparse coding

VI. Fast Tracking by sparse coding

VII. Conclusion : Scaled Acoustic Methods SABIOD

Sparse coding for
Very fast TDOA
estimation
application to Hawaii

*1. Objectives
*2. Why and how to learn sparse dictionnary ?

*3. Sparse matching of Minke whale boings in Hawaii
*4. Time delay estimations

*5. Tracking results

*6. Conclusion and perspectives

Scaled Sparse Time Delay of Arrival estimations

on stereo recordings

Humpack Whales, Mad

recordings
Cosinus(SC(s1) ,SC(s2))

CrossCorr(sl, s2)

i Dictionary learned on s1 U s2

o!
] 2 ] ] . " ] ] 4 . ] 0

meins e

[ Hervé GLOTIN - Joseph RAZIK - GIRAUDET Pascale - Sébastien PARIS - Frédéric BENARD Sparse coding for fast minke whale tracking with Hawaiian bottom
mounted hydrophones" , International Workshop on Detection, Classification, Localization & Density Estimation of Marine Mammals using Passive Acoustics,
Portland, USA, supported by ONR Dpt of the Navy & Acoustical Society of America (454) ]

Objectives

*We propose in order to process efficient detection of minke whales
(Balaenoptera acutorostrata), a sparse coding of their boings vocalizations.

*This sparse coding confers several advantages : it makes the structure in natural
signals explicit and it represents complex data

*More generaly, 11-norm yields to robust Time Difference Of Arrival (TDOA).

Recently Yuanqing Lin has described a l1-norm sparse Bayesian learning for
acoustic blind channel identification and provides dramatic improvement
dereverberation and TDOA estimation in reverberant environments compared to
conventional methods.

*Therefore we compute the projection of a MFCC vector into a sparse coding
representation, which allows good properties for similarity computation.

Why Sparse Coding ?

¢ Sparse coding minimizes the reconstruction
error and allows good generalization for
undetermined data.

* No need for any knowlege on the target (the
boing) : the Sparse coding shall reconstruct in
priority the frequent and high SNR events
(e.g. the boings).

O We aim first to show that sparse coding will
infer a simple boing matching process.

O Autocorrelation may give similar matching

i patterns, but our sparse vector representation
[ < will allow very fast cosine similarity
o e computation
= F:
" —

v 42}

Duration ~ 2 secondes
Sample of boing (from Rankin and al.)
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Features for minke boings detection

* 13 MFCCs
—C0to Cl12
— 20 ms frameshift
—32ms FFT
* 5 window length : 1/4, 1/2, 1, 2, 4 seconds

* Concatenation of the 5 vectors in one vector of 65 dimensions
(non sparse).

Sparse projection of the MFCC

* On those 65 dim. vectors we :

— Learn Unsupervised Dictionary : one common codebook of
1024 elements over the four hydrophones records and the
three sets NN26, NN27, NN28 (4*30 minutes)

— Project each hydrophones records using this codebook.

— The resulting representation is very sparse : only 10% of the
1024 dimensions are non null.

— This property allows relevant similarity measure between
each projected signal window on different hydrophones.

Time Delay Estimation

BI c The cosine similarity measure (def.)
A
cos(A,B) = (A .B)/(lIAll.[BI),

here cos(A,B) = 0 < cos (A,C).
Higher the cosine is, the more the vectors are similar.

The multidimensional cosine between two hydrophones
acoustic matrices, is very efficiently computed on parallel
processing (much faster than correlation) :

allcosines( h1, h2 )= (H1*H2" )/ (norm(H1’) * norm(H2)) ,

where Hi is the matrix of the 1024 by 10 minutes frames,

* is the matrix product,
norm(Hi) is the L2 norm of each frame vector of Hi.

Time Delay Estimation

We compute the cosine between each vector pair from hi and hj
This representation allows a global analysis (far echoes...)
We figure out in red the 0 delay diagonal.

‘ Similarities in (h1,h2) Hawaiin data of 10 minutes (NN26, frame shift 20 ms) ‘

0 echoes

The periodic

T global pattern

3 Is due to

é reflection

z Regularities.

>

i We will only
consider maxima
near the diagonal.

0 Hydrophone 3 10 min

Time Delay Estimation

Zoom inside the map...

| auoydoipAH

0 Hydrophone 3 10 min

Zoom of this map between h1 and h3
zoom to 1 minute, after 5% superior quantile selection to remove the

background noise

We see clearly some local maxima
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We get clear « kernel » patterns
that have the duration of the
boing sounds (= 2 sec).

The maximum of each kernel are measured

iteratively to get the times on h1, h2 Then : ;

Zoom of h1lh3 map to 10 secondes

=k

Conclusion

* We efficiently matched, through cosine of sparse projections,

and without any target knowledge, the minke boing
sounds.

* We got clear boing detection on hydrophone pairs.

These TDOA generated straightforward coherent track with
correct speed.

* Another set of TDOA has been detected (a second minke
whale ?).

We work further on that question.

* Perspectives : we will process our algorithm in the whole array

Time Delays Of Arrival Estimations
We extract 14 TDOA over these 30 minutes,
between h1,h3,h4,h6

TDOA between selected times of arrival

1
A a
a a & PN a & & a
osf E
- Bt
ol o wu| |
= A st
=
g
=}
05| i
o
o
o
o o o o o
o o o
At 2
- - -
-
- - -
. - -
15 — —
o 5 10 15 20 25 30

t (mn)
=> Coherent and regular variations

and consider virtual hvdrophones.

l. Introduction

Il. Single hydrophone 'ethoacoustics'
lll. 3D RT Single whale tracking by PA
IV. 3D RT Multiple whale tracking by PA
V. Classification by sparse coding

VI. Fast Tracking by sparse coding

VII. Conclusion : Scaled Acoustic Methods
http://sabiod.org ... join us in the SABIOD project !

Global framework

analysis -—

Populstion & Migration dynamic I

LSIS PIMC framework since 2006 (Pole Mer PACA —
SABIOD proiect Glotin htto://sabiod.ora )

- Ethoacoustic patterns extracted from SC statistics
- Biodiversity indexing may be easier based on SC
- 3D tracking may be accelerated using SC representations...

- Scaled detection and sparse decomposition

'Physeter catodon localization by sparse coding',
Paris, Glotin, Doh, Halkias, Razik, Workshop on Machine Learning for Bioacoustics,
ICML4B, Atlanta 2013

- Whale localisation from SC

'Sparse coding for large scale bioacoustic similarity function’,
Glotin, Razik, Paris, Halkias, POMA 19, 010015 (2013)
Report / paper available at http://sabiod.org

' Sparse coding for scaled bioacoustics: From Humpback whale songs evolution to forest
soundscape analyses' H Glotin, J Sueur, T Artiéres, O Adam, J Razik,
The Journal of the Acoustical Society of America 133 (5), 3311-3311

- Individual signature from SC of calls or transient
'Humpack sparse coding for group or individual identification’,
Razik, Glotin, Paris, Adam, Doh, sub. in JASA
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Example of scaled projects in SABIOD.ORG :
ONCET Online Cetacean Tracking,

Bombyx sono buoy,

ANTARES Neutrino & Bioacostics.

Tested on NEMO (see IV)
Wait for ANTARES data

Perspective : toward the Turing test

'Human' speech automatic processing was one of the first target of
Artificial Intelligence

From the Turing test to a Bioacoustic Turing test ?
« Could an animal communicate with a computer ? »

If so, which patterns are conveying the information ?
How do animal learn them from so few samples ? (see Zebra Finch...)

Would this Bioacoustic Turing test be a mean to study causal inference
in perception, and Artificial Intelligence ?
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Join us to Scaled Bioacoustic Plateform: SABIOD.ORG

SABIOD

Scaled Acoustic BIODiversity platform

Home Biozcoustic signaling is & primary mode of communication and exploration for most of the
animals. It enables quick load and transfer of information without any visible contact with
the target, tackling the reduced visibility of deep forest (insect, frogs, birds, mammals...),
cave or night activities (insects, bats), and/or the long distances like in ocean (krill, fishes,
whales...). Bioacoustics is also one of the factors in optimizing natural selection, playing a
ICML 2013 Workshop significant role in signalling resource qualities to potential partners. Tne SABIOD project
aims to detect, cluster, classify and index bioacoustic big data in various ecosystems, at

Data Sarmples different space and time scales, in order to reveal informations on the complex
sensori-motor loop, and on the health of an ecosystem, yielding to new biodiversity insights.

NEW: Bloacoustic
Workshop @ NIPS,
Nevada, dec. 2013

Online CEtacean Tracking

NEWS:

- Int workshop Neural Information Scaled to Bloacoustics (joint to NIPS 2013) 10th dec -
Media  deadline ext. abstract 13th oct.

- IEEE ATSIP'14 |ast CFP - Special session on Bloacoustics Int. conf. on Ac. Tech. for Signal &
Image Processin

Team

Contact
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3.3 Classification of Mysticete Sounds using
Machine Learning Techniques

Halkias X., Paris S., Glotin H. - CNRS LSIS, USTYV, Toulon, FR

Classification of mysticete sounds has long been a challenging task in the
bioacoustics field. The diverse nature of the signals due to the inherent variations as well as
the use of different recording apparatus and low Signal to Noise Ratio conditions, often lead
to systems that are not able to generalize across different species and require either manual
interaction or hyper-tuning in order to fit the underlying distributions. This talk presents a
Restricted Boltzmann Machine (RBM) and a Sparse Auto-Encoder (SAE) in order to learn
discriminative structure tokens for the different calls, which can then be used in a
classification framework.
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Outline

Classification of Mysticete Sounds using Sparse
Architectures

LSIS/DYNI

12/10/2013
JABIGD...

X. C. Halkias, S. Paris, H. Glotin
NIPS4B, 10 December 2013, Lake Tahoe, NV, USA

LSIS/DYNI

Background: Mysticete Species Recognition/Classification

Overview
Goal
Automatic Classification of 5 different Mysticete species
vocalizations.

Mysticete species: Blue whales, Humpback whales, Bowhead
whales, Fin whales and Southern Right whales.
Applications
m Off-line analysis:
m Big-data problem: Indexing/Archiving/Detection improvement
of multiple, large recordings.
m On-line analysis:

m Real-time monitoring: Navigation/Preservation (endgrﬁeéei
@D ox

speC|es)/M igration patterns B i ookt
Mao0INs B Dats

X. C. Halkias, S. Paris, H. Glotin
NIPS4B, 10 December 2013, Lake Tahoe, NV, USA

LSIS/DYNI

Background: Mysticete Species Recognition/Classification

Mysticete sounds Il

T

Figure: Range of: Southern Right, Humpback, Bowhead, Blue, Fin whale

SABI@D.x
Figure: Ground truth distributions for mysticete specieéﬁo

Mastogens Big Dats

X. C. Halkias, S. Paris, H. Glotin LSIS/DYNI

NIPS4B, 10 December 2013, Lake Tahoe, NV, USA

Background: Mysticete Species Recognition/Classification

Methodologies
m Methodologies: Restricted Boltzmann Machine (RBM)
m Methodologies: Sparse Auto-Encoder (SAE)
m Methodologies: Classification with Softmax Regression

Experimental Results
m Experimental Results: Data
m Experimental Results: Classifying within a frequency range
m Experimental Results: Classifying all species

Conclusions

SABI&D.ox

Sesied Aisnaticn Besdmerady
Mastodens Big Dats

X. C. Halkias, S. Paris, H. Glotin
NIPS4B, 10 December 2013, Lake Tahoe, NV, USA

LSIS/DYNI

Background: Mysticete Species Recognition/Classification

Mysticete sounds |

Figure: Left to right: Southern Right, Humpback, Bowhead, Blue, Fin

whale
Species ROI Duration Fs Freq. Range
Southern Right Whale 130min 8kHz  50-1500Hz
Humpback Whale 55min 4kHz  150-1700Hz
Bowhead Whale 84min 4kHz 110-
Blue Whale 378min 100Hz 15-18F ...‘IW?R;'.’.':
Fin Whale 162min 100Hz - 15-30Hz -~

X. C. Halkias, S. Paris, H. Glotin
NIPS4B, 10 December 2013, Lake Tahoe, NV, USA

LSIS/DYNI

Background: Mysticete Species Recognition/Classification

Existing methodologies

m Region of Interest (ROI) detection
m Feature extraction
m Auditory perception features, spectrograms, freaquency
contours, cepstral coefficients etc.
m Classification
m Single-species: Boosting of true positive rates (TPR) for single
species detection/2 class problem species vs. noise
m Multiple-species: Multiple species recognition in noisy
environment/ multi-class problem
m Ground truth limitations (experts), supervised approaches

(SVM, ANN, RFT, HMM etc.) SABI&Dow

Semied Aisnaticn Besdmerady

X. C. Halkias, S. Paris, H. Glotin
NIPS4B, 10 December 2013, Lake Tahoe, NV, USA

LSIS/DYNI
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Methodologies

Our approach

Methodologies
[ lele}

Methodologies: Restricted Boltzmann Machine (RBM)

Feature extraction - RBM |

m Assume ROI detected
m Feature extraction

m Learn features for the different species in an unsupervised way
m Optimize the extracted features by using sparsity

m Classification

m Classify features in a multi-class framework using a supervised
approach

SABI@GID.x

X. C. Halkias, S. Paris, H. Glotin
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LSIS/DYNI

Methodologies
o] le}

Methodologies: Restricted Boltzmann Machine (RBM)

Feature Extraction - RBM |l

m Training with Gradient descent (GD)
Odlogp(x) __ ,OEg(x",h) dEg(x,h)
T 00 (% —(Taa " )x

m Update equations using Contrastive Divergence (CD)

N
Aw,; = ﬁ > x"p(h; = 1x") — x"p(h; = 1|]x")
=1

Abi = X plx? = 11h) (57 = 1)

=3

Mz

D=4 3 plhy = 1x") — p(h; = 1)

I
-

SABI@ID.

Semied Aisnaticn Besdmerady
Mastogens Big Dats
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Methodologies
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Methodologies: Sparse Auto-Encoder (SAE)

Feature extraction - SAE |

Architecture Equations

o(23) = W@al 4 p@

hw b(x) = a®® = 0(2(3))

SABI@GID.x
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Architecture Equations

Exh)

p(x,h) =

p(xi = 1lh) = o(b; + 3_; hjw;;)
p(hy = 1|x) = o(a; + 3, xiwy)

p(xIh) =TT p(xi]h)

p(hlx) = T p(hy/x)
J
SABIGID.~
Eg(x,h) = -1, j= 7y xihjwi — Y1 bixi — ZJJ 19}"‘““”’“mm -
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Methodologies
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Methodologies: Restricted Boltzmann Machine (RBM)

Feature Extraction - RBM Il

m Sparsity: Weight decay
J(W,b,a; x) = —logp(x) +
N

AWJ' =

31w

L5 xp(hy = 1x") — %p(h = 15") + Aw,
n=1

m Gaussian input units

J
(xi=bi) B
Ee(xh)—*Z Zhwu Z — 2. ajhj
i= i=1 i j=1
m Normalize data to have zero mean and unit variance
m Allow for real valued signals i.e. natural scenes, cepstral

coefficients etc. SABI&D.-

Semied Aisnaticn Besdmerady
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Methodologies
oeo

Methodologies: Sparse Auto-Encoder (SAE)

Feature Extraction - SAE I

m Training with Gradient descent (GD)

J(W, b;x) = 3[[hwp(x) — x|
m Update equations
Aw) = Z Vo JWO b0); x()

n=1

m Compute gradients via backpropagation
Vo J(W, b; x) = 60 (aM)T
Vb(l)J(W, b; x) — 5U+1)
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Methodologies

ocoe

Methodologies: Sparse Auto-Encoder (SAE)

Feature Extraction - SAE Il

Methodologies

L)
Methodologies: Classification with Softmax Regression

Classification - Softmax Regressor

m Sparsity: Weight decay
J(W, b;x) = %th b(x) = x| +

z Vv JWO, bO; )]+ AW

3IwIi3

AW =

m Sparsity: Kullback—LlelbIer Divergence
e = 43 KL(ol6)

m Penalize activations based on a constant/constrain hidden
units

m Incorporate into backpropagation for gradient compugig
1@Dox

oRT
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Experimental Results

Overview

m Data (5 Mysticete species) and ground truth from
Mobysound.org!
m Prior information: Classifying within a frequency range

m Classifying with a noise class
m Classifying without a noise class

m No prior information: Classifying all species

m Classifying with a noise class
m Classifying without a noise class

SABI@GID.x

Mastoasns 84 Daca

1http ://www.mobysound.org/
X. C. Halkias, S. Paris, H. Glotin
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Experimental Results
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Experimental Results: Classifying within a frequency range

Blue vs. Fin Whale

Blue/Fin - RBM Blue/Fin - SAE

SAE/RBM(%) - Actual Value

Predicted Value Blue Fin
Blue 93.42/96.25 2.63/1.20
Fin 6.58/3.75  97.37/98.80

Table: Confusion matrix for Blue and Fin whale using the SAE
architectures

X. C. Halkias, S. Paris, H. Glotin LSIS/DYNI

NIPS4B, 10 December 2013, Lake Tahoe, NV, USA

Architecture Equations
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Experimental Results
L[]

Experimental Results: Data
Data and pre-processing

m Assume extraction of Regions of Interest (ROI)
m ROI: Detected box areas in spectrogram that include calls
m Common ground truth format

m Extract 5000 random patches from ROl and 5000 from noise
m Normalize patches: zero mean, unit variance
m Feature vector: 1600x1 scaled and normalized patch

Figure: Sample patches(x-axis, y-axis: bin number). Left to ”gﬁAB...‘IW?Ef:‘
Southern Right, Humpback, Bowhead, Blue and Fin. o= o
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Experimental Results
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Experimental Results: Classifying within a frequency range

Blue Whale vs. Fin Whale vs. Noise

SAE/RBM(%) - Actual Value

Predicted Value Blue Fin Noise
Blue 92.85/93.67  1.66/1.66 2.52/2.71
Fin 1.50/1.19  90.10/90.69 3.20/2.92
Noise 5.65/5.14 8.24/7.65  94.28/94.37

Table: Confusion matrix for Blue whale, Fin whale and noise using the
SAE and RBM architectures
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Experimental Results

008000

Experimental Results: Classifying within a frequency range

Overall results: Blue and Fin whales

Experimental Results: Classifying within a frequency range

Bowhead vs. Humpback vs.

Experimental Results

000800

Southern Right Whale

Blue/Fin

Model Classification Accuracy
SAE 95.40%
RBM 97.50%

Blue/Fin/Noise
Model Classification Accuracy
SAE 92.88%
RBM 93.26%

Table: Classification accuracies for species within the same frequency
range with and without a noise class using the SAE and RBM
architectures SABI'@DM
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Experimental Results: Classifying within a frequency range

Bowhead vs. Humpback vs. Southern Right Whale vs.
Noise

SAE/RBM(%) - Actual Value
Pr. Value S. Right Humpback Bowhead Noise
S. Right 77.89/75.69  6.58/5.62 2.49/2.58 3.02/2.62
Humpback ~ 4.23/2.34  28.84/27.77 4.03/414  472/4.95
Bowhead 1.39/0.81 3.82/3.13  13.68/13.19  4.37/4.47
Noise 16.49/21.16 60.76/63.48 79.80/80.09 87.89/87.95

Table: Confusion matrix for Southern Right whale, Humback whale,
Bowhead whale and noise using the SAE and RBM archﬁecturSABII@D
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Experimental Results: Classifying all species

All species

All species - RBM All species - SAE
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LSIS/DYNI

Bowhead /Humpback/South.R -

Bowhead /Humpback/South.R -
SAE
e e

SAE/RBM(%) - Actual Value
Predicted Value South. Right Humpback Bowhead
South. Right 83.70/85.26  11.00/9.63 4.74/7.69
Humpback 7.99/6.20 61.20/58.09 15.95% 1&D
Bowhead 8.31/8.54  27.80/32.28 79.31 z“mm;x&?..fﬁf
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Overall results: Bowhead vs. Humpback vs. Southern

Right Whale vs. Noise

Bowhead/Humpback/Southern Right

Model Classification Accuracy
SAE 74.75%
RBM 73.30%

Bowhead/Humpback/Southern Right/Noise

Model Classification Accuracy
SAE 63.73%
RBM 63.16%

Table: Classification accuracies for species within the same frequency
range with and without a noise class using the SAE and RBM SABI@D

architectures
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All species and noise
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All species and noise - RBM
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All species and noise - SAE
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Experimental Results
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Experimental Results: Classifying all species

Parameter tuning

Overall results: All species and Noise
Bowhead /Humpback/Southern Right/Blue/Fin Model Parameter Value
Model Classification Accuracy SAE/RBM/Softmax _ Weight-decay A 0.003
SAE 79'540/" SAE Sparsity o 0.05
REM 80‘684’ _ ; SAE Sparsity weight 3 3
Bowhead /Humpback/Southern Right/Blue/Fin/Noise SAE/RBM Hidden Units 200
Model Classification Accuracy SAE /Softmax GD lterations 300
;/EEM 69402? RBM CG lterations 500
68.90
° Table: Values of hyper-parameters.
Table: Classification accuracies
SABI@DW SABI@DW
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Closing thoughts

Important variables

Hidden units m Automatic classification for mysticete sounds for
indexing/labeling
m Multi-class task for species recognition

Patch size
m Input space dimensionality m Feature space
dimensionality

m Semi-supervised approach

e N
."I m RBM/SAE unsupervised methodology for feature extraction
i m Sparse constraints for discriminative features
: f'l = m Features identify salient call structures
- ; \\\‘ m Extension for both detection and classification
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4.1 ConvNets & DNN for Bioacoustics

Yann LeCun - New York University, USA

Intelligent perceptual tasks such as audition require the construction of good internal
representations. Theoretical and empirical evidence suggest that the perceptual world is best
represented by a multi-stage hierarchy in which features in successive stages are
increasingly global, invariant, and abstract. An important challenge for Machine Learning is
to devise "deep learning" methods for multi-stage architecture that can automatically learn
good feature hierarchies from labeled and unlabeled data. A class of such methods that
combine unsupervised sparse coding, and supervised refinement will be described. We
demonstrate the use of these deep learning methods to train convolutional networks
(ConvNets). ConvNets are biologically-inspired architectures consisting of multiple stages
of filter banks, interspersed with non-linear operations, and spatial pooling operations,
analogous to the simple cells and complex cells in the mammalian auditory cortex. A
number of applications will be shown.

The full talk is available on line at http://sabiod.univ-tln.fr/nips4b/
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4.2 Mapping functional equations to the topology
of networks yields a natural interpolation
method for time series data

Lars Kindermann Achim Lewandowski
Alfred Wegener Institute Austrian Research Institute
for Polar and Marine Research for Artificial Intelligence
Bremerhaven, Germany Vienna, Austria
lars.kindermann@awi.de achim@oefai.at
Abstract

Typically machine learning methods attempt to construct from some limited
amount of data a more general model which extends the range of application be-
yond the available examples. Many methods specifically attempt to be purely
data driven, assuming, that everything is contained in the data. On the other
hand, there often exists additional abstract knowledge about the system to be
modeled, but there is no obvious method how to combine these two domains. We
propose the calculus of functional equations as an appropriate language to de-
scribe many relations in a way that is more general than a typical parameterized
model, but allows to be more specific about the setting than using an universal
approximation scheme like neural networks. Symmetries, conservation laws,
and concepts like determinism can be expressed this way. Many of these func-
tional equations can be translated into specific network structures and topolo-
gies, which will constrain the possible input-output relations of the network to
the solution space of the equations. This results in less data that is necessary for
training and may lead to more general results, too, that can be derived from the
model. As an example, a natural method for inter- or extrapolation of time series
is derived, which does not use any fixed interpolation scheme but is automatical-
ly constructed from the knowledge/assumption that the data series is generated
by an underlying deterministic dynamical system.

1 Introduction

To interpolate data which is sampled in finite, discrete time steps into a continuous signal e.g. for
resampling, normally a model has to be introduced for this purpose, like linear interpolation,
splines, etc. In this paper we attempt to derive a natural method of interpolation, where the correct
model is derived from the data itself, using some general assumptions about the underlying process.
Applying the formalism of generalized iteration, iteration semigroups and iterative roots from the
mathematical branch of functional equations, we attempt to characterize a method to determine if
such a natural interpolation for a given time series exists and give a method for it’s calculation, a
formal one for linear autoregressive time series and a neural network approximation for the general
nonlinear case.

Let x, be an auto regressive time series: x, = f(x,_,x,_», ...,x,_,) +¢&,. We will not deal here
with finding f, i.e. predicting the time series, instead we assume f is already known or already
approximately derived from the given data. We will attempt to embed the discrete series of x,
t = 0,1,2, ... into a continuous function x(¢), t € R .To clarify the idea we present the method
at first for the case that the timeseries is generated totally deterministically (g, = 0) by an underly-
ing autonomous dynamical system. Later we will consider the influences of additional external
inputs and noise.
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The time evolution of any autonomous dynamical systems is represented by a solution of the trans-
lation equation [1],

DO(xp, t; T 1) = O(D(xy, £1), 1) (1)

where x, is an state vector representing an initial condition and ¢,, 7, are arbitrary time intervals.
For continuous time dynamical systems this equation holds for every positive ¢. If we assume that
the given time series is a discrete time sampling of an underlying continuously evolving signal, we
have to solve (1) under the conditions ®(x, 0) = x and ®(x, 1) = f(x), where f is the discrete
time mapping represented by the data. (Without loss of generality we can assume the sampling rate
of the discrete time data to be one, which will result in a nice and very intuitive formalism.)

To double the sampling rate for example, (1) becomes f(x) = CD(CD(x, %), %) .

Substituting ¢(x) = @(x, %) we get o(@(x)) = f(x), the functional equation for the iterative root
of the mapping 1 [3].

By introducing the formal notation ®(x, ¢)=f t(x) the connection to iteration theory becomes
clearly visible: Time evolution of discrete time systems can be regarded as the iteration of a time
step mapping function (iterative map) and this concept extends to continuous time dynamical sys-
tems by means of generalized or continuous iteration, allowing for non-integer iteration counts.
The following mathematical problems appear [3,4]:

» For a given function f, does there exist the iteration semigroup f ! 2,
¢ Is the solution unique?
* How to calculate it explicitly or numerically.

To apply this theory, usually x has to be a complete state vector of the dynamical system. This
means that /" has to be a function of the last state only: x, = f{x,_;). When f also depends on
earlier values of the time series x, _,, ..., x,_, , there must be some hidden variables. In order to
obtain a self-mapping we introduce the function F: R” — R" which maps the vector

X, = [xt_ ” ...,xt_n] to X, = [xt,xt_ P X (- 1)}

with x, = f(xt7 1 Xp_ 25 wees Xy n) . Except for the first element this is a trivial time shift operation,
each element of X is just replaced by its successor. But because F is a self mapping within a » -
dimensional space now, time development can be calculated by iterating /' and we can try to find
the generalized iteration with non-integer iteration counts to find a time continuos embedding F ,
the continuous iteration semigroup of F and extract a function x(¢) from this [2].

2 Linear Case

The idea is best demonstrated for the linear case, where it’s application simplifies and unifies sev-
n

eral problems. For a linear autoregessive time series AR(n) model with x, = Z apx,_,, the

k=1

mapping F can be written as a square matrix F =
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with the coefficients @, in the first row and the lower subdiagonal filled with ones. Then we can
compute ¥, = F - ?ct_ | and the discrete time evolution of the system can now be calculated using

. n
the matrix powers X =F -X

t+ t—1"

This autoregresswe system is called linear embeddable if the matrix power F' exists also for all
real £ € R . This is the case if F can be decomposedinto F = S-A4-S  with 4 being a diagonal
matrix consisting of the eigenvalues A; of /" and § being an invertible square matrix which col-
umns are the eigenvectors of /. Additionally all 2.; must be non-negative to have a linear and rea/
embedding, otherwise we will get a complex embedding.

00
Then we can obtain F* = S-4'-§ ' with 4' = 0 ... 0
002

. . N AN . . .. . .
Now we have a continuous function X(7) = F" - X and the interpolation of the original time series
x(t) consists of the first element of % .
n

In case there is also a constant term, i.e. the mean is not zero, x, = z agx,_, +b,we just have to

append a constant one to all the vectors %, = [xt, X s X (1) 1]

apa, ... a,

1 00O
and take F = 01000

00100

100 0 01
A sgemal case is F , the square root of a matrix, which solves the matrix equation
F'2.F"? = F_ 1t resembles the iterative root of linear functions and corresponds to a doubling

of the sampling rate.

A few lines of Maple code can automate this procedure both for symbolic and numeric expressions.
A sample worksheet is available at the authors web page.

3 Examples

We will now provide some simple examples to demonstrate this formalism.

3.1 One dimensional linear case

The time series given by some x, and x, = 2x,_, simply doubles every time step. The natural
interpolation we immediately get by applying the former formalism in the trivial one dimensional
case is x(t) = 2tx0, which is of course exactly what we expect: exponential growth. But a little
change makes the problem much more difficult: If x, = ax, | +b we expect a mixture of constant
and exponential growth, but what is the exact continuous law?
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Take %, = [x,, 1] then the series is generated by F' = L) Ij . We get immediately by eigenvalue

S

1 1 0
decomposition x(z) = Ft)%o = SA’{IJ%O = 10 {xo}
1-a t 1
0 0 a 1
b

—_
S|
S

[

S

t
and for the first component x(¢) = a'xo+ bE—
a@—

11 (which equals ax, + b for t —1).

We don’t have to consider about stability or stationarity of the AR(1) model here but note that to
obtain a completely real valued function x(¢), a has to be positive. Later we will discuss about the
meaning of such cases with complex embeddings, but for short it means that there is no one-dimen-
sional continuous time dynamical system that can generate such timeseries. In the linear case this
should be clear because a negative a implies oscillatory behavior of x(#) . This means, some initial
condition x;, won’t be enough to determine the continuation of the trajectory, it could be on the ris-
ing or falling slope. The underlying dynamical system needs to have one more hidden dimension to
allow embedding. The other dimension can be represented by the imaginary part of x(#) which will
vanish at all integer times ¢. But taking only the real part will still result in a valid interpolation of
the given series, the observable of the system.

This is such an embedding of the AR(2) process x, = — lx + lx l with x, = x; = 1.

t 27t-1 " 37t- 2 2 0 1

Circles mark the time series x,, the left graph shows the real part of x(¢) , our natural interpolation,

the imaginary part is on the right.

14
094

. A s
” Y VVY

0.4

0.2

03]
0 2 4 6 8 10 12 14 16 18 20

Figure 1: Embedding of an AR(2) process

3.2 Two dimensional linear case

The well known Fibonacci series x, = 0, x; = 1, x, = x,_| +x,_, can be generated in this

manner by F = [l 1} and X, = [1, 0]. By eigenvalue decomposition of F* we get
10

| LB LB (B o % %*Lf 1
A _ t; — tf; _ 2 2 2 5 2 5
X, 1 =Fx =848 x = w11 | {O}
VA 1 I S S
! ! 0 ( 2 ) J52 2.5
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which turns out to evaluate exactly to Binet’s famous formula for the Fibonacci series in the first

component x, = 71_5[(1 +24/§)t7 (1 —Zﬁ)? [5].

Because the second eigenvalue is negative, a real linear continuous time embedding does not exist
and x(¢) takes complex values on non-integer x . Figure 2 shows real and complex part of x(¢) .

50 0.2
10 0.1+
[ t-e 8 10

307 o
01]
m_
02]
10
03]
0 2 4 6 8 10

Figure 2: Embedding of the Fibonacci series.

4 The Nonlinear Case

So far we considered only linear dependencies of the past f which could easily be mapped to
matrix expressions. The problem becomes much more complicated if we allow for arbitrary f.
Even for one dimension this cannot be solved analytically in the general case, so we use neural net-
works to compute approximations for fractional iterates of arbitrary functions [7].

4.1 One dimensional nonlinear systems

The general solution of the real valued translation equation ®(x, tl Tty = (D(CD(xO,t ), t5)
O:RxR— R with @ being continuous and strictly monotonic in x and ¢ is given by
D(x,1) = ¢ ((p(x) +¢). If the discrete time mapping ®@(x, 1) = f(x) is given, this is Abel’s
functional equation f{x) = ¢ (@(x)+1).If / has a fix point this can further be transformed to
Schroder’s functional equation f(x) = @ (c@(x)), the eigenvalue problem for nonlinear func-
tions. In those cases when either of these equations can be solved for the unknown function ¢, it is
immediately possible to obtain the embedding by f (x) @ ( o(x)+1) [2]

This can be easily solved for example in the linear case: If we take x, = ax,_, and initial value x,
the time step mapping is f{x) = ax, we get the Abel type functional equation

=¢ (p(x)+1) or (ax) = ¢(x)+ 1, which is solved by ¢(x) = log, x. So we get for the
continuous embedding the expected result again, exponential growth

t log, x,+ ¢ t

f(x)=a = xpa .
However, this analytical method is limited to a small selection of functions and it can be shown that
there exist embeddings for a much wider range of mappings which cannot be calculated analyti-
cally yet. Furthermore the theory so far is developed mainly for real or complex valued functions,
solving Abel or Schrdder type functional equations in higher dimensions is currently for the general
case beyond reach.

But simple neural networks can be used to find precise approximations for those embeddings [7,8].
The basic idea is to use a MLP with a special topology which approximates f{x).To compute the
fractional iterate f " we use a network that consists of 7 subnetworks in a row with pairwise
identical weight matrices. The use of special training algorithm allows to perform the function
approximation with the whole network and keep the subnets identical at the same time [9]. The
fractional iterate of the function can be read out after the m-th subnet.
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Figure 3: MLP for computing fractional iterates.

4.2 Multidimensional nonlinear system

We took a time series of yearly snapshots from a discrete non linear Lotka-Volterra type predator -
prey system (x = hare, y = lynx) as training data.

Y1 = (LTa=by)x,
Vigp = (I—ctdx)y,

From these samples only we calculated the monthly population by use of a neural network based
method to compute iterative roots and fractional iterates with a pseudo newton algorithm [9].

This figure shows the yearly training data as circles and the interpolated monthly values. Addition-
ally the forecasted values for the next 12 months are shown, together with the true value after one
year which was excluded from model fitting.
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Figure 4: Embedding of a Volterra type system.
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The given method provides a natural way to estimate not only the values over a year, but also to
extrapolate arbitrarily smooth into the future.

5 Discussion and Outlook

The method demonstrates that there is a close relation between prediction and interpolation. A nec-
essary condition for the existence of a natural interpolation of a time series is predictability. If there
are random influences and we require that the values x(¢) coincide with x, for integer ¢, we can
still use the embedding function to get a near fit and add an additional interpolation method for the
residuals x,—x(¢) . This has again to be selected freely of course, but it minimizes the amount of
arbitrariness involved in interpolating.

Another problem are impossible embeddings. Take x, , | = 4Ax,(1 —x,), the iterated logistic map,
which is a favorite textbook example for the emergence of chaotic behavior within a simple dynam-
ical system. However, this is a discrete time system, so the question should arise naturally if it is
possible to embed the x, into continuous trajectories x(#) which now obey the functional equation
x(t+1) = 4xx(¢)(1 —x(¢)) for any non-integer ¢. Or even more general, is there any continuous
time system that takes the same values at integer times? Iteration theory proofs that the answer is no
if A>3/2 [6], but this could be expected also by the theorem of Poincare-Bendixon, which
implies that chaotic behavior is impossible in continuous time systems of less than three dimen-
sions. To obtain a continuous embedding of this series, we had to introduce some hidden dimen-
sion, like allowing complex values for x, in iteration theory these generalized solutions are called
phantom roots of functions [1]. In neural networks this could be accomplished by introducing addi-
tional hidden nodes, allowing to address the general embedding problem.
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Abstract

We aim to allow whale monitoring and anti-collision system using single hy-
drophone. We then propose a new model to estimate the range from wideband
signals such as clicks emitted by odontocetes. We demonstrate that it is possible
to link the intrinsec distorsion of the signal with the distance of the acoustic path.
We provide different models to establish the relationships between the signal en-
ergy and propagation distance. We deal with different energy scales: the global
received energy of the signal, the frequency bands energy and frequency bin
energy. We then demonstrate that intermediate prediction of the whale orientation
enhances the distance estimation, yieding to only 6 % of relative error rate.

1 Introduction

Passive acoustics is one of the best ways to enhance the knowledge of marine mammals emitting
sounds trough various tasks: detection, classification, localization and density estimation. 3D whales
localisation is mostly achieved using hydrophone arrays. Although these methods have been em-
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ployed successfully for this task on mysticetes [6] and odontocetes [1, 3] with a high level of accu-
racy, they require the use of heavy and expensive hardware. Despite of the information loss, using
a single, light and cheap hydrophone device, quick to deploy, could provideettessary data to
satisfy certain applications such as mobile listenning point and anti-collision system where a simple
range estimation is sufficient. Therefore, in this paper, we decided to focus on single-hydrophone
methods. Theoretically, it is possible to use the virtual hydrophone framework and the acoustic
property of the water column in order to estimate the position of the whale [4, 7, 5]. This technique
involves the acquisition of the direct acoustic path, the bottom reflection and the surface reflec-
tion. However, in practice, we often observe only a subset of the needed information. The above
mentioned constraints led us to find a new model of range estimation applied to wideband signals
such as clicks emitted by odontocetes. Specifically, this paper applies the proposed model on sperm
whale recordings. In order to focus on range estimating in this first approach, and to avoid source
separation problems, we choose to deal with single animal recordings.

It is well known that sound attenuation depends on frequency and propagation distance [8, 9]. The
attenuation impacts the total energy and generates a distortion of frequency representation in the
emitted signal that we can link to the distance between source and receiver. Madsen et al. in 2002,
put forward the variation of the centroid with the distance et suggest a low pass effect provided by
the acoustic propagation [18].

In this paper, we try to establish the expression of the relationship between the signal energy and
propagation distance by an empirical model based on a neural network and by the theoretical model
Inter-Frequency Attenuation (IFA) [10, 11].

Real data and their associated ground truth [3, 12, 13, 14], will allow us to develop this model by
optimizing a few but important parameters. Also, an independent partition of the data will be useful
to test the ability and limits of the proposed estimator.

2 Motivation

2.1 Therelationship between thereceived signal and loss by transmission

Our goal is to extract information regarding the propagation distance, from the observed signal from
a unigue hydrophone. The relationship between Transmission Loss (TL) and distance, as provided
by the passive sonar equation, is not well adapted to bioacoustics signal applications. Solving this
equation depends mainly on the signal’s power at the origin Source Level (SL). Emitting with a
variable sound level, a sperm whale is not a constant acoustic energy source. Moreover, we must
also take into account other variability factors like the animal’s size, the Inter-Click Interval (ICl)
and Inter-Pulse Interval (IPI1), diving depth [18] or the directionality of the animal relative to the
hydrophone position [2, 17, 20, 21].

First we introduce the expression of the received enéi@t the distance from the source, as a
function of the energy source levEl;, and TL [15, 7] for a given frequency in dB. We consider the
simple framework of omnidirectionnal spherical source:

E(va):ESL(f)_TL(va)a (1)

where the transmission loss TL can be decomposed by

TL(T', f) =20 10%10 (T) + a(f)r ’ (2

wherer is the propagation distance (in), f is the frequency (inHz) and « is the frequency
attenuation coefficient (dB.m!). The first term of Eq. (2) is due to loss by geometric divergence of

a spherical wave while the second term represents the frequency attenuation because of interactions
between the wave and the medium.

In a first approximation, we can assume that the loss by divergence is predominant on frequency
attenuation and TL does not depend on frequency which allows to consider the total Egerfyy
the signal.
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The problemr = F(Ep) remains unsolved without a theoretical or statistical model of the energy
source level. This function can be approximated and learned by a neural [24] network in particular
a MLP, since MLPs are universal function approximators and will be described in a further section.
It will be the basic model LER (for Loss Estimation Regression). But this function is empirical and
very dependant on the data used to learn the model. Thus, it has motivated us to find a theoretical
relationship only based on the frequency attenuation which could work without any knowledge of
the total SL. This model imposes to consider not only the total energy but also the detailled frequency
composition.

2.2 Datadriven |FA regressions

- Angle estimation
- Range estimation

2

Figure 1: Representation of different neural network we used. LER, IFAR, IFARH

Based on the simplification done, we expect to have limited results using the theoretical model of
the IFA. We also used a neural network algorithm [24] to learn a regression model to fit the relation
between spectral informations and distance estimationsasich

P=h(X(fir)]; W), (3)
whereW represents the matrix of weights provided by the training step.

We trained a MLP to a learn a empirical relationship between spectrum and radial distance. Spec-
trum bins|.X; (kAF')| will be used as input to the network and ground truth radial distdnee the

output. As presented in previous sections regarding the IFAT estimators, we will wavk-er256
samples. It will be the Model FAR. The used MLP is comprised of two hidden layers which

are composed bgN + 1 units. The MLP attributes the optimal weights describing the regression
between spectrums bins and propagation distance.

We know that information on the animal directionality can be extracted from the click spectrum and
its energy. Therefore we propose the moHEIARH in order to enhance the model by associating
in “waterfall” 2 models. A first one learns a regression estimating the 3 angles describing the postion
of the animal: off axi®, azimuta and elevatiorel. A second one learn a regression function given

the estimated anglesa andel such as :

In: proc. of int. symp. Neural Information Scaled for Bioacoustics, sabiod.org/nips4b, joint to NIPS, Nevada, dec. 2013, Ed. Glotin H. et al. 90



7= h(|X(f;7)];0;a;el; W). (4)

2.3 Proposition of atheoretical Model : Inter Frequency Attenuation (1FAT)

The proposed Theoretical Inter Frequency Attenuation (IFAT) [10] model aims to extract informa-
tion from the source distance by taking advantage of the energy ratio between two frehaads

of the emitted signal. the derivation of the attenuation laws allowed us to establish the following
relationship :

101og, <§1>
r(B,By) = — - : (5)
alf)df — [ a(f)df
Fl F1

In this expressiony is the acoustic propagation distanés, = [Fy, F»] and By = [FY, F}] are the
frequency band involved;| E; and E, the energy of band 1 and 2. In this expressiaipes not
depend on loss by divergence and energy at the origirif bnly depends on frequency attenuation.

3 Material

In this section, we present our dataset which is extracted from the Bahamas dataset distributed by
AUTEC at the second DCL workshop in Monaco 2005. It consists of five hydrophones deployed off
the Bahamas Island, and a total of 25 minutes of recording of one sperm whale with a sample rate
of 48 KHz. The trajectory computed by LSIS/DYNI (Fig. 2) [3, 14] is similar to the one resulting

by different methods by the scientific community [22, 23], and it will be considered as the ground
truth.

sperm whale track and hydrophones positions

—12} a8

-18| aH10

H11

-20
8

X in km

Figure 2: The 2D trajectory (inc — y plan) of the single sperm whale observed during 25
min (LSIS/DYNI [3]) and corresponding hydrophone’s positions. The whale goes to south
east. Supplemental material with the animated 3D tracking of this whale is available at
http://glotin.univ-tin.fr/oncetand http://www.youtube.com/watch?v=0Szo3gdiTRMKe also give
there in supplemental material with the file containing they, z,t| whale positions, and the
[az,el,of faxis,t] files for each hydrophone H8.. H11
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H11 H10 H9 H8
hydrophone depth -1522 m -1361m -1553 m -1556 m
mean off axis 36 degrees | 60 degrees| 74 degrees| 125 degrees
mean azimut 29 degrees | 56 degrees| 73 degrees| 129 degrees
mean elevation -14 degrees| -15degrees| -14 degrees| -13 degrees
mean distance 3937 m 2900 m 4150 m 4716 m
distance std deviation 452 m 242 m 234m 283 m

Table 1: Mean ground truth distance, azimut and hydrophone depth

Considering the four hydrophones H8, H9, H10, H11, the range of distance between source and
receiver is from 2500 m to 5500 m. The precise angle associated to the ground truth trajectory, has
been calculated. The mean values are mentionned in Tab. 1.

We then divide the data in 2 partitions. Partition 1 will be used for the development and parameter
optimization step. Partition 2 will be dedicated to estimation and predictions.

4 Results

4.1 |FAR and IFARH IFA estimation using ML P model
411 Training and development

The training step is employed on partition 1 of the data. The temporal order of the data is not taken
into account when applied as the input of the MLP. During the development stage, we optimized
only one parameter, which is the number of system iterations for the training session (early stopping)
related to the quality of prediction.

Predictions are generated from partition 2 of the data and we assume independence with the training
data. We were surprised to observe that the MLP learned the relationship between spectrum and
propagation distance quite quickly. 300 iterations are sufficient to obtain satisfactory results for
our prediction. In order to avoid over-fitting and to extract the most general predictor we keep the
number of iterations low.

4.1.2 Distance prediction

In this section, we propose a temporal MLP prediction followingR, I F'AR andI F ARH on all
hydrophone in the same data subset as section IV.A.2 for the IFAT estimator. It has been computed
using the MLP for regression on the spectrum.

In Fig. 3 we can compare the fidelity of prediction and ground truth (results summarized in Tab. 3

. Firstly, the prediction given by F AR andI FFARH is better than.F' R one. It demonstrates the
usefullness of considering spectrum inter bins and not only the global energy of the dignal.

shows some transitions which lead to a recess that others models seem to control. However, the
bias seems to increase in the sections where the azimut is the lowestd@®es). This behavior

can be explained by a lack of an on-axis configuration during the training session. This assumption
means that the regression law is different between an on-axis and off-axis configuration. It may also
be caused by the different frequency structure of pulses (P or PJ) in a click following the receiver
position [16].

Then,/ FFARH mean error is similar téd F AR. However, the dispersion of the predicted distances
seems enhanced by the use of an intermediate MLP predicting the position angles. The Results of
angle estimation are not presented directly in this paper. We noted that azimut prediction was more
precise than elevation prediction which could suggest that the spectrum shape is more dependent on
azimut.

4.2 Estimation of theradial distance from the theoretical model | FAT
We represent the final temporal estimati®hof radial distance between hydrophone 11 and the

sperm whale. The computation of the estimators has been implemented on Partition 2 of the record-
ings (test set) according #; and N} ., learned on the train set data (see previous section).

In: proc. of int. symp. Neural Information Scaled for Bioacoustics, sabiod.org/nips4b, joint to NIPS, Nevada, dec. 2013, Ed. Glotin H. et al. 92



5500

5000

IS
a
o}
s}

radialbdistance inm
o
o
o

3500

3000
200

5000
4800
4600
44001
4200

4000

radial distance in m

3800

3600

600 800 1000 1200

H9

3400
200

400

120

anglein®

400

600 800 1000 1200
timeins

H10

600 800 1000 1200

5600
5400
5200
5000

4800

4600

400

600 800 1000 1200

600 800 1000 1200

200

150

100

-50
200

400

600 800 1000 1200
timeins

Figure 3: Temporal prediction of radial distance compared to ground truth using model LER, IFAR,

IFARH.
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Figure 4: An example of final IFAT temporal estimation of radial distance compared to ground truth
radial distance and azimut evolution on H11. fixed parameté&g.;; = 4, Fp .. = 8.5kHz and
Fp, . = 9kHz.

In Fig. 4 we see that both curves have almost the same dispersion. Nsiagl28 samples, the
distances areverestimated, while underestimated usMg= 256 samples.

The significant dispersion of our estimation cannot be due to the range variation. It can be related to
the animal’s off-axis variation, meaning that IFAT does not cancel the animal’s directionality effects.
Most of the errors of IFAT usingy = 128 samples seem to accumulate on sections where the azimut
is high (> 20deg). When the animal is supposed to be on-axis, we observe that the estimation is
converging to the ground truth.

On the other hand, for th%¥ = 256 samples, the lowest error seems to match with high azimut, and
it results to a better estimation on high off-axis configurations. Thus the average bétweel28
andN = 256 samples is computed to provide a uniform behavior relative to the azimut possibilities.

Finally, we also observe that the radial distance is decreasing which is in agreement with the direc-
tionality of the whale on the ground truth. IFAT correctly affirms that the whale is traveling towards
the hydrophone.

5 discussion

According to the results (tables 2, 3) IFAT errors tend to vary between the different hydrophones,
but the IFAT model and the neural network led to common conclusions. The performahEel &f
and/ F ARH confirms the usefullness to consider spectrum inter bin property and not only the total
energy which is more sensitve to natural and voluntary variations of the Source Level.

The IFAT, IFAR, IFARH and LER models provide us with differences regarding the azimut. With
the IFAT model, the performance of the estimator seems to be more impacted by the azimut con-
figuration. Since we developed the model without the consideration of the animal’s directionality, a
future step may be the inclusion of this variable in the estimator expression.

The MLP demonstrates the relationship between spectrum and propagation distance in this data set
on only 300 iterations. We demonstrated that the IFAT model could estimate distance with about 15
% of mean relative error, while the MLP IFAR or IFARH reduces it to 6 %.

As IFAT produces locale range estimates, a particle filtering process [19] could be efficiently added
after IFAT in order to produce more reliable and complex estimates.

In the case of multiple emitting whale and a monohydrophone recording, IFA would play an impor-
tant role in order to cluster the clicks and thus estimate the number of emitting whales. Morever,
in the case of multiple hydrophones, IFA can help in the localisation of each whale. The IFAR and
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H11 | H10 | H9 | H8 | MEAN
IFAT model N = 128 21 16 14 41 23
IFA model N = 256 20 21 9 16 16.5
average on modeN = 128 andN = 256 17 16 11 28 18
mean total relative error 19 17 11 28 -

Table 2: Absolute mean relative error of estimated distance in % for all hydrophones with IFAT
theoretical model estimators

| [ AIL | HI0O | H9 | H8 | MEAN |
| LERmean | 14+6 | 20+10 | 8+9 | 15%5 | 142%+75 |
[ IFATmean | 20£10 | 21+13 | 9+7 | 16+14.0 | 165+ 11 |
[ IFARmean | 4%2 | 14+4 | 3+2 | 4%2 | 62+25 |
| TFARHmean | 425 | 11£3 | 4£35 | 4%2 | 575%2.75 |

Table 3: Absolute mean relative error of estimated distance by with MLP: IFAR/IFARH and standard
deviation (in %)

IFARH models trained on a data set, can be applied on another recording set for similar species and
hydrophones. Also one can model and run IFA for other species using biosonar, like bats.

N =R

25— I FAR
[ IFARH(0,a,el)
[ IFARH(0)
1 IFARH(a.el)
20[ | [ IFARH(a)
I (FARH(el)
I AT

151

10

mean error in %

8 9 10 11 average on all
# hydrophone the hydrophones

Figure 5: mean relative error between predictions and groundtruth. Different IFARH model versions
have been tested : IFARH(0,a,el), IFARH(a,el), IFARH(0), IFARH(a), IFARH(el).
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S.2 Physeter Localization: Sparse coding & Fisher
vectors

S. Paris, H. Glotin, Y. Doh, J. Razik
USTYV, Institut Universitaire de France, CNRS LSIS

We present in this work some range and azimuth estimators from spermwhale's clicks
based on machine learning technics such as sparse coding and fisher vectors. The main idea
is to use data collected from long-range array field to learn offline an acoustic model
(animal sound production and sound propagation). These raw estimates of range/azimuth
can feed a non-linear filter to track the animal.

1 Basic motivations

Most of efficient cetacean localisation systems are based on
the Time Delay Of Arrival (TDOA) technic [NF06, BG09].

Sownn waye
p

Mi d Mj

,,,,}5777 C :apeetl s snund
T :Delay of Arrival
Si(n) in) d :linterval of Microphones

Long base hydrophones'array offers precise localization but, They represent a fixed,
centralized and expensive solution.

Question : It is possible to obtain a decentralized and cheapmono-hydrophone localization
procedure for collision detection/cetacean watching systems ?

Most surely yes, thanks to dataset collected by TDOA/DTAG systems and machine
learning technics.

This work introduces how to obtain two rough estimates of range r and azimuth az by
sparse coding method.

Both can feed a non-linear Iter to localize precisely the spermwhale.
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2 Global feature extraction pipeline

In speech processing, computer vision [BBLP10], the popular
pipeline local features extraction-encoder-pooler gives a global
representation robust to signal intraclass variations

- Unsupervised , Supervised

Lacal feature
extraction

Image Encoding Pooling  Mormalization Classification

Mimesis of cortex architecture. We will employ the same kind of architecture by
changing the classification module by a regression one

3 Local feature

m Let's denote by C £ {C’}, j =1,..., H the collection of

detected clicks associated with the j* hydrophone of the
array composed by H hydrophones.

-

-
3 1800 = ]

mC 2 {c{} i=1,..., WV where C’:: € R" is the i™h click of the
jt hydrophone.
H. .
m Total number of detected clicks : N =) W
i=1
m local features : signal patches of p < n samples (typically

p = 128) extracted by sliding windows and denoted by
ZJH € RP. Local features are £, normalized

530 1000 = 2000 'O 00 300 400 SO0 SO0 FOO BO0 D00 1DOO

| ‘dc‘: L local patches Z{: = {zJ”.} [ =1,...,L equally spaced
of [{#] samples are collected

m Local patches associated with the jt hydrophone :
‘A i M bt T, _
2/ =2{z.},i=1,... V. Z={Z'} is denoting all the local
patches matrix
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4 Local features encoded by sparse coding
Sparse coding overview

m Each local patch z C Z are linearly encoded via a € R¥ :
z ~ Do where D £ [d,..., dy] € RP*K is a pre-trained

dictionary such as d; d; =1

B «'s are retrieved by solving the following LASSO problem
[Tibo4]

1
Isc(alz; D) £ min ~||z — D+ Aol
QUERk 2

m —> Can be solved efficiently with LARS solver [MBPS]

m In practice, we choose k > p to expand information in a
higher dimension space

m [hanks to sparsity constraints, we can hope that data of
interest will lie on a low-rank manifold much more easy to
discriminate than in the original feature space

Pooling parse codes

m Aggregate sparse codes to have a global representation more
robust to local deformations
m Let define v e RE j=1,..., k as the jth row vector of

7| ?

i
ii e 6 & ¥

& g
o S O The soa oo ane  eos  Coo  vem  WS= w88 ¥
. p

® /,-norm pooling :

L
folv; p) = (Z |vm“) S D
m=1

m it — 1< sum-pooling while u — o0 < max-pooling

R
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Dictionary learning

m Dictionary is trained on a subset of M < N local features

M
1 1
Rm(V,D) = > Slzi— Dail3 + Al il
i=1

T _
m Not jointly convex problem — alternating method :

M
P 1 1 i
i=1

solved in parallel by LASSO (LARS, feature sign, etc...) and

M
— .
RM(D|V) = HZ 5”25 — DO:;“% 8 o ddej =1
i=1
solved online (block coordinate descent [MBPS], etc...)

m Example of trained " atoms”

=01

R

-0.2

0 20 40 60 80 100 120

5 Local features encoded by Fisher vectors
Fisher vectors overview

m Let ug a pdf which models Z, eg. a GMM
m Fisher vectors are defined by the normalized gradient vector

i
gb"z = QyVglog(ug(Z)) = .§1 RV g log(ug(z1))

B
mIf ug = bz—:l wpp(z; iy, 03) a GMM, with
Bz{wb,pb,ﬂ'%}:bzl **** B

m Fisher vectors [PSM10] are defined by average-pooling of local
gradients :

GZ = 13y ud) (25ts)
Hy I b:i VWb T
B #
Z - 1 i(b) 1 [ (Zi—fby)”
gak L bzzjl VWh 2 [ oy i}

m Total size of FV is 2p.B
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6 Experimental results

m Bahamas?2 dataset with N = 6134 clicks
m lLocal features extraction setup : n = 2000, p = 128, L = 1000

m Dictionary learning setup : M = 400000 sampled patches,
A=0.2, k € {128,256,512,1024,2048,4096}

m For FV, whitening preprocessing via PCA of local features

B GMM learning setup : M = 400000 sampled patches,
be{1,2,4,8,16,32}

m Logistic regression for both r and az estimates, C optimized
by CV

m 10—CV with 70%/30% in train/test splits

m Average RMSE scores

m Range estimator performances vs k

ARMSE on range

1100 17| == Fisher Vector

L 2 4 1
H H s || m——— Srarze Coding
e Spectrum Feature
H T O

1050 k-

1000
050 k-

000 k- p SCCTTTRON Sy S S e rens
BE0 - e H e PP, o S E

ARMSE {m)

f=Tals] TY-PRPRSIUEES (ARPRSRERNENEY e SRR [NNURSPENNE SRR P

750 [~
700
=]
600

266 512 1024 2048 4096 B192
k

m For Fisher vectors, the corresponding number of Gaussian is
be {1,048 16,39,

m Azimuth estimator performances vs k

ARMSE on azimuth

Y T 1 T

ARNBE (dog)

% 5 : i
..E ‘““““““E"“"”“ I PP TCUIL PRSIt Sy *.“.".“.ui‘...
i Sparse Coding - . §
75 | == Fizher Vector e LTTEIRT IR T TIPS PRI TR e s
e pocirum Feature H H H
H

i i i
266 512 1024 2048 4096 8192
k
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7 Conclusions & Perspectives

Two rough estimators for range and azimuth by sparse coding
and fisher vector framework have been presented

m No specific pre-processing required. Working directly on the
click signal

m Promising results in mono-hydrophone configuration

m More efficient local features can be investigated (MFCC,
Scattering,. . .)

m Deep learning (more than 1 layer) as general feature extractor

m Non-linear filtering for a precise localization (EKF, UKF, PF,
ect,...)
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Abstract

Sperm whales (Physeter macrocephalus) have followed fishing vessels off the
Alaskan coast for decades, in order to remove sablefish (“depredate”) from long-
lines. The Southeast Alaska Sperm Whale Avoidance Project (SEASWAP) has
found that whales respond to distinctive acoustic cues made by hauling fishing
vessels, as well as to marker buoys on the surface. Between 15-17 August 2010 a
simple two-element vertical array was deployed off the continental slope of South-
east Alaska in 1200 m water depth. The array was attached to a longline fishing
buoyline at 300 m depth, close to the sound-speed minimum of the deep-water
profile. The buoyline also served as a depredation decoy, attracting seven sperm
whales to the area. One animal was tagged with both a LIMPET dive depth-
transmitting satellite and bioacoustic B-probe tag. Both tag datasets were used
as an independent check of a passive acoustic scheme for tracking the whale in
depth and range, which exploited the elevation angles and relative arrival times
of multiple ray paths recorded on the array. The localization approach doesnt re-
quire knowledge of the local bottom bathymetry. Numerical propagation models
yielded accurate locations up to at least 35 km range at Beaufort sea state 3. On-
going work includes combining the arrival angle information with an algorithm
developed by Le Bot et al. [1] that uses the rhythmic properties of odontocete
click trains to separate interleaved click trains. This approach will improve our lo-
calization capabilities in presence of multiple sperm whales. []_-] In order to achieve
better separation of interleaved click trains it is possible to use machine learning
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based algorithms. This new concept is based on finding useful information hidden
in a large database. This useful information can then be represented by a sparse
subspace. The first step of the approach is to extract informative features with a
new detector proposed by Dadouchi ef al. [2]. Once the dictionary of features is
learned, any signal of this considered dataset can be approximated sparsely. By
reducing the dimensional space, the sparse representation has the advantage to
provide an optimally representation of the data. [Work supported by the North
Pacific Research Board, the Alaska Sealife Center, ONR, NOAA and ANR-12-
ASTR-0021-03 "MER CALME”]

1 Introduction

In recent years, passive acoustic methods have become increasingly widespread for monitoring the
general assessment of marine environments [3]-[5] and expanding knowledge about marine mam-
mals vocalization repertoire, distribution and habitat characterization. In the past decade, consider-
able efforts have been made for this purpose using a combination of ocean science, signal processing,
statistics and computational (algorithms) science [6].

This paper is concerned with the localization and tracking of sperm whales using a vertical array
comprising only two hydrophones. Indeed, passive acoustic monitoring has become an important
tool to study sperm whale behavior in the Gulf Of Alaska and their interaction with longlining
fisheries [7]-[8]. Each click event generated by a sperm whale can arrive on a hydrophone via
multiple ray paths. In this paper, the ray path that arrives first on a hydrophone will be called the
primary path, and other ray path arrivals that arise from the same click event are called secondary
paths, or multipath.

Most methods developed for localizing marine mammals use wide-baseline hydrophone arrays and
the time-difference-of-arrival (TDOA) of a sound on pairs of hydrophones [9]-[11]. Methods are
often based on ray-trace acoustic propagation modeling and exploit multipath arrival information
from recorded sperm whale clicks. The algorithm compares the arrival pattern from a sperm whale
click to range and depth dependent modeled arrival patterns in order to estimate whale location. The
technique can account for waveguide propagation physics like interaction with range-dependent
bathymetry and ray refraction. Tieman et al. [12] managed to track a sperm whale in three dimen-
sions using only one acoustic sensor and a model of the azimuthally dependent bathymetry.

When multiple whales are simultaneously clicking, the biggest challenge is to arrange clicks into
separate click-trains corresponding to individual whales, and then classify clicks as primary paths
and multipaths. In the past decade several authors proposed algorithms for separating multipaths
from the primary click-train, either on single hydrophones [13] two-hydrophone arrays [14] or
wide-baseline acoustic arrays [15]. These algorithms exploit the slowly varying multipath struc-
ture of individual whales or the slowly varying features of clicks within a train (such as waveform,
power). Recently, a few papers discussed how sparse coding can be an effective technique for solv-
ing the multiple-marine mammal tracking problem [16]-[18]. Sparse coding seems to be a promising
alternative to usual time-frequency feature analysis.

To our knowledge the long-range tracking of multiple whales on a single deployment has not been
performed yet. For many applications, the deployment of several hydrophones is impractical and
too expensive. Here we discuss how a two-element vertical was used to track the range of multiple
whales up to a 35 km range over a 3-day period and how the method could be automated using
rhythmic properties of click-trains and sparse coding.

2 Semi-Automated tracking of multiple whales

A two-element vertical array deployed at the sound speed minimum was used to track sperm whales
in the Gulf of Alaska between 15 and 17 August 2010. The vertical arrival angles and relative
arrival times of multiple refracted and surface-reflected ray paths contain enough information for
range-depth tracking without knowledge of the bottom bathymetry. A ray-tracing program was used
to model the acoustic travel times from each candidate source location, using a measured sound
speed profile. By comparing modeled and measured time lags and vertical angles, an ambiguity
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surface was created, displaying the best-fit whale position. A tagged sperm was tracked up to 35 km
range under Beaufort 3 conditions, using satellite tag data to independently verify tracking estimates.
The technique also permitted to measure the drift of multiple whales away from the vertical array.
The method and results are described in detail in Mathias et al. [8].

However we were not able to automate the tracking process in the presence of as much as six whales
simultaneously vocalizing. Techniques described above to separate click-trains such as the cross-
correlation or a rhythmic analysis failed in our case, because of the high number of multipaths
received at the hydrophones produced by whales at various ranges.

Vertical array — August 15th 2010 - 19:01:30
Unit 5 (Top Unit)

N
[

= N
[ o

=
o

Frequency [kHz]

0
1 15 2 2.5 3 35 4
Relative time [s]
Unit 7 (Bottom Unit)

25p

20

1 15 2 2.5 3 35 4
Relative time [s]

Figure 1: Spectrogram of multipaths produced by two sperm whales on 15 August 2010 at 19:01:30
and recorded on vertical array top and bottom hydrophones

3 Towards better localization of sperm whales using rhythmic properties of
click-trains and sparse coding

Localizing a sperm whale using a two-element vertical array requires measuring the relative arrival
times of at least two ray paths (the primary path and a multipath) on both hydrophones [8]. There-
fore, we need to de-interleave click-trains and associate a primary path click-train with a multipath
click-train. Two approaches seem promising for performing this task when three whales or more
are vocalizing simultaneously. The first approach takes advantage of the two hydrophone array
configuration and use the arrival angle information as an additional source of information for group-
ing sperm whale clicks into trains associated with a given whale and propagation path. Therefore
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on-going work includes combining the arrival angle information with an algorithm developed by
Le Bot et al. [1] that uses the rhythmic properties of odontocete click-trains to separate interleaved
click-trains. The algorithm only uses the time of arrival of each click and a complex- autocorrelation
function to compute a histogram that exhibits peaks at inter-click intervals (ICI) corresponding to the
interleaved click trains, while suppressing harmonics due to ICI multiples. This complex autocor-
relation is calculated in a window sliding along the click train leading to a time-ICI representation,
which is thresholded to detect the different interleaved click trains. This sequential search could use
some complementary features such as the click arrival angle, level or its frequency content.

The second approach is based on sparse coding [19]-[20] and recent publications on the application
of this technique on marine mammal sounds [16]-[18]. We propose that a sparse transform of the
clicks in the time-frequency domain can help determine the stable components between multipaths
belonging to an individual and a given propagation path. In order to reduce the signal dimension
for more efficient computation, sets of Mel Frequency Cepstral Coefficients (MFCC) can be com-
puted and a dictionary of features can be generated. Any click detected on the hydrophone can
therefore be represented in this space of reduced dimension. The similary between each projected
click can be computed using the cosine similarity measure for example. Glotin et al. 2013 showed
that this technique worked for tracking the sounds produced by the same minke whale during 30
minutes. It is also possible to work directly on the spectrogram to select areas of interest. A spe-
cific algorithm by Dadouchi et al. [2] has been developed to detect click and whistles. Based on
a two-stage methodology, this algorithm estimates the instantaneous frequency law of non-linear
frequency modulations under several constraints (high resolution estimation, ability to cope with
multiple overlapping and/or close signals in the time-frequency plane). The first step of the method-
ology is applied on the square modulus of any linear time-frequency representation, and aims at
detecting the time-frequency support of the signals of interest under probabilistic models. A Chi-
squared model is used to do the detection of time-frequency bins hosting signal, a Poisson model
for the gathering of detected bins into regions of interest (Rols). Once the Rols are detected, a high
resolution estimator using local polynomial frequency law estimation and phase continuity criteria
is used to link local approximation to get a whole estimate of the instantaneous frequency law.
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Abstract

This paper presents a method for tracking of unknown calling and moving
animals, such as bats or whales, using an arbitrary system of microphones,
organized in a 3D structure. The time differences of sound arrival (TDOAs)
result in a set of distances to pairs of microphones. However, in presence of
echoes propagation speed non-uniformities, and background noises, the
resulting set of distances may be non-consistent. We propose a method for
optimization of TDOA data used in 3D trajectory reconstruction. Our
method provides faster and smoother animal trajectory reconstruction than
the state of the art .

1 Introduction

The location of an acoustic source using time differece of sound arrival (TDOAs) to multiple
microphones has many military, bioacoustic and surveillance applications. Tracking of
wildlife movements has been widely studied since the 1960s [1], [2]. For the majority of
these studies, an operator supervises received signal strength while changing the orientation
of a directional receiving antenna. The problem of localizing an acoustic source from Time-
Differences-of-Arrival (TDOAs) is received recently a lot of scientific attention with a
number of different solution approaches (the correspondent review can be found in [3]).
However, most of these methods assume ideal conditions, such as known and constant
propagation speed, reliable only under controlled conditions where the air temperature can
be monitored. The effects of a wrongly assumed propagation speed is surveyed in [8]. One of
the most successful approach to overcome the problem of variable propagation speed (and
subsequent non-robustness of tracking), echoes, etc, in the field of bioacoustics is [6].

2 The algorithm overview

Due to the difference in sounds, emitted by different species, as well as difference in
antennae geometry and media of sound-propagation, it is possible to use the animal call
structure to detect and process the calls of a particular animal. In accordance with this, we
perform the optimization of parameters for adaptation of TDOA calculation for a particular
animal. First, we adapt the resulting algorithm of TDOA calculation to a variety of bat
recordings, including optimisation of time-step, crosscorrelation- window, number of
maximums and persentage of TDOA to filter with coherence condition formulas. Due to the
difference in sounds, emitted by different species, as well as difference in antenae geometry
and media of sound-propagation, it is necessary to adapt the resulting algorithm of TDOA
calculation to a variety of bat recordings. For each recording we automatically optimize
time-steps, crosscorrelation-windows, number of maximums and persentages of TDOA to
filter with coherence condition formulas. To take this into account, for each recording, we
automatically optimize time-steps, crosscorrelation-windows, number of maximums and
persentages of TDOA to filter with coherence condition formulas. In this, 1* step, our
algorithm subdivides these segments into subsegments, contaning, on average, a single
distinct animal sound (click in case of whales and bats). This sundivisions facilitates the
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detections of the given animal and cross-correlations between microphones in order to find
the TDOAs between them.

Second, for each pair of sensors, their arrived signals are cross-correlated (between pairs of
different microphoe-recordings), followed by extraction the maximum correlation values for
TDOAs calculation, as well as calculation of TDOAs errors, described in the section 3
below. The segments of multimicrophone recording (in our case, recordings from 4
microphones with length of 6seconds are used) are used for this TDOAs calculation. The
Figure 1 shows the typical geometries of antennas used for TDOA calculations.

T

Figure 1: The antennas geometries used for TDOA calculations: Bats recordings(left) and
whales recordings(right)

In this, 2™ step of our algorithm refines these TDOAs according to the formulas, described
in the section 2. These TDOA-refinement-formulas allow to calculate the amount of the
overall TDOA-calculation-error increase/decrease, depending on all possible shifts of
detection-vectors in time. The best shifts of detection-vectors, providing the minimum
overall TDOA-calculation-error, are used to find the most probable TDOAs, as described in
details in the following section 2.

Material. In case of bats tracking we used 4 microphones, organized in a tetrahedron with
1,6m edge, shown in a Figure 1. The typical recording for one of bat-microphones is shown
in a Figure 2.

0.4 T T T T T
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0.2

0.1
0

Recording Amplitude
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_03 1 1 1 1
0.5 1 1.5 2 2.5 3

Figure 2: The flying bat recording "ECOR2116”
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For whale tracking the recording system was an hydrophone array fixed to the bottom of the
ocean at the Bahamas Data, distributed in 2005 and also to the NIPS4B workshop.

whale hydrophone recording

0.6

Amplitude Recording

0.6

08 1 ! 1 1 ! 1 ! ! 1
[s] 05 1 15 2 25 3 35 4 4.5 5

min

Figure 3: The Physeter macrocephalus whale recording.

3 TDOA refinement

Correlation of sounds, arrived to pair of sensors results in cross-correlation-functions,
showing shifts at which signals are more similar (best shifts) or more different (worst shifts).

TDOAs between two microphones are calculated as peaks of correlation of recordings of
these microphones.

TDOASs by coherence formulas. The refinement of TDOAs by coherence formulas is used to

filter the set of TDOA by application of the following coherence equations, developed in [4-
6] (4 sensors case) :

| DoAY | + TDOAY - TDOAY | | = [lelmijkl]| < &
|l TDOA7 | + 'TDOAY, - TDOAY | = [ls(mijhll <le
| TDOA!, 4+ TDOA], _ TDOA[ |: lelm,ik bl < e
| TDOA”, + [TDOA}, - TDOAY | = lelmjikh] <le

Here indices i,j,k,h are microphone numbers, whereas index m is the rank of the maximum. &
is the maximum possible overall system error,depending on microphone sensitivity, noise
level, sound quality, etc. This way the equations will serve as a filters for TDOAs, selecting
the coherent TDOA, producing smooth TDOA and correct tracking. depending on
microphone sensitivity, noise level, sound quality, etc. This way the equations will serve as a

filters for TDOAs, selecting the coherent TDOA, producing smooth TDOA and correct
tracking.

Using many maximuims together with coherence equations allows to significantly reduce the
error of TDOA calculation.

The Figure 4 shows comparison between state of the artand our method, in 10 different
time-moments from recording ”ECOR2116”, presented in the following section 4.
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Figure 4: The TDOA calculation errors for flying bat recording "ECOR2116” in 10 different

time-moments.

Figure 5 shows the error distribution as a joint-histogram for the state of the art (using 1
TDOA correlation maximum) and our method, operating with 1-6 TDOA correlation

maximums.

state of the art

10 15 20 25 30
aur result

Figure 5: The statistics of TDOA calculation errors for all recordings. The non-symmetry of
an error histogram with respect to diagonal (state of the art methods provide more errors)

illustrates advantage of our method.
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4 Results of TDOA calculation and refinement

The Figures 6 and 7 show comparison between state of the art and our method, using the

same 10 different time-moments of recording ’ZECOR2116”, presented in the Figure 5.
TDOAs of state of the art

2 T T T T T T
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Figure 6: TDOA-tracking trajectory for the flying bat recording ’JECOR2116” , resulting
from the state-of-the-art single-maximum TDOA calculation method.

TDOAs of our results

2 T T T T
2 —<32- TDOA{mic1-mic2)
—<313- TDOA{mic1-mic3)
—14 TDOA(mIic1-mic4)
——23 TDOA{mMic2-mic3)
—24- TDOA(mMIic2-mic4) |

34 TDOA(mMic3-mic4)

= I I I x 1 I
1 2 3 4 5 6 7 8 9 10

time-moment, s*0.3

Figure 7: TDOA-tracking trajectory for the flying bat recording ’JECOR2116” , resulting
from the our multiple-maximum TDOA calculation method.
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As it can be seen, our method is able to fill the gaps of TDOA-trajectory, left by the state-
of-the-art TDOA calculation methods. The advantage of usage of our patent (used with just 4
maximums) over baseline (1 maximum) is smoothness and completeness of the TDOA-
trajectorie, resulting in smoothness and completenes of the distance-to-microphones
difference trajectories, necessary to robust trajectory reconstruction. For the trajectory
reconstruction we are using Levenberg solver and the following figure 8 shows the
advantages of our patent in reconstruction of trajectory over state-of-the-art methods.
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Figure 8: Comparison of reconstructed trajectories of the flying bat, resulting from the state-
of-the-art single-maximum TDOA calculation method (left) and from the our multiple-
maximum TDOA calculation method (right).

The snapshot of the tracking whales results is shown in a Figure 9.
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Figure 9. The snapshot of the video of the whale track computed in [5] (available online at
http://sabiod.univ-tln.fr/tv).

5 Results of calculation-time, needed for reconstruction of
trajectory

As it was shown above, our method provides more exact set of TDOAs, leading to more
exact distance-to-microphones difference trajectories. Moreover, refinment of a TDOAs set
by the formulas, described in section 3, leads to a smaller set of TDOAs. These advantages
of our method lead to the acceleration of Levenberg—Marquardt solver in trajectory
reconstruction. The following Figure 11 shows the comparison for the different choices of
sound-velocity.
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k | I baseline
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mean time-elapsed-by-trajectory-salver, 1maxs
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o
(=]
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Figure 11: Comparison of a trajectory-reconstruction time, used by Levenberg—Marquardt
solver in case of the baseline non-refined TDOA calculation method and our patented TDOA
refinment method.
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6 Conclusion and future work

We have shown that our patent on multi-maximum TDOA calculation and refinement show
advantage over state-of-the-art methods.

It provides higher number and accuracy of reconstructed trajectory points, and shows less
calculation-time for the LM solving due to enhanced inputs.

Our future plans are construction of the neural network for detection and classification of
animal call recordings in big amount of recorded data. As it was shown in [9-11], this neural
network can be constructed as the convolutional neural network (CNN), receiving the
microphones recordings for detection and classification. The CNN were sucessfully applied
not only for images, but for time-domain, as well as adapted to to process and detect many
specific time-series patterns [10,11].
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5.5 Data driven approaches for identifying information
bearing features in communication calls.

Julie E. Elie and Frédéric E. Theunissen. UC Berkeley. Dept of Psychology and Helen
Wills Neuroscience Institute.

Bioacousticians have traditionally investigated the acoustical nature of information
bearing features in communication calls by describing sounds using a small number of
acoustical parameters that appear particularly salient (e.g. the mean frequency, duration,
spectral balance). These measures are then used as parameters for linear discriminant
analyses (LDA) or other supervised learning approaches to investigate what acoustic
parameters drive sound categorization. This classical approach is computationally efficient
and yields results that are easily interpretable. However this approach can also be limited
by the a priori choice of the putative information bearing features: as long as the sound
representation is not complete, one will not be able to determine whether the correct
information bearing features are identified and, thus, whether the actual amount of
information present in the calls (measured for example as the quality of a discrimination
test) is correctly estimated.

To address this issue, we have adopted a data driven approach. In the traditional
approach, specific acoustical parameters are chosen for two reasons: for dimensionality
reduction and for the implementation of a non-linear transformation that could be required
for linear discriminant approaches to effectively discriminate among sound categories.
These two steps, however, can be implemented without a priori assumptions or loss of
information. In our approach, our non-linear transformation is an invertible spectrographic
representation of the sound. Then before using a classifier, the dimension of this high-
dimensional representation is reduced using principal component analysis (PCA). For this
approach to work, the spectrograms of the sounds must be aligned and cross-validation
techniques that evaluate both the effect of the number of PCs in the PCA and the number of
parameters in the classifier must be implemented to prevent over-fitting. In our approach
alignment of spectrograms was based on the cross-correlation between amplitude
envelopes. We then used proven cross-validation techniques to prevent over-fitting:
bootstrap for LDA and the Random Forest algorithm for non-linear tree classifiers. Finally,
we compared the classification performance of the two classifiers on this sparse
spectrographic representation of the sound (PCA on spectrogram) with those obtained for
two other feature spaces: the Mel frequency cepstral coefficients (MFCC) and the
modulation power spectrum (MPS).

These approaches were tested for the analysis of calls in a unique database of 1275
zebra finch communication calls obtained in our laboratory. This database includes many
exemplars of all the call types in the zebra finch repertoire for a large number of male and
female birds. Our algorithms were used to determine the discriminability of vocal types.
The PCA on spectrogram yielded the best feature space: these features are both easy to
interpret and yield higher performance of classifiers. The best results were obtained using
the Random Forest algorithm and a PCA spectrographic representation using 50 PCs; we
show that the 11 distinct call types in the zebra finch repertoire, irrespective of the identity
of the vocalizing bird, could be classified with 83.1% of accuracy. This classification
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performance is significantly higher that what one could obtain from any of the two other
sound representations tested with the Random Forest algorithm (MFCC, 53.1% of accuracy;
MPS, 63.5% of accuracy). Besides, the Random Forest yielded better classification
performance than LDA, irrespective of the feature space used. In conclusion, the data driven
algorithm using the DFA on the spectrogram showed superior results and we propose that
it could be used both for investigating behavioral and neural mechanisms of sound
discrimination and for the vocalization based identification of species in ecological or
environmental studies.
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Individual Signature in the Hyena giggle sounds.
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Zebra Finch Complete Repertoire is
Complex.
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We need an automatic (unsupervised) feature extractor...
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A UNIQUE DATA BASE OF THE
COMPLETE VOCAL REPERTOIRE OF THE
ZEBRA FINCH.

The Zebra Finch Vocal Repertoire: A quick tour.
Categorization of WHAT from the behavioral context

* Needy: Chick Calls
* Begging
* Long Tonal

Julie Elie

* Non-Afiliative: Alarm — Distress — Aggression
e Tuck
e Thuck
e Distress
e Aggressive
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Alarm Calls = Distress Calls
Aggressive Calls
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Three Feature Spaces

Spectrogram + PCA

Mel Frequency Cepstral Coefficients

Modulation Power Spectrum

Two Classifiers

Fisher Linear Discriminant Analysis

Random Forest
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Random Forest

Data Result from Random Forest Logistic Regression

Spectrogram + PCA based features
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Correct Classification
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Spectrogram+PCA and RF
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Cepstrum index
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Modulation Power Spectrum (MPS)
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Conclusions

* PCA on spectrogram yielded the “best” feature
space (among 3):
* Higher classification performance
* Ease of interpretation
* Room for improvement (Sparse, ICA)
* MPS might be better than MFCC.
* Random Forest is an efficient classifier.
» Zebra finches have a large repertoire of calls that
can be categorized based on behavioral context and
acoustics.
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6.1 Gabor Scalogram Reveals Formants
in High-Frequency Dolphin Clicks
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Abstract

Toothed whales (suborder: Odontoceti) produce high-frequency clicks for
navigation, and possibly communication. Determining the power spectrum
within a click may help differentiate clicks and their possible communicative
functions. The short time Fourier transform (STFT) is characterized by a time-
frequency trade-off. resulting in difficulty in ascertaining local energy maxima
within a short-duration click. We propose to use Gabor wavelet decomposition
to get better local energy maxima contrast instead of the Fourier STFT. Click
data collected from bottlenose dolphins ( Tursiops sp.) sampled at 96 kHz and
500 kHz were analyzed using both the STFT and Gabor scalogram. The
resulting scalograms were visually inspected. While the STFT spectrograms
did not portray the regions of local energy maxima within each click clearly,
the Gabor scalogram displayed distinct bands of local energy maxima with
respect to frequency. Consecutive clicks that contained regions of higher
acoustic energies at approximately the same frequency were defined as
formants. Possible ‘phonetic units’ composed of these formants were
subsequently identified. However, the function of these formants and possible
phonemes remains speculative. This preliminary study demonstrates the need
for scaled algorithms capable of analyzing high-frequency recordings, which
may be essential in order to gain a deeper understanding of cetacean
communication. Future studies should sample odontocetes with a minimum
sampling rate of 500 kHz, or higher. Gabor scalogram analyses could then be
used in conjunction with other algorithms to explore correlations between
formant frequencies, frequency bandwidths of the entire click that contains the
formant, the quantity of formants, and inter-click-intervals in order to discern
the possible functions of dolphin formants.

1. Introduction

Cetacean acoustics research is currently expanding due to recent advances in available technology,
in conjunction with decreasing costs of equipment. The capability to record the higher frequencies
associated with click trains of many cetaceans of the suborder Odontoceti permits more complete
acoustic assessments. However, the copious amount of digitally recorded data produced requires
an interdisciplinary approach to develop innovative algorithms and procedures to process,
reduce and analyze the resultant complex data sets.

Detailed information concerning Odontoceti click acoustics has been derived from studying
animals in human care. The ability to finely manipulate variables under controlled conditions has
yielded information regarding the timing, frequency and amplitude of clicks. On-axis click signals
occur when the receiving animal or hydrophone is positioned directly in front of the signaling
dolphin. Off-axis clicks are characterized by lower frequencies and amplitudes when compared to
analogous on-axis clicks [R1]. Furthermore, off-axis click trains emitted by multiple animals can
produce interference resulting in decreased signal amplitude [R1]. Finally, it has been suggested
that the morphology of the cetacean head may cause the signal frequency to decrease as a function
of the angle from the beam axis, functioning like a low-pass filter [R2]. However, higher
frequency signals have narrower beam patterns than low frequency signals. As a result, high
frequency signals are more resistant to signal distortion due to off-axis propagation [R2].
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Traditionally the short time Fourier transform (STFT) has been used to analyze the time,
frequency and amplitude parameters of an acoustic signal. However, the STFT employs a sliding
window that is associated with a time/frequency trade-off, such that shorter STFT windows
portray better time resolutions but poorer frequency resolutions in the resulting spectrograms, and
vice versa [R2]. Similarly, scalogram analyses also produce time, frequency and amplitude
spectrograms. However, these algorithms use wavelet transforms, and consequently improve
knowledge of where frequency components are occurring in time [R3]-[R5]. This capacity is
valuable when analyzing click trains that occur in short bursts. Furthermore, scalogram analyses
are able to detect more clicks than the STFT when the signal to noise ratio is low [R4]-[R5].
Finally, the relatively simple scalogram computations facilitate the prompt acquisition of results
[R3]. Thus, scalogram analyses may be beneficial to many real-world applications, such as
acoustically detecting multiple sperm whales using a single hydrophone [R3].

Narrow-band click trains characterized by regular, incremental changes in energy, frequency and
inter-pulse intervals are known as coherent pulses [R6]. Non-coherent pulses occur when the
consecutive, broad-band pulsed sounds within a click train are characterized by wide fluctuations
in energy, frequency and inter-pulse intervals [R6]. Dolphins residing in nondescript pools under
human care have been recorded to alternately produce these non-coherent pulses [R6]. The
function of these irregular, non-coherent pulses is not currently known. Ryabov [R6] has
suggested that these pulses may function as phonemes, which are the smallest acoustic units that
constitute a language.

Collectively, human languages consist of approximately 371 phonemes characterized by
frequencies that fall between 20 and 20,000 Hz [R6]. Phonemes are depicted on spectrograms as
formants and scalogram analyses have been used to detect formants in human speech [R7].
However, cetaceans possess far more extensive hearing ranges and acoustic repertoires than
humans. Indeed, bottlenose dolphins (Tursiops truncatus) produce sounds that vary between 200
to over 500,000 Hz, leading one researcher to propose that these animals are capable of producing
at least 3,000 phonemes consisting of non-coherent pulses [R6].

Studying free-ranging cetaceans requires the ability to utilize parameters that are not impacted by
being recorded off-axis and by interference from multiple animals producing click trains in the
same time interval. High-frequency acoustic signals are more resistant to distortion resulting
from off-axis propagation [R2]. Thus, scalogram analysis may be a more appropriate tool in
cetacean acoustic investigations due to its superiority in determining where frequency components
are occurring in time [R3]-[R5]. Furthermore, scalogram analyses have been used to detect
formants in human speech [R7]. Thus, we propose to analyze bottlenose dolphin click trains using
both STFT and scalogram analyses to compare the efficiency of these two algorithms.
Subsequently, we examine the resulting spectrograms for possible formants.

2. Material

Acoustic signals from two species of bottlenose dolphins (Zursiops sp.) were collected in their
natural environments.

2.1 Indian River Lagoon, Florida, Tursiops truncatus

A group of three bottlenose dolphins were recorded in July of 2013, in the Indian River Lagoon,
Florida. A Cetacean Research Technology CR-3 Hydrophone, a Reson EC 6061 preamp, and an
IOTech Personal Daq/3000 Series digital acquisition system were used to obtain these recordings.
A 500 kHz sampling rate at 16 bit resolution was employed during recordings yielding usable data
up to 250 kHz. DaqView Data Acquisition software was used to convert and store data in the .wav
format. These dolphins were attracted to the vicinity of the recording vessel by the fishing
activities of the boat’s captain. This .wav file is available in the NIPS4B website at

http://sabiod.univ-

tln.fr/nips4b/media/NIPS2 TURSIOPS 20 2013 mosquito lagoon florida TRO
NE.wav and is used under the copyright given in the NIPS4B website.

2.2 Western Australia, Tursiops aduncus

A 37-year-old female Tursiops aduncus dolphin was recorded in Monkey Mia-Shark Bay, Western
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Australia in August 2013 during a mission of the SABIOD project, using a Cetacean Research
Technology CR 55 hydrophone and a TASCAM audio digital recorder. The recordings were made
with a 96 kHz sampling rate and 24 bit resolution. The recording is available in the NIPS4B
website under the NeuroSonar session:

http://sabiod.univ-
tln.fr/nips4b/media/Tursiops_truncatus Nicky SHARKD 0002S34D12 day3 au

g2013 SABIOD 96kHz 32bits afterl9min nips4bfile e.wav

3. Methods

3.1 Short term Fourier transform (STFT)

The T truncatus and T. aduncus audio recordings were divided into 0.4 second and 0.7 second
segments respectively. Subsequently, 168 7. truncatus segments and 149 T. aduncus segments
were analyzed using STFT, with half-overlapping windows of 512 ms durations. The resultant
spectrograms show the local power spectrum of the signal over time.

3.2 Gabor scalogram transform

The same files that were analyzed using the STFT were also analyzed using a Gabor scalogram
transform with the ScatNet toolkit [R8] to produce scalograms. The T coefficient was set to 32,
the Q coefficient was set to 16, and the J coefficient was set to 80. Again, the resultant scalograms
show the local power spectrum of the signal over time.

It should be noted that, unlike STFT spectrograms, center frequencies of the wavelets are
quantized in a geometric progression. Henceforth, the Y-axis of the scalogram is naturally
logarithmic. Additionally, the temporal duration of the corresponding spectrograms and
scalograms are the same. However, the scalogram X-axis is similarly transformed using the
ScatNet toolkit, and in actuality reflects the time scale portrayed in the spectrogram [R8].

3.3 Formant detection

Following procedures outline by Jemma et al. [R7], formants were identified in the spectrograms
and scalograms. Within each click, frequencies of highest amplitude were identified by visual
inspection. Consecutive clicks that contained regions of higher acoustic energies at approximately
the same frequency were identified as formants. Each audio .wav file was analyzed using the
STFT and the Gabor scalogram transform, allowing a comparison of these two representations for
formant tracking.

4. Results

The STFT spectrograms did not portray the regions of local energy maxima within each click
clearly. Instead, the energy appeared to be equally distributed among the various frequencies that
demarked the click. On the contrary, the Gabor scalogram layer 1 displayed distinct bands of local
energy maxima with respect to frequency. For ease of comparison, Figure 1 depicts the Gabor
scalogram layers 1, 2 and 3 of the scattering decomposition, as well as the STFT spectrogram from
a segment of the Florida T. truncatus recordings.

We continued our exploration of dolphin acoustics by focusing our attention on layer 1 of each
scalogram. Bands of high amplitude sharing the same frequency on adjacent clicks were
connected with red lines (see Figure 2). Following human speech terminology [R7], we identified
these clusters of local energy maxima as dolphin formants.

Moreover, we labeled the formants depicted in Figure 2 as phoneme units A, B, C and D. Phoneme
B seemed to be composed of phoneme A plus an additional formant. Similarly, phoneme D
appeared to be composed of phoneme C plus an additional formant. Furthermore, phoneme C
seemed to be a shift upward of phoneme B. Additionally, three individual clicks contained local
energy maxima, but could not be connected to either adjacent click. These clicks occurred at 200,
270 and 300 ms.

The original scalograms and spectrogram for this file are available at the following URL:

http://sabiod.univ-

tln.fr/pimc/TURSIOPS FLORIDA norformants/NIPS2 TURSIOPS 20 2013 mosquito lagoon
florida TRONE J80 Q16 T32/part6 983041 windowsnb2 T32 Q16 _J80.pn
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The following Gabor scalograms derived from the 7. truncatus audio file display distinct formants.
These formants cannot be ascertained from inspection of the corresponding STFT spectrograms,
which can be accessed at the following URLs for comparison:

http://sabiod.univ-
tIn.fr/pimc/TURSIOPS FLORIDA norformants/NIPS2 TURSIOPS 20 2013 mosquito lagoon_florida TRONE J80 Q
16_T32/part9 1572865 windowsnb2 T32 Q16 J80.png

http://sabiod.univ-
tln.fr/pimc/TURSIOPS _FLORIDA norformants/NIPS2 TURSIOPS 20 2013 mosquito_lagoon florida TRONE J80 Q
16_T32/part65 12582913 windowsnb2 T32 Q16 J80.png

http://sabiod.univ-
tIn.fr/pime/TURSIOPS _FLORIDA_norformants/NIPS2 TURSIOPS 20 2013 mosquito_lagoon_florida TRONE J80 Q
16 _T32/part74 14352385 windowsnb2 T32 Q16 J80.png

Finally, a directory with links to the 168 corresponding scalograms/spectrogram spectra derived
from our T. truncatus audio recordings, each 0.4 seconds in duration, can be accessed at the
following URL:

http://sabiod.univ-
tin.fi/pimc/TURSIOPS _FLORIDA norformants/NIPS2 TURSIOPS 20 2013 mosquito_lagoon florida T

RONE _J80_Q 16_T32/

Third layer of the scattering transform
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Figure 1: The scalograms (layers 1, 2 and 3) of the scattering representation of Gabor scalogram
and the STFT spectrogram, from a segment of the Florida T. truncatus file, 500 kHz sampling rate,

0.4 seconds, coefficients T=32, =16, J=80.
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Figure 2: Scalogram layer 1 from the previous figure displaying the joint formant nodes. Bands of
high amplitude sharing the same frequency on adjacent clicks have been connected with red lines.
Phoneme units have been labeled as A, B, C and D. Total duration 0.4 seconds (Fs : 500 kHz).

In addition, scalograms and spectrograms derived from the audio recordings of 7. aduncus in
Western Australia are also available. Each of the 149 segments depicts 0.7 seconds of audio
recordings. These corresponding scalograms/spectrogram spectra can be accessed from a file
directory using the following URL:

http://sabiod.univ-
tln.fr/pimc/NICKY norformants/Tursiops truncatus Nicky SHARKD 0002S34D12 day3 aug?
013 SABIOD_96kHz J80 Q16 T32/

Figure 3 depicts the scalograms and spectrogram derived from the first 70 aduncus file listed
below. Similar to the previous example, the first layer of the scalogram highlights the frequencies
containing the most energy per click, whereas the energy appears to be evenly distributed among
the various frequencies on the spectrogram. Moreover, when the energy maxima are connected
with red lines, two phoneme units appear, which we have labeled as D;, D, and E. D, contains two
clicks, while the two phoneme units labeled D, consist of a single click each. Eight clicks make up
phoneme unit E.

These clicks which were recorded with a 96 kHz sampling rate are characterized by a frequency
bandwidth of approximately 35 kHz. All of these clicks portray their highest energies at or very
near the 48 kHz ceiling of the spectrogram. This is in contrast to the clicks sampled at 500 kHz,
which are typified by a frequency bandwidth of approximately 160 kHz (see Figures 1 and 3 ).

We have posted four Gabor scalograms derived from the 7. aduncus audio recordings that display
distinct formants. These formants cannot be ascertained from inspection of the corresponding
STFT spectrograms, which can be accessed at the following URLs for comparison:

http://sabiod.univ-
tln.fr/pimc/NICKY _norformants/Tursiops_truncatus_Nicky SHARKD 0002S34D12 day3 aug2013_SABIOD 96kHz J8
0_QI16_T32/partl15_7471105_windowsnbl_T32 Q16_J80.png

http://sabiod.univ-
tln.fr/pimc/NICKY _norformants/Tursiops_truncatus_Nicky SHARKD 0002S34D12 day3 aug2013_SABIOD 96kHz J8
0 Q16 T32/part5 262145 windowsnbl T32 Q16 J80.png

http://sabiod.univ-
tIn.fr/pime/NICKY _norformants/Tursiops_truncatus Nicky SHARKD 0002S34D12 day3 aug2013 SABIOD 96kHz J8
0_Q16_T32/part73_ 4718593 windowsnbl T32 Q16 J80.png

http://sabiod.univ-

tln.fr/pimc/NICKY _norformants/Tursiops_truncatus_Nicky SHARKD 0002S34D12 day3 aug2013_SABIOD 96kHz J8
0_Q16_T32/part131_8519681 windowsnbl_T32_Q16_J80.png
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Figure 3: The scalogram (layers 1, 2 and 3) of the scattering representation of Gabor scalogram and

the STFT spectrogram, from a segment of the Western Australia T. aduncus file, 96 kHz sampling rate,
0.7 seconds, Coefficients T=32, Q=16, J=80.
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First layer of the scattering transform

Figure 4: Scalogram layer 1 from the previous figure displaying the linked formant nodes. Bands
of high amplitude sharing the same frequency on adjacent clicks have been connected with red
lines. Phoneme units have been labeled as D,, D, and E. Total duration 0.7 seconds (Fs : 96kHz).

5. Discussion and Conclusion

This exploratory study compared the quality of information obtained from the traditional STFT
with that derived from a Gabor scalogram wavelet transform using high frequency, broad-band
dolphin clicks. The timing of the clicks demonstrated strong correspondence between the two
spectra and the Gabor scalogram did not detect more clicks. This result is contrary to those
obtained by Adam [R4] and Lopatka et al.[R5]. Perhaps the signal to noise ratio was great enough
that the STFT was as efficient as the Gabor scalogram.

However, the scalograms portrayed distinct local energy maxima at specific frequencies, whereas
energy bands in the STFT spectrograms were generally indistinct. The explanation for this effect is
two-fold. First, STFT analyses that portray strong time resolutions do so at the expense of poor
frequency resolutions [R2]. Second, while the Gabor kernel employed in these scalogram analyses
is efficient at capturing some energy in layers 2 and 3, it is extremely efficient at enhancing the
bands of local energy maxima with respect to frequency in layer 1 [R9].

The scalograms at layer 1 reveal evident local energy maxima, reminiscent of formants found in
human speech spectra. Thus, we propose that bands of high amplitude sharing the same frequency
on adjacent clicks be connected to form dolphin formants (see Figures 2 and 4). As in human
speech spectra, patterns are then ascertained. We demonstrate four formant patterns in Figure 2,
and labeled each as a 'phoneme' unit. Moreover, three individual clicks contained unique energy
maxima at different frequencies, and each could be considered a phoneme as well. Using the same
methodology, 2 phoneme units were found in the scalogram depicted in Figure 4. We subdivided
one phoneme unit into different varieties based upon the number of clicks within the phoneme
unit.

Most likely there were additional high frequency formants in the clicks displayed in Figure 4.
Frequencies higher than 48 kHz could not be detected given the 96 kHz sampling rate. All of these
clicks were characterized with the local energy maxima in the top 10% of the spectrogram.
Moreover, these T. aduncus clicks were demarked by a frequency bandwidth of approximately 35
kHz, while the T truncatus clicks were typified by a bandwidth of approximately 160 kHz, even
though all of these clicks had their lowest energies in the 10-20 kHz range. Indeed, most of the
clicks that we have inspected that were sampled at 500 kHz have energies commonly ranging up
to 165 kHz and higher. Thus, these differences in bandwidth can be attributed to sampling
procedures. We therefore conclude that acoustic sampling should be conducted with a minimum
sampling rate of 500 kHz when determining phoneme units in order to include all of the possible
formants in the analyses.

It may be that these formants function in social communication, as suggested by Ryabov [R6].
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Indeed, other researchers have suggested that cetaceans utilize pulsed signals for communication
as well as navigation. For example, sperm whale clicks have been associated with various social
contexts, including reunions, separations, contact calls, and in response to unusual underwater
sounds [R10]. Additionally, pulsed signals have been associated with agnostic interactions,
aggressive behavior, discipline, and excitement among Atlantic spotted dolphins (Stenella
frontalis) and bottlenose dolphins (7. truncatus) [R11]. Finally, harbor porpoises (Phocoena
phocoena) utilize stereotyped, narrow-band high frequency clicks among conspecifics during
aggressive interactions [R12].

Currently, the significance of the local energy maxima identified in our scalogram analyses
remains speculative. Although we are suggesting that they may function as communicative
phonemes, many researchers will be skeptical. Indeed, some proclaim that humans will not be able
to fully appreciate cetacean communication due to the difficulty and improbability of identifying
the basic, communicative unit, or phoneme [R13].

Other critics might claim that these formants would only be valid if the clicks were recorded on-
axis. However, high frequency signals are more resistant than low-frequency signals to the
amplitude and frequency weakening caused by off-axis propagation [R2]. Such distortion has been
demonstrated for 115 kHz beluga whale (Delphinapterus leucas) clicks and for 122 kHz
bottlenose dolphin clicks [R14]. Nevertheless, our data demonstrate bottlenose dolphins produce
clicks of even higher frequencies. Indeed, Figure 1 displays clicks with energy in the 200 kHz
range. Furthermore, some of the clicks that we have recorded demonstrate high amplitudes at 250
kHz, suggesting a ceiling effect due to the limitations of our recording system (Figure 5). Finally,
bottlenose dolphins have been reported to produce clicks ranging between 400 and 500 kHz
[R15]-[R16]. To our knowledge, the degree to which these high frequency signals degrade due to
off-axis propagation has yet to be determined.
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Figure 5. An FFT spectrogram of a bottlenose dolphin click that was recorded with a 500 kHz

sampling rate, suggesting that information exists above 250 kHz. The click was analyzed with

Raven Pro 1.5 software.

Furthermore, cetaceans live in a three-dimensional world, where most clicks are most likely
received off-axis by conspecifics. Given that high frequency pulsed signals have been associated
with certain social situations, it is highly probable that off-axis degradation does not significantly
impede conspecific interpretation of these acoustic signals. Indeed, cetaceans may have evolved to
produce and perceive high frequency signals precisely because these signals are resistant to off-
axis distortion, despite the fact that high frequency signals attenuate more readily than low
frequency signals.

In conclusion, we suggest that Gabor scalogram transforms outperform STFT analyses of cetacean
acoustics. Scalogram analyses are not subject to the time/frequency distortion trade-off that is
characteristic of the STFT. Thus, parameters that can be reliably ascertained through scalograms
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include formant frequency; frequency bandwidth of the entire click that contains the formant;
quantity of clicks; and inter-click intervals. Exploring patterns associated with these parameters
may expand our understanding of cetacean communication and evolution, possibly facilitating
conservation efforts.

Future studies should utilize recording equipment capable of recording up to 1 MHz in order to
fully document the acoustic repertoire of cetaceans. Pattern recognition algorithms should be
developed to automate the tedious task of identifying formants within audio recordings containing
thousands of clicks. Furthermore, algorithms that are capable of ascertaining formant frequencies,
frequency bandwidths of the entire click that contains the formant, the quantity of formants, and
inter-click-intervals are essential in order to discern the possible functions of dolphin formants.
Once patterns have been identified, playback studies could be utilized to determine the role of
such patterns.
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Abstract

This paper addresses automatic classification of baboon vocalizations. We consid-
ered six classes of sounds emitted by Papio papio baboons, and report the results
of supervised classification carried out with different signal representations (audio
features), classifiers, combinations and settings. Results show that up to 94.1% of
correct recognition of pre-segmented elementary segments of vocalizations can be
obtained using Mel-Frequency Cepstral Coefficients representation and Support
Vector Machines classifiers. Results for other configurations are also presented
and discussed, and a possible extension to the “Sound-spotting” problem, i.e. on-
line joint detection and classification of a vocalization from a continuous audio
stream is illustrated and discussed.

1 Introduction

Nonhuman primates produce a relatively limited variety of species-specific vocalizations in response
to particular social events [/1]. Until recently, classifying these vocalizations has been performed by
ear and by time-consuming manual analysis [2]. Several researchers conducted various analyses,
making comparison between studies, as well as between species, difficult [3]. The automatic classi-
fication of vocalizations can assist the field of primate communication in a multitude of ways: firstly,
it can be used to assist and complement the classification made by experts. For example, it can be
used to assess the relevance of different sets of acoustic features for the characterization of the differ-
ent sound categories. Secondly, automatic classification of sounds in such a context can be exploited
by audio/video recording systems dedicated to ethological studies or environment preservation. For
example, the detection of relevant sounds emitted by the animals under study may indicate a scene
of interest and trigger the video recording, thereby avoiding useless data storage and power con-
sumption. Understanding the differences between the broad vocal classifications (i.e., comparison
of a grunt to a scream) will better improve the fine-tuning of these analyses required for graded
vocal calls and the differences in vocal production by different individuals for the same sound. In
this work, we consider different supervised analyses for the classification of baboon vocalizations,
which, to our knowledge, is the first study of its kind.

*M. Janvier is funded by the “Direction Générale de I’ Armement” (DGA) included in the French Ministry
of Defence.
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In this paper we consider six categories of baboon vocalizations. We report the results obtained with
the use of different audio signal representations and supervised classification methods to character-
ize and recognize these vocalizations. To this end, we tested different spectral features computed
based on the usual short-term sliding window approach, e.g., Mel Frequency Cepstral Coefficients
(MFCC). We propose to introduce a sparse subset of coefficients characterizing the harmonicity of
the vocalizations, since, as opposed to (human) speech, the range of the fundamental frequency is
quite different across the baboon sound categories. As for the classifiers, we used hidden Markov
models (HMMs) [4]] to model the dynamic evolution of the spectral patterns within each sound cat-
egory. We also tested k-Nearest Neighbors (KNN) classifiers, Gaussian Mixture Models (GMM)
and Support Vector Machines (SVM) [3]], [6] with different configurations and appropriate pre-
processing of the data (especially for time alignment of feature vector sequences). Note that most
of the presented experiments concern isolated sounds that were manually pre-segmented, but we
also discuss and illustrate the feasibility of the extension of our system(s) to the “soundspotting”
problem, i.e. online joint automatic detection (i.e. segmentation) and classification of vocalizations
from a continuous audio stream.

The paper is organized as follows: Section [2]describes the data that were used for this study; Sec-
tions [3] and ] present respectively the different features and classifiers that were used; Experimental
results are presented in Section[5]and conclusions are drawn in Section [6]

2 Data

We recorded the vocal behavior of Papio papio Guinea baboons housed at the Rousset-sur-Arc
CNRS primate center, France. The vocalizations of sixteen baboons (13 females, 3 males; aged
between 2 and 27 years at the start of recording) were considered for this study. Fourteen of the
baboons were housed as part of a larger group in a 25 x 30 m outdoor enclosure connected by wire
tunnels to indoor housing (6 x 4 m) used at night. The other baboons were housed separately in
a 4.7 x 6.4m outdoor enclosures connected to indoor housing (2 x 4m). All groups had visual
and auditory contact with each other. The monkeys could be identified by their individual physical
characteristics and by number tags on a chain around their neck. Once daily feeding (fruits, veg-
etables and monkey chows) occurred at SPM; water was provided ad libitum. See [7]] for a more
detailed description of the research facilities at the Rousset-sur-Arc CNRS primate center. We used
opportunistic sampling techniques to record spontaneous vocalizations produced in response to so-
cial events and to stimuli occurring naturally within the baboons’ environment. The presence of
the recorders and their equipment did not disturb the baboons from their natural daily activities.
Recording took place between 8:00 and 21:00 (except 17:00-18:00 due to the baboons being fed at
this time) between September 2012 and June 2013. Recording was conducted at a distance from
the baboons of < 2m to 20m, with the greater distances suitable only for the long-distance vocal-
izations. A digital Zoom Handy Recorder H4n (Zoom, Japan: 44.1kHz sampling frequency, 16-bit
resolution, mono) with a Me66 Sennheiser directional microphone (Sennheiser Electronic KG, Ger-
many; with windscreen) was used to record the vocalizations. This is a super cardioid microphone
with a high sensitivity (50 mV/Pa + 2.5dB) and a wide (40Hz—20000Hz) and flat (£ 2.5dB) fre-
quency response. As the vocalizations were recorded outdoors, environmental sounds at different
noise levels may have interfered with the sounds at the focus of the recordings.

From continuous audio streams, individual “homogeneous” sequences of vocalizations (i.e. a series
of sounds of the same class) were first manually extracted by an expert for analysis. Those sequences
were further manually segmented into elementary sounds that were labelled to be submitted to our
classifiers. Six vocalization types were considered in the present study: barks, grunts, copulation
grunts (denoted “Cops” throughout the rest of the paper for concision), screams, wahoos, and yaks.
In total, the number of sounds per classification was: 110 barks, 130 copulation grunts, 384 grunts,
119 screams, 64 wahoos, and 336 yaks. Original sequences were used to illustrate the feasibility of
the “Sound-spotting” task (see Sections 4.4 and [5.4).

3 Features

This Section presents the audio features used in this study. Although we consider here vocalization
elements, i.e. elementary sounds that can be part of a series of longer vocalizations, and that have
been previously segmented, those elementary sounds can be of variable length. Moreover, they can
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be more or less stationary (and in general, they are rather non stationary). Therefore, from these
elementary sounds, we first extracted time sequences of feature vectors computed using a short-
term sliding window (for instance, a 30ms-Hamming window with 50% overlap). This approach
is familiar in speech processing, as well as in audio processing in general (e.g. for the analysis of
domestic or environmental sounds), and we inspire from those fields. Also, the features that we use
have been largely presented in the related literature [8,9]], and, thus, we present them only briefly.

Mel-Frequency Cepstral Coefficients: MFCCs [10] are cepstral coefficients that represent the
envelope of the short-term spectrum on a perceptive mel-frequency scale. Those coefficients are
computed as the discrete cosine transform (DCT) of the logarithm of FFT power coefficients passed
through a mel-filter bank (e.g. 40 log-spaced bands in the range 300Hz-10kHz; the bandwidth and
number of bands can vary; see Section [5). The first coefficient was omitted since it represents the
absolute energy of the signal frame and not the spectral shape, and the 1% and 2" derivatives are
added optionnally (depending on experiment).

Average Spectral Features: We tested a series of features that represent average properties of the
Short-Term Fourier Transform (STFT) spectrum. The Spectral Roll-off is the cut-off frequency
below which 99% the spectral energy is contained. The Spectral Moments characterize the overall
shape of the spectrum using n-order moments of frequency bin weighted by spectral magnitude. We
tested the 4 first moments. The Spectral Slope / Decrease represents the global amount of decreasing
of the spectral amplitude. The Spectral Flatness of the magnitude spectrum is given by the ratio
between its arithmetic and geometric mean. Finally, the Spectral Flux / Correlation measure the
average variation between two consecutive spectra.

Fy and Harmonicity Index: The above-mentioned MFCCs (resp. the ASF) are coefficients that
characterize the spectral envelope (resp. the global shape of the spectrum) on a perceptive (resp.
linear) frequency scale. MFCCs are widely used in Automatic Speech Recognition (ASR) systems
[10] since the spectral envelope characterizes the different speech sounds through the effect of the
speaker’s vocal tract, while cutting loose of speech sound dependence on fundamental frequency
Fy. This is a desirable property for ASR, in order to limit speech variablity across speakers and
utterances. In contrast, in the present context of baboon vocalizations, we think that the Fy range can
be a discriminative feature since it varies much between some of the considered classes. Therefore,
we propose to test the Fj value (also extracted on a short-term basis) as an audio feature. We also
tested the harmonicity index, which is the ratio between the second maximum of the signal (short-
term) autocorrelation function (which is also used to detect F}y) and the maximum which is obtained
at lag zero. The harmonicity index provides some simple confidence measure of the Fjy value.

Feature post-processing: The successive feature vectors of a sound can be further processed to
produce different final features, which will feed the classifiers. In particular, the feature vector
sequences are generally of different lengths, whereas some of the tested classifiers (KNN, GMMs
and SVMs; see Section [ are designed to process fixed-size vectors (or fixed-size sequences of
vectors reorganized as vectors). Therefore, it is necessary adress the problem of time normalization.
In the present study, we consider two simple forms of time normalization. The first one consists of
averaging the vectors in the time dimension over the entire acoustic event. Therefore, the feature
vector sequence is replaced with a single mean feature vector (the standard deviation can also be
used). The second form regards the interpolation of the feature vector sequence to the class’ average
duration, using basic (e.g. spline) interpolation/resampling techniques. Note that the GMM-T and
HMMs classifiers are fed directly with the original feature vector sequence and do not need time
normalization (HMMs are specifically designed to model dynamic sound representations). Note
finally that the final representation may consist of the (row-wise) concatenation of different features.
This is a particular case of information fusion for classification (see Section [4.3).

Implementation The MFCC and ASF features have been computed with the Python/C++ toolbox
YAAFE [9]. The Fy and harmonicity index analysis function was conducted using our own Matlab
implementation.

4 Classifiers
4.1 Definition
A multiclass classifier consists of a mapping g : X x C — R, whereby X is the feature space,

C ={1,...,C} is the set of labels and C' is the number of classes. The dimension of X’ may be
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fixed or varying with the sound, depending on the feature used. Given a feature vector (or sequence
of feature vectors) € X, g(x;c) is the score of classifying x as ¢. A new unlabeled observation
x € X is classified as: ¢*(x) = argmax.cc g(z; c). X will denote the training set, i.e. a set of
feature vectors X = {x,, }2_; whose class is known, used to train the classifiers.

4.2 Four Classifiers

In this section, we present the four types of classifiers that were used in the present study. As some
features are commonly used in speech and audio processing and the Signal Processing / Machine
Learning communities, we present them very briefly, with links to the related literature.

k-nearest neighbors (KNN): The KNN classifier first find the subset Sy () C X containing the k
closest points to a given vector . ginn (e, ¢) is then the number of feature vectors among Sy ()
that belong to the class c.

Support Vector Machines (SVMs): SVMs are a discriminative binary classification method (see
[S] for a detailed description), which has already been used in sound recognition, e.g. [64/11]]. SVMs
provide a discriminative function h(x), learnt form a set of positive examples and a set of negative
examples. The points satisfying h(x) = 0 form a hyperplane in the space induced by a chosen
kernel function k(-,-). h(x) > 0 means that x should be classified as positive and h(x) < 0 as
negative. The multi-class task uses one-versus-rest strategy. Also, we tested four different kernels
(linear, radial basis, polynomial and sigmoid).

Gaussian Mixture Models (GMM): A GMM is a probabilistic generative model widely used
in classification tasks [S]. Here, we use one GMM per sound class, which is a weighted sum
of M Gaussian components. The parameter set \. is composed of M weights, mean vectors
and covariance matrices. We thus train C' sets of parameters using the well-known Expectation-
Maximization (EM) algorithm. The mapping g corresponds to the likelihood of the observed data
given the model parameters. GMMs can be applied directly on the mean feature vector (in such case,
we simply denote this configuration with GMMs). Alternately, for a sequence of feature vectors
x = [z!,..., 7], which are assumed to be independent, we calculate: goyv(x;c) = p(x|\.) =

Hle p(x!|\.). We denote this configuration by GMMs-T.

Hidden Markov Models (HMM): HMMs also belong to the family of generative models [5,|10].
In an HMM, the observations depend on a hidden discrete random variable called state, taking S
values. The state sequence is assumed to be a first-order “left-to-right” Markovian process and the
emission probability is a GMM. Thus, the model consists of the parameters of the GMMs and the
parameters modeling the Markovian dynamics. All are learnt using the EM algorithm. The function
g is also the likelihood of the observations given the model: gumm(x; ¢) = p(x|€.).

Implementations: We used the standard Matlab KNN and GMMs algorithms. The HMMs are from
the PMTK3 library [12]]. The SVMs are implemented using libSVM [13]].

4.3 Information Fusion

In Section 3] we have seen that several kinds of features can be extracted from the baboon vo-
calizationsl to describe their spectro-temporal characteristics in order to be used in a supervised
classification scheme. This naturally raises the question of combining those features into a multi-
modal/multichannel classifier that would optimally exploit all information in an efficient manner, a
problem sometimes referred to as sensor fusion. This makes particular sense in the present study,
since we postulated in Section [3]that, as opposed to ASR, the Fy information is expected to provide
significant information about sound class, it is therefore necessary to test if this information can be
used in a complementary way to the spectral envelope (for instance MFCCs) information.

The usual, and simplest approach, known as early integration, consists in the (row-wise) concate-
nation of the different features (or feature vectors) into a single vector (in which dimension is equal
to the sum of the dimensions of the original feature vectors), possibly integrating some cross-modal
normalization processes. This new representation can then be used directly with the different classi-
fiers presented above. In contrast, late integration performs the fusion of the features at the decision
level of separate classifiers [[14]]. Thus, a different classifier (of same or different type) can be used
on each feature vector and then the outputs (crisp decision, confidence score, log-likelihood val-
ues etc.) of these classifiers are merged using a higher level process. Finally, we can consider an
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intermediary common space for fusion which is neither the input space nor the output space, lead-
ing to a type of mid-level integration. In particular, in the field of kernel-based classifiers (such as
SVMs), a new state-of-the-art fusion strategy has emerged called Multiple Kernel Learning [15]. In
this approach, the fusion is made “inside” the classifier: the kernel of the classifier is computed as
a combination of multiple kernels, for instance, one kernel for each feature. One advantage is the
ability to choose one type of kernel and its parameters according to the features. In Section[5.3] we
will test this strategy for the integration of MFCCs and Fj features in the present task of baboon
vocalization classification.

4.4 The “Sound-spotting” Task

The above techniques are all applied on elementary sounds manually extracted from vocalization
sequences. In practice, it is desirable to have a system that is able to automatically perform both
detection (i.e. segmentation of a series of vocalizations into elementary sounds) and classification
of the detected elementary sounds from the continuous audio stream. This task can be referred
to as “Sound-spotting”, in reference to the “Word-spotting” task in ASR which is the detection
of keywords in continuous speech signals. A naive but efficient strategy consists of applying any
of the previous classifiers (that have been tuned on a training corpus of elementary sounds) on a
sliding window and decide of the detection if some criterion (e.g. a likelihood function), provided
by the classifier, exceeds a given threshold. Temporal integration is necessary to make this joint
detection/classification robust, and this can be done at the criterion level (e.g. by averaging frame-
wise likelihoods) or at the feature level (e.g. by varying the sliding window lengthﬂ In the present
paper, we did not conduct a deeper investigation of the “Sound-spotting” problem, but in Section[5.3]
we present some elements which illustrate the feasibility of this task using the proposed classifiers.

5 Experiments

5.1 Setup

Given the database described in Section [2] different combinations of features, post-processing and
classifiers have been tested. We performed 5-cross validation tests, and used the accuracy score as a
metric of the performance in order to be able to statistically compare the different configurations. For
each experiment reported in the next section, only the best configuration of parameters (using grid
search and cross validation) has been retained due to the large number of parameters involved. For
the features, MFCCs reached its best results using 20 coefficients (with the first one omited), with
the derivates at the first and second order on a 10Hz-10000Hz bandwidth. As for the classifiers,
SVMs have shown the best results using linear kernels and radial basis kernels with a regulation
parameter equal to 0.1 and the one-versus-rest strategy. HMM have been tested with 3 to 8 states
and 5 to 10 components per state. Best results with GMM-based methods needed between 5 and 10
components in the mixture.

5.2 Results with Individual Feature Sets

We first present the results obtained separately with the different feature sets, i.e. either MFCCs
or ASF or Fy+harmonicity index. The accuracy scores are given in Table [T] for a selected set of
configurations, and confusion matrices are given in Table[2]and Table [3|for a subset of those config-
urations.

The best performance are obtained with SVMs (with a radial basis kernel) applied on averaged
MEFCC coefficients, with an accuracy score of 94.1%. This is a very good result, even for the
limited number of classes of the present problem, since there is no a priori reason to think that a
vast majority of the elementary sounds of the six classes are clearly prone to discrimination: This is
actually a major outcome of the present study. The confusion matrix for this configuration (Table [2b]
is well balanced, with no major class confusion. Best results per class are obtained for Barks (97.3%
accuracy) and worst result per class are obtained for Cops with 83.8% accuracy, and 13.8% of
confusion with Grunts. It is important to note that SVMs are here applied on an averaged MFCC

!"This is reminiscent of the “early” vs “late” integration problem discussed in Section but considering
here temporal fusion and not feature fusion.
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vector (to represent the whole sound). Hence, the time structure of the spectral vector sequence
does not seem to be very important, leastways not as important as in speech (even if we compare
with a short word recognition task). This is confirmed by the score of the SVMs applied on time-
interpolated MFCC vectors, which is a bit lower than with averaged MFCC vectors at 90.5%. And
this is more severely confirmed by the scores obtained with the HMMs applied on the original
MFCC vector sequences (see Table [2a)): the accuracy score is here only 80.8%, which is quite
deceiving. The confusion matrix exhibits notable confusions from Cops to Barks and to Grunts,
and from Grunts to Cops (but not from Barks to Cops), and also from Yaks to Screams, which is
surprising. This not only suggests that there is relatively poor additional information in the vector
sequence compared to the vector mean for the task at hand, but it also suggests that the HMMs
are not an appropriate tool for the modeling of such type of sounds. The latter makes sense since
it is not clear so far if there exists a phonological structure in the baboon vocalizations that could
be efficiently exploited by the state-space modeling of HMMsﬂ Finally, GMMs (92.7% accuracy;
Table and KNN (92.4% accuracy; Table [2c), both applied on averaged vectors, are a bit below
SVMs, confirming that most of the discriminative information is contained in the average vector,
and that good recognition scores can be obtained with relatively basic classifiers. KNN applied
on interpolated MFCC vectors are at 93.1% accuracyﬂ and we did not test GMMs on interpolated
MFCCs to avoid the “curse of dimensionality” problem which is typical for this model.

The scores obtained with ASF features are very deceiving. Many different combinations of ASF
features were tested (with the different classifiers), and the best accuracy score is 73.2% obtained
with SVMs on average ASF vectors (hence we only report this configuration in Table [T)). Moreover,
when using concatenation of MFCCs and ASF features (i.e. basic “early” fusion at the feature level,
see Section [4.3), the scores do not improve significantly compared to using only the MFCCs, they
even decrease in some configurations (that is the case for SVMs, see Table @ Therefore, the ASF
do not complement the MFCC information, which was predictable (they provide information on the
global shape of the spectrum with generally less resolution than MFCCs, provided that the cepstral
model order is sufficiently large). Therefore, we did not further consider those ASF features.

Generally, the results obtained with Fp alone or Fj concatenated with the harmonicity index are
remarkable, given that it is quite rudimentary information. Here, the best results are obtained with
the SVMs applied on interpolated Fy vectors, which reach 71.0%. GMM-T comes a very close
second with 70.9% accuracy. Both exploit temporal information (from interpolated or original vector
sequence), but the accuracy score of the SVMs applied on the average Fp vector is also very close
at 69.6% accuracy. However, the confusion matrices for the two latter two configurations differ
significantly: the matrix for GMM-T (Table is more balanced, whereas the matrix for SVMs
(Table[3b) shows that the Grunts and Yaks have better results, while the Wahoos are totally confused
(mainly with Barks and Cops) which is surprising. This can be explained partly by the fact that
Wahoos have some prosody which is reduced by the averaging process. Note that the SVMs scores
are biased by the fact that the best classification is obtained for the two classes with the higher
cardinals (Grunts and Yaks), and only 3 classes out of 6 can actually be regarded as “correctly”
classified. In contrast, the more well-balanced GMM-T matrix exhibits 5 classes out of 6 being
fairly well classified. GMMs (68.1% accuracy; confusion matrix in Table [3d) and KNN (65.4%
accuracy; confusion matrix in Table [3c), both applied on average Fy features, are a bit below the
others classifiers using F{, as a feature, but not much. KNN applied on interpolated F{, vectors
are at 69.8% accuracy. Therefore, here also, the different classifiers for “fixed-size” features in
both average and interpolated configurations are quite close to each other. Altogether, those results
show that basic information about harmonicity (say Fp range + harmonicity confidence) is enough
to provide honorable classification of 6-class baboon vocalizations. Note that HMMS are, again,
deceiving, with only 45.3% of correct classification.

5.3 Results with Kernel-Based Fusion of MFCCs and Fj

As announced in Section we report the results obtained with the mid-level integration of MFCC
and F} features, using fusion of SVMs kernels. As an example, Table[d]shows the results of a Multi-

“However, the GMMT score is also deceiving (78.5% accuracy) hence possibly pointing a problem with the
use of the original MFCC sequence, and so far we cannot clearly explain this result.

*Hence, KNN with interpolated MFCCs is a bit better than KNN with averaged MFCCs, whereas SVMs
with interpolated MFCCs is a bit lower than SVMs with averaged MFCCs. Altogether, the scores with KNN,
SVMs and GMM:s applied on either averaged or interpolated MFCCs are quite close to each other.
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Features Classifier Representation Accuracy
MFCCs KNN Averaging 92.4% + 2.9%
MFCCs SVMs Averaging 94.1% + 1.2%
MFCCs GMMs Averaging 92.7% + 1.8%
MEFCCs KNN Interpolation 93.1% + 3.0%
MFCCs SVMs Interpolation | 90.5% + 2.9%
MFCCs GMMs-T Sequencing 78.5% + 4.8%
MFCCs HMMs Sequencing 80.8% + 3.9%

ASF SVMs Averaging 73.2% + 2.3%
MFCCs & ASF |  SVMs Averaging 92.4% + 2.7%
F, KNN Averaging 65.4% + 6.9%

Fy SVMs Averaging 69.6% + 2.7%

Fy GMMs Averaging 68.1% + 7.4%

F, KNN Interpolation | 69.8% + 4.6%

Fy SVMs Interpolation | 71.0% + 2.3%

Fy GMMs-T Sequencing 70.9% + 4.2%

F, HMMs Sequencing 45.3% + 7.3%

Table 1: Accuracy score for different combinations of audio features, post-processing, and classi-

fiers. “Sequencing” refers to using the original sequence of vectors.

g 2 Z E 8 ¥l < @ z g 8 )
T & 5 § £ ¢ 5 B 5 5 £ 3
2 S B 5 g > S S BB g >
barks 102 O 0 1 7 0 barks 107 0 1 0 1 1
cops 13 8 12 7 7 2 cops 0 109 18 1 0 2
grunts 342 312 12 11 4 grunts 1 6 369 O 1 7
screams 1 0 0 114 0 4 screams 0 0 0 114 1 4
wahoos 9 0 0 0 55 0 wahoos 6 0 0 0 58 0
yaks 7 9 8 48 12 252 yaks 0 5 11 1 0 319
(a) Hidden Markov Models (HMMs) (b) Support Vector Machines (SVMs)
&z 2 = 8 »n ¢} i) g 8 %)
= &, = g e U .= &, = 3 e 4
2 8§ g & % % 2 8§ g & % B
barks 106 0 0 0 2 2 barks 105 0 0 3 0 2
cops 3 104 17 1 3 2 cops 0 115 8 1 0 6
grunts 1 9 367 O 0 7 grunts 0 19 350 2 0 13
screams 0 0 0 109 0 10  screams 0 0 1 112 0 6
wahoos 6 0 0 0 58 0 wahoos 5 0 0 1 57 1
yaks 0 1 2 20 1 312 yaks 1 2 9 3 0 321

(c) k-Nearest Neighbors (KNN)

(d) Gaussian Mixture Models (GMMs)

Table 2: Confusion matrix for the baboon vocalization recognition systems using average Mel-
frequency cepstral coefficients (MFCCs) as features for SVMs, GMMs and KNN, and using original

sequence of MFCCs for HMMs.
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g g & % % 285 3 & %%
barks 85 0 1 0 18 6 barks 83 12 1 0O 0 14
cops 17 29 4 1 36 3 cops 32 19 72 0 0 7
grunts 9 26 326 0 17 6 grunts | 13 1 363 0 O 7
screams | 1 0 0 90 1 27 screams | 2 0 0 67 0 50
wahoos | 14 7 0 0 43 0 wahoos | 29 24 8 0o 0 3
yaks 37 7 7 32 16 237 yaks 43 3 9 18 0 263
(a) Gaussian Mixture Models on a sequence of vectors (b) Support Vector Machines (SVMs)
(GMM-T)
) @ Z & «n ¢! 1] é 8 ]
2 & = g S M 2 4 = S S X
25 g ¢ § % 285 g g 5 %
barks 65 13 3 0 7 22 barks 74 0 1 0 29 6
cops 30 30 53 0 10 7 cops 21 18 50 0O 35 6
grunts 9 36 328 0 3 8 grunts 6 20 338 0 12 8
screams | 1 0 1 69 O 48 screams | 2 0 0 94 1 22
wahoos | 28 9 4 0 14 9 wahoos | 9 3 3 0 48 1
yaks 34 11 12 30 7 242 yaks 45 1 8 56 20 206
(c) k-Nearest Neighbors (KNN) (d) Gaussian Mixture Models (GMMs)

Table 3: Confusion matrix for the baboon vocalization recognition systems using average Fy (fun-
damental frequency) as feature for SVMs, GMMs and KNN, and using original sequence of Fj for
GMM-T.

ple Kernel Learning experiment, in which a linear kernel has been trained on MFCC features, while
another linear kernel has been trained on F{, features, and the combination of those kernels has been
computed and used in a third SVM. It can be seen that this configuration does not outperform the
SVMs which uses only MFCCs as features: the accuracy scores are 88.1% =+ 2.9% for the former vs
91.2% + 3.3% for the latte None of the other tested configurations of kernels and hyper parame-
ters have shown a significant improvement. One conclusion of this experiment is that, although the
Fy (and harmonicity index) feature separately carries a significant information which is exploitable
for the automatic recognition of baboon vocalization, this feature was not shown in our experiments
to be complementary to the MFCC features for this task. On the contrary, the combination of Fj
and MFCCs only lead so far to slightly decrease the scores obtained with MFCCs alone, which
is a bit deceiving. Of course, this is also because MFCC representation initially led to impressive
scores. Further investigation of the characterization of those features for the baboons vocalizations
is necessary to precisely describe the redundancy between them and confirm the seeming absence of
complementarity which has been observed in our experiments.

5.4 Feasibility of Sound-Spotting

In this subsection, we illustrate the feasibility of the Sound-spotting task described in Section [4.4]
by applying the SVMs of Section [#.2] on an example of original (i.e. unsegmented) sequence. The
SVMs were fed with MFCC vectors on a frame-by-frame basis (i.e. average of one vector at a time,
corresponding to a 200ms-frame of signal, with 10ms-hop size). For each frame and class ¢, we
retrieved p(c|x) the posterior probability of the frame being part of a vocalization of class ¢ given
the input MFCC vector &, which is the criterion used by the SVMs for classification [[16]. Fig.
shows the results of this analysis. The top subfigure shows an excerpt of a vocalization waveform
with the corresponding class boundaries and labels which were manually annotated. The three other
subfigures plot the values of p(c|x) for the Barks, Grunts, Screams and Yaks, respectively (from
top to bottom; probabilities for Cops and Wahoos are not displayed for clarity). It is evident that
the probability contours quite well with the actual classes, i.e. globally, the probability values are
high when the corresponding class is emitted, and low when another class or background noise is

“This latter score is different (a bit lower) than the SVMs/MFCCs score of Table because a radial basis
kernel was used in the SVMs of Section@
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barks cops grunts screams wahous yaks

barks 60 107 60|13 0 2| 6 1 0[O0 O 0|0 O 2|31 2 2
cops 26 1 7|13 92 8|8 31 36|0 1 1|0 0 1|10 5 3
grunts 11 1 2|3 7 41363 369 371/ 0 0 1|0 1 0] 7 6 6
sceams 1 1 O]1 O 1|0 O O |94 109 9|0 0 O |54 9 22
wahous 23 9 7|20 0 0|17 O O |O O OO0 S5 55 4 0 2
yaks 32 1 0|4 3 5|10 14 14|18 8 14|0 O 4 |272 310 299

Table 4: Confusion matrix for one instance of Multiple-Kernel SVMs combining MFCC and Fj
features. For each cell, the three numbers from the left to the right corresponds to the result of
classification for: (1) SVMs with a linear kernel on F{y, (2) SVMs with a linear kernel on MFCCs,
(3) SVMs with a combination of the two precedent kernels.

emitted. For this example, a very simple detection strategy based on thresholding can be applied:
Class c is detected as p(c|z) > 0.5 (the probabilities for the different classes sum up to 1, hence
only one class at a time can be detected). Merging the successive frames associated with the same
class leads to the detected boundaries represented in the top subfigure of Fig. [£.4] with background
color corresponding to the probability contours. The detection is fairly good but not perfect: for
example, background noise is confused with Grunts at approx. 6s, and the boundaries between
Yaks and Screams are not easy to define (nor is it easy for the human listener in this example, and
manual labeling may actually be inacurate). Moreover, many sequences are not so clear. However,
more refined strategies for time integration of frame-wise information, such as the ones mentioned
in Section[4.4] are expected to fix these problems and be more robust in general. Part of our future
work is to explore such strategies and derive an efficient and robust Sound-spotting algorithm in the
present problem of baboon vocalization recognition.

bt
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Figure 1: Example of automatic joint segmentation and classification using the SVMs of Section
(see text for details).

6 Conclusion

In this paper we have adressed the problem of automatic classification of Guinea baboon vocal-
izations. Six classes of sounds have been considered, and experiments have shown that several
types of classifier (KNN, GMM, SVM) lead to correct classification scores higher than 90% for
pre-segmented elementary vocalizations. The higher scores were obtained with SVMs applied on
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average MFCC vectors (94.1% accuracy), and the principal remaining confusions were observed
to be between grunts and copulations grunts. It is not entirely surprising that the classifiers have
difficulty in distinguishing these two vocalizations; of all the sound classes, the call units of these
two are the most similar from both an auditory perception and acoustic structure standpoint. This
study has also shown that the fundamental frequency F{ (alone or coupled with harmonicity index)
has a significant discriminative power: several classifiers applied on these features provided approx-
imately 70% correct classification. Indeed, analysis of the baboon vocal repertoire shows that the
baboons strongly modulate their FO between vocalizations, particularly between short- and long-
distance vocal categories (Kemp et al., in prep.). However, and quite deceivingly, this information
was not found to be complementary to the spectral envelope information in our study. Finally, al-
though we did not conduct a deep investigation of the Sound-spotting problem in the present study,
the observation of the good behavior of classifiers, designed on elementary sounds when applied
on continuous audio streams, shows that joint segmentation and recognition is expected to be fea-
sible with a well-grounded time integration process. This time integration can be processed at the
feature level, at the classifier output level, or at some “mid-level” within the classifier, echoing the
discussion of Section [4.3] on feature information fusion. Future work will concern this task, which
is essential to design a real-world system. We will also consider increasing the number of classes
and defining confidence measures to help the exploitation of the classification results in primatology
studies.

Acknowledgments: Yannick Becker and the staff of the Rousset-sur-Arc primate center are ac-
knowledged for technical support.
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Abstract

Identifying structure in mice ultrasonic vocalizations (USV) is a useful tool
for investigating the role of genetics in human disorders by modifying
(“knocking out”) various genes in mice and examining their vocalizations
for changes that may be linked to those genes, and hence the analogue
genes in humans [1][2]. Thus far, it appears that all annotation and feature
extraction from USV has been done manually. We believe that the lack of
computational tools has been a major bottleneck in USV research. To
address this problem we have previously developed an intuitive software
suite that can analyze acoustic properties of USV and characterize the
relationships between behavioral segments and calls [2]. Here we present a
novel analytical tool that goes beyond quantifying basic acoustic properties
of USVs, by characterizing the relationship between the USV syllables used
during specific components of social behavior.

1 Introduction

Identifying structure in mice ultrasonic vocalizations (USV) is a useful tool for investigating
the role of genetics in human disorders by modifying (“knocking out”) various genes in mice
and examining their vocalizations for changes that may be linked to those genes, and hence
the analogue genes in humans [1][2]. In recent years this framework has emerged as an
extremely promising tool for understanding human cognitive and memory disorders.
Analyzing vocal behaviors of mice models in this manner has led to the discovery of the
genetic cause of Autism [3], and has shown great promise for the study of Alzheimer’s
disease [4].

The UCR-USV tool has been implemented in MATLAB®, making it easy to extend, and
essentially free for academics. The system performs five main functions: Syllable Extraction
and Idealization, Analysis of Basic Acoustic Properties of USV, Syllable Classification
[51[61[7]1[8], Visual Representation of Call Rates Annotated by Mice Behaviors and
Measuring the Density of Syllables Obtained during Each Behavior Segment.

In this study we hint at the actionability of audio motif discovery by showing that motifs,
once discovered, can be used to test for changes in vocal repertoire that may be attributable
to genes that were deliberately deleted from the mouse genome.
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We obtained six hours of vocalizations recorded during courtship/mating of various pairs of
mice (only males vocalize). These sessions were annotated by the mice behaviors, from the
set: {Defensive (D), Ejaculate (E), Grooming (G), Intromission (I),
Mounting (M), No Contact (N), Rooting (R) and Sniffing (S)}. A basic question
is does the vocal repertoire or frequency during these behaviors differ for different mice
genomes. In this study we hint at the answer to this question; a fuller exposition can be
found at [9].

Manipulation of particular genes has already shed light on the genetic basis of human
communication disorders [15][20][21][22][23][24]. The function of ultrasonic vocalizations
in adult mice is likely only to facilitate or inhibit social interaction. Understanding the types
and functions of ultrasonic vocalizations emitted by laboratory rodents may enable
researchers and animal car personnel to use vocalizations as an indicator of an animal’s
behavior and affect [25]. (Portfors, 2007) describes three types of calls emitted by rats and
classifies them based on different ranges of frequencies. (Grimsley et al., 2013) [26] have
applied clustering analysis on syllables emitted by a type of mouse pups and found four
clusters of syllables again based on their frequency bands. Finally they introduce an Excel-
Based calculator which classifies syllables by using frequency ranges and they call it an
automated classification tool.

1.1 Notations

A sound spectrogram is an image of time-varying spectral representation, produced by
applying the Short Fast Fourier Transform to successive overlapping frames of an audio
sequence. The horizontal dimension corresponds to time and the vertical dimension
corresponds to frequency. The relative spectral intensity of a sound at any specific time and
frequency is indicated by the color/grayscale intensity of the image.

A ‘syllable’ is a unit of sound composed of one or more ‘notes’. If the interval between two
notes is <10 msec (user definable), they are combined into a single syllable. A ‘syllable
type/class’ is a category of syllable, observed regularly in the animal's vocalization, distinct
from other syllable types [14]. The ground truth (G) dataset is a set of annotated syllables
that were manually classified by two of the authors (SR and KR). Each class in the ground
truth may be represented by one or multiple exemplars. This is to allow our classification
model to capture the natural variability of a class. By analogy, a handwriting recognition
system must have at least two exemplars of “seven”, one to match the common American
style “7”, and one to match the exemplars drawn with a line in the middle “#”, the latter
style being common in Europe and Latin America.

1.2 UCR-USYV Tool

The tool is designed to be user-friendly. The tool performs five functions: Syllable
Extraction and Idealization, Basic Analysis, Syllable Classification, Visual Representation of
Call Rates Annotated by Mice Behaviors and Measuring the Density of Syllables Obtained
during Each Behavior Segment.

Syllable Extraction and Idealization: Converts an audio file of USVs to a spectrogram
representation. Discrete syllables from the spectrogram are then extracted and idealized.

Basic Analysis: Records the duration and range of frequencies in each syllable, and
determines the gaps between the syllables which can be utilized to quantify the rate of USV
calls. This step also generates separate files which include the durations, frequencies and
gaps for all syllables for further analysis.

Syllable Classification: Using the GHT (Generalized Hough Transform) distance measure
[5116]1[7]1[8], all syllables are classified in separate folders. A special ‘other’ class is possible
for syllables that our system could not confidently classify. These syllables can later be
classified by a human expert, or simply discarded as they are very rarely false dismissals,
but almost always simply noise/artifacts.

Visual Representation of Call Rates Annotated by Mice Behaviors: This step represents call
rates for each syllable in the dictionary and maps mice behaviors to call rates.
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Measuring the Density of Syllables during Each Behavior: Normalizes the number of
syllables of each class obtained during a behavior segment by total number of calls and time
spent in the behavior segment and characterizes the relationships between behavioral
segments and calls.

2 Methodology
We discuss the modules performed by the UCR-USV tool in greater detail below:

2.1 Syllable Extraction

We use the algorithm in Table 1 to extract all the candidate syllables from the spectrogram of
a mouse vocalization. The algorithm is briefly described below and additional details can be
found in [2].

Table 1: Extract candidate syllables

Algorithm 1 ExtractCandidateSyllables(SP)

Require: spectrogram of a mouse vocalization
Ensure: set of candidate syllables

1: I «+ idealized spectrogram
2: L « set of connected components in /
3: R « row index of connected points
4: C « column index of connected points
5: V+ value of connected points // value ranges from 1 to ||
6: [4 B] « sort(V, ‘ascend’) // 4 has values of V' sorted and B has the
7: index
8: S—1] // set of candidate syllables in SP, initially empty
9: ¢1 < dyiny C2 < dyax // min and max duration of a syllable
10: | je—lLk«1
11: for i — 1 to |L| do {every connected component /; in L}
12: ne1
13: while A(k)=i do
14: RW,,(n) < R(B(k)) // RW,, contains row indices of /;
15: CLy, (n) < C(B(k)) // CL;, contains column indices of /;
16: n—n+l
17: k—k+1

m«—L(min(RW,,):max(RW,,), min(CL,,):max(CL,))==i
18: //minimum bounding rectangle (MBR) of /;
19: [ c] « size of m
20: if |c| <cjorle|>c
21: continue // filter out noise
22: else
23: Sj—m
24: add §jto §
25: T1; < min(CL;) // start time of S;
26: 72; — max(CL;) // end time of S;
27: je—j+1

return S, 71, T2 // candidate syllables in SP with start/end times

Instead of extracting candidate syllables from the original spectrogram (SP) we use an
idealized version (I) of SP, as it produces fewer false negatives to be checked. In line 2, we
convert the matrix I into a set of connected components, L. L has the same size as I, but it
has the connected pixels marked with number 1 to |L|. The set of candidate syllables in SP is
initialized with an empty set in line 7.

A syllable is a contiguous set of pixels in a spectrogram; we can thus consider it as a set of
connected points in I. The for loop in lines 10-26 is used to search for a connected
component li in I. In order to make the search time linear to the number of candidate
syllables, in lines 3-5 while creating L (a set of connected components), the row and column
indices and the values of all the connected points in arrays R, C and V, respectively are
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saved. In line 6, the array V is sorted in ascending order and indices in B are saved. In the
while loop in lines 12-16, the indices in B are used to find the row and column indices of
a connected component li in I. The minimum and maximum values of the row and column
indices are used to extract the minimum bounding rectangle (MBR) of li.

It is important to note that not all of the connected components are candidate syllables. The
idealized spectrogram can still contain non-mouse vocalization sounds. In the if block of
lines 19-20, the duration of a connected component li is checked and those li in S which are
within the range of thresholds cl and c2 are included. Since the minimum and maximum
duration of syllables can vary across different mice, the values of ¢l and c2 should be set
after manual inspection of a fraction of the data. In our experiments, the values are set to 10
and 300, respectively. However the exact settings of these parameters are not critical to
subsequent steps. In lines 24-25, the start time and end time of a syllable are saved and used
for subsequent analysis. Figure 1 visually demonstrates the method. Our algorithm runs
faster than real time, and thus does not warrant further optimizations for speed.

In Figure 1, a snippet spectrogram SP, matrices corresponding to the idealized version of the
spectrogram | and connected components L are presented. For brevity in explanation,
original matrices for I and L are resized to 10x10. Finally, the MBRs of the candidate
syllables in the snippet spectrogram are marked.

connected components
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Figure 1: (from left to right) A snippet of a spectrogram, the resized matrix corresponding to an idealized
spectrogram /, the resized matrix corresponding to the set of connected components L, and the MBRs of the

candidate syllables
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2.2 Basic Analysis

The tool measures basic acoustic properties of syllables such as duration, dynamic range of
frequencies and gaps between syllables (Figure 2). Figure 2 shows a syllable made up of three
notes (left), and one that consists of a single note (right). The maximum possible gap
between single notes is a user-defined threshold (in this study we used 10 msec, which is
also set as the default). Any notes which are closer than the maximum gap, are combined as
one syllable. The tool reports the minimum, maximum and mean durations and produces an
output file including all durations and start and end times for each syllable. Corresponding
frequency dynamic range and gaps between syllables are included in separate output files.
Other information such as the maximum and average gap, and the total number of syllables
produced in the recording are also reported.

18235 ms 18324 ms 18409 ms 18509 ms
129 kHz = ssssssses Hak "
o . ) i : ]
: H : : 8o
'én : H : : 5
@ N H : H N
H : /\"'& F
Oal: : : : 29
é ~| ¥ : i H g£®
] : H — — ©
s | : Duration=100ms S
(a] : . (=]
50 kHz =~ =esssssssssness y 9

Duration = 89 ms +—m——>
Gap =85ms

Figure 2: measurable features for syllables
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2.3 Classification

Before the classification begins, the tool scans all the notes and combines the notes with a
gap less than the user-defined threshold into single syllables (for example, Figure 2, left).
The algorithm in Table 1 will generate a set of candidate syllables that are not classified in
this step. In order to classify them, a set of annotated syllables termed Ground Truth (G), and
a set of thresholds for each class of syllables are used. The candidate syllable cannot simply
be assigned to the class of its nearest neighbor because a large fraction of the candidate
syllables will inevitably be noise, and it is the thresholds that allow us to reject them.

A ground truth (G) dataset is a set of annotated syllables that have been classified by humans
(authors SR and KR). Each class in the ground truth may be represented by one or multiple
exemplars. The data set includes a small set of robust exemplars for our seven classes. The
Ground Truth table consists of seven syllable classes (Figure 3) against which each candidate
syllable should get compared. Our ground truth table shows consistency with other studies.
For example [15] and [16] have introduced ten categories of calls which include almost all
of the calls mentioned in Figure 3, except for the class of multiple notes (class 7 in this
study), we have considered a single class while [15] and [16] have more than one class for
multiple notes. The difference will not hurt the accuracy of our results, as most of the results
concluded in this paper are based on classes with single notes. The only conclusion
conducted for Class 7 could simply generalize to combining the categories of multiple notes
in[15] and [16].

Furthermore a set of thresholds, one for each class, is required for the purpose of
classification. Thresholds are created by simply computing the GHT distances between every
annotated syllable to its nearest neighbor from the same class. Then the mean plus two
standard deviations is chosen as the threshold distance for that class.

Given a set of candidate syllables S and ground truth syllables (G) with their matching
thresholds (1), the algorithm shown in Table 1 classifies syllables in S, and rejects all others
asunclassifiable. A special ‘other’ folder is created for syllables that our system could
not confidently classify. These syllables can later be classified by a human expert, or simply
discarded as they are very rarely false dismissals, but almost always simply noise/artifacts.

Table 2: Syllable classification algorithm

Algorithm 2 ClassifyCandidateSyllables(S, G, T)

Require: candidate syllables, ground truth, set of thresholds
Ensure: set of labeled syllables

1: /I'§= {81, S, ... Sy} is set of candidate syllables,

2: !l G={G, G, ... G} is ground truth and

3: /I T= {1, T2, ... T11} is set of thresholds

4: // normalize all the syllables in S and G to equal size

5: // initialize all syllables’ class {cs;, cs, ...} to 0 or not classified
6: fori«— 1tondo 1S=n

7: NNdist = inf // initially set the NN distance to infinity
8: forj—1tomdo //|Gl=m

9: dist «— diSt_GHT(Si, Gj) /lcalculate GHT between S; and G;
10: if dist < NNdist

11: NNdist < dist // update nearest neighbor distance
12: NN // update nearest neighbor (NN)

13: if NNdist < 7(Cyy)  // Cyvis the class label of Gyy

14: Cg; < CNN

15: | return {CSI, CgDy o-- CS,,} // class labels of all candidate syllables

In order to classify a candidate syllable we look for its nearest neighbor in G in the for
loop of lines 8-12. In the if block of lines 13-14, the class label of the nearest neighbor
to a candidate syllable is assigned only if the distance between a candidate syllable and its
nearest neighbor from G is less than the threshold of the nearest neighbor’s class. The GHT
distance measure for classifying syllables was used in this study. Although GHT is a
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common and popular distance measure for this type of classification, other distance
measures have also been used in this area. Hammerschmidt et al. use the log-likelihood
distance measure and Schwarzsches Bayes criteria (BIC) for clustering mice calls [17].

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

\Mf/\Nu/\:}

Figure 3: a single instance for each class of syllables

This opens the question of why GHT is an appropriate distance measure to consider if a set
of pixels is “sufficiently similar”. GHT is fast, robust to the inevitable noise left even after
idealization, and at least somewhat invariant to the significant intra-class variability
observed. After careful consideration and provisional tests of dozens of possibilities, we
converged on a distance measure based on the Generalized Hough Transform [5].

The Hough Transform [6] was introduced as a tool for finding well-defined geometric shapes
(lines, curves, rectangles, etc.) in images [7]. Ballard et al. generalized the idea and
introduced the Generalized Hough Transform to detect arbitrary shapes in images [5]. The
computation time of Ballard’s method is relatively expensive. It takes quadratic time, O(n,’),
to calculate the distance between a pair of windows. Here, nb is the number of black pixels
in the window. However, Zhu et al. [§8] augmented GHT in a way that reduces the amortized
time for a single comparison significantly. Zhu et al. achieve speed-up by creating a
computationally cheap tight lower bound to the GHT. Moreover, they present modifications
to the classic definition that allow the measure to be symmetric and obey the triangular
inequality, two properties that are highly desirable because they allow various algorithms to
be used that exploit (or at least expect) these properties. We refer the interested reader to [§]
for more details on GHT.

3 Experiments

We obtained six hours of vocalizations recorded during courtship/mating of various pairs of
mice (only males vocalize). These sessions were annotated by the mice behaviors, from the
set: {Defensive (D), Ejaculate (E), Grooming (G), Intromission (I),
Mounting (M), No Contact (N), Rooting (R) and Sniffing (S)}.

We applied our motif discovery algorithm [19] to the data and found many instances of motif
shown in Figurel. top. Having discovered this motif, we used a sliding window to calculate
its density over time. As shown in Figure 4.middle, this particular motif occurs about 4.1
times more frequently during Sniffing than during Rooting for this particular strain of KO
mice. Moreover, because we are able to automate this process (most similar research efforts
resort to manual counting [4][28]) we can automatically search through a large space of
motifs x behaviors x genomes, scoring the frequency differences by significant tests.

100 milliseconds

PN TR | W PO
Y Y v = Lot

25 seconds = 0.040

32 motifs
211 seconds = 0.152

0041

Figure 4. top) Sample instances of a motif discovered from mice vocalizations by applying our algorithm
(middle) Comparing the number of motifs during S and R behaviors for a sample recording of KO mice

In: proc. of int. symp. Neural Information Scaled for Bioacoustics, sabiod.org/nips4b, joint to NIPS, Nevada, dec. 2013, Ed. Glotin H. et al.

158



vocalization. bottom) Comparing the number of motifs during S and G behaviors for a sample recording of
WT mice vocalization.

In Figure 4.bottom, we show another example of a similarly significant contrasting pattern,
this time in WT (wild type) mice. In this case we noted a dearth of the motif during
Grooming.

Moreover, because we are able to automate this process (most similar research efforts resort
to manual counting [4][28]) we can automatically search through a large space of motifs x
behaviors x genomes, scoring the frequency differences by significant tests.

The process of finding one or more syllable classes which distinguish WT versus KO or
mice behaviors (sniffing, grooming, no contact, rooting) leds to a two group classification
problem. Therefore, we can use the Fisher’s Linear Discriminant metric to find the most
discriminative syllable classes to distinguish WT and KO mice [27]. Fisher’s Linear
Discriminant is a classification method that projects high-dimensional data onto a line and
performs classification in this one-dimensional space. We calculate the class density during
each behavior as a score, Figure 4, in order to calculate Fisher’s Linear Discriminant values.
We refer the interested reader to [9] for more detailed results.

Sniffing Grooming Rooting NoContact

1 1

12 3 4 5 6 7 2 3 456 7 2 3 456 7 1.2 3 4 5 6 7
Class Number

Fisher’s Linear Discriminant

Figure 5: compares the Fisher’s Linear Discriminant score for every class in each behavior

Values higher than the threshold line may happen to be significant classifiers. Figure 5
suggests Class 5 during sniffing and Class 7 during NoContact could potentially be
significant discriminators for mice types, KO and WT.

4 Discussion

In contrast to many other studies, we have designed a classification algorithm for classifying
syllables by considering their shape regardless of their frequencies, mice type or other basic
features. Our UCR-USV tool is capable of automatically extracting syllables from mice
vocalizations, idealizing the calls and classifying them to separate classes in almost real
time. The tool analyzes mice vocalizations by reporting the frequencies, durations, dynamic
ranges, call rates and finally characterizes correlations between the USV syllables used
during specific components of social behavior.

The algorithm for classifying mice vocalization syllables described in Table 2 classifies
about 90 percent of the syllables by applying the following techniques: 1- Assigning
multiple instances to each group in the Ground Truth Table. 2- Idealizing the spectrogram
and removing noise. 3- Using a dynamic user-defined threshold for idealizing the
spectrogram.

USVs are typically analyzed in isolation from the social behaviors during which they are
elicited. To the best of our knowledge this is the first time to analyze mice calls based on
their social behaviors. We found out that syllables emitted by the WT mice during their
sniffing behavior, overrepresented call types of class 5 (Figure 3) comparing to the KO mice.
While the mice did not have any contact, KO mice produced denser calls of combined notes

In: proc. of int. symp. Neural Information Scaled for Bioacoustics, sabiod.org/nips4b, joint to NIPS, Nevada, dec. 2013, Ed. Glotin H. et al.

159



(class 7 in Figure 3). We have also compared the density of calls between every pair of
behaviors in a specific type of mice and the results for KO and WT mice have been shown in
[9]. Higher values for Fisher’s Linear Discriminant scores show a more significant
discriminator among the behaviors.

Many studies have considered the rate of USV calling, [17] compares the call rates among
male and female mice, they claim that during courtship in response to female intruders,
females called more than males , and males called more to female than to male intruders. A
comprehensive analysis has been done by Roy et al. in [29] which they have compared
isolation-induced USVs generated by pups of Fmr1-KO mice with those of their wild type
(WT) littermates. They claim that the total number of calls was not significantly different
between genotypes, a detailed analysis of 10 different categories of calls revealed that loss
of Fmrl expression in mice causes limited and call-type specific deficits in ultrasonic
vocalization: the carrier frequency of flat calls was higher, the percentage of downward calls
was lower and that the frequency range of complex calls was wider in Fmrl1-KO mice
compared to their WT littermates.
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7.1Multi-Instance Multi-Label Acoustic
Classification of Plurality of Animals : birds,
insects & amphibian

O. Dufour* H. Glotin' P. Giraudet? Y. Bas?
T. Artieres’

25/11/2013

1 Introduction

Nowadays, consulting firms on environment propose to evaluate impacts of
transports and/or power production infrastructures on biodiversity using bioa-
coustic and adapted algorithms of signal processing. We present here our best
algorithm (whose AUC score is 0.85%). This is our contribution to the “Neural
Information Processing Scaled for Bioacoustics ” (NIPS4B) workshop technical
challenge ! of NIPS 2013. Our objective was to obtain a bird-sound operational
classification machine-learning model that environmental engineers (mostly or-
nithologists) could use to realise automatic inventories of acoustically active
animals.

2 Description of the method

Our preprocessing is based on Mel-filter cepstral coefficients which have been
proved useful for speech [12; 29] and bird song recognition [26]. A temporal
signal is first transformed into a serie of frames (see figure 1 A and B) where
each frame consists in 16 mfcc (Mel-filter cepstral coefficients), including energy
(first coefficient). Each frame represents a duration of 11.6 ms (e.g 512 temporal
bins of a signal sampled at 44 100 Hz). Two successive frames overlap of 33%
ie. 3.9 ms.

2.1 Detection and feature extraction

*LSIS, Université du Sud Toulon Var. olivierlouis.dufour@gmail.com

T Aix-Marseille Université, CNRS, ENSAM, LSIS, UMR. 7296, 13397 Marseille, France.
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2.2 Feature extraction 2 DESCRIPTION OF THE METHOD
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Figure 1: Main steps of the syllables detection.

Detection. To find frames of higher energy (liable to contain a bird syllable),
we performed an energy-based detection step. The idea is close to the standard
syllable extraction step that is used in most methods for bird identification
[30, 10, 8].

1. We compute E(t) , t = {1,2,3,..., N} (figure 1 C). E(t) is the set of
values of the first MFCC from 1 to N. E(t) is the value of the energy
in the audio signal contained in the frame number ¢. N is the number of
frames contained in an audio file. For a 5 seconds recording, N = 860.

2. We compute Conv. Conv is the convolution of E by 1199. 1ligo is a
100-element vector of value “1”. It corresponds to a 1.16 s duration.

COTl"U(t) = E(i) * 1100 (1)
3. We note abscissas of all local maxima superior (figure 1 C) to Th such as:

Yot Conw(i)

Th =
h N

(2)
or we retain abscissas of the five higher local maxima.

4. For each of D dates, we consider the values of the 16 MFCC from 16
frames before to 15 frames after the frame of the detection. Considering
segments of n = 32 frames (i.e. about 130 ms duration) means we use
windowing.

2.2 Feature extraction

The final step of the preprocessing consists in computing a reduced set of fea-
tures for any segment. Recall that each segment consists in a series of n 16-
dimensional feature vectors (with n = 32).
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2.3 Training 2 DESCRIPTION OF THE METHOD

e 96 coefficients featuring To get new feature vectors that are representa-
tive of longer segments, our feature extraction first consisted in computing
6 values for representing the series of n values for each of the 16 mfcc fea-
tures. Let consider a particular mfcc feature v, let note (v;)i=1.., the n
values taken by this feature in the n frames of a window and let note v;
the mean value of v;. Moreover let note d and D the velocity and the
acceleration of v, which are approximated all along the sequences with
d; = v;41 — v, and D; = d;11 — d;. The 6 values we compute are defined
as:

2 iz (i)

fi= - (3)
1 < -
fa= n—lz(vi_vi)Q (4)

fs > -y (5)

=1
D gt
=S ®
_ Z?:_2 | D;]
fo = ﬁ (8)

At the end, a segment in a window is represented as the concatenation
of the 6 above features for the 16 cepstral coefficients. It is then a new
feature vector s; (with ¢ the number of the window) of dimension 96.

e 112 coefficients featuring To get new feature vectors, we also used an
algorithm implemented by Vipin Vijayan [306]. Basically this algorithm
first realises a PCA on the data and then compute a LDA on the dimen-
sionally reduced data. Contrary to 96 coefficients featuring previously
mentioned, in this case the number of features (i.e 112) isn’t fixed by
human operator but automatically chosen.

In all cases, each audio file is finally represented as a sequence of feature
vectors s¢, each representing a duration of about 130 millisecond.

2.3 Training
What makes this challenge so difficult is the fact that:

e there isn’t one Multiple-Instance Single-Label training recording per class.
One single-label training recording has been provided for only N classes
(K> N; K=87; N=51);

In: proc. of int. symp. Neural Information Scaled for Bioacoustics, sabiod.org/nips4b, joint to NIPS, Nevada, dec. 2013, Ed. Glotin H. et al. 166



2.3 Training 2 DESCRIPTION OF THE METHOD

e in most of test and train signals, several classes are present. Each audio
file is not only represented by multiple instances but also associated with
multiple class labels.

Lets consider Tsoumakas definitions from [35]. We define problem transfor-
mation methods as those methods that transform the multi-label classification
problem either into one or more single-label classification problems, for which
there exists a huge bibliography of learning algorithms. We define algorithm
adaptation methods as those methods that extend specific learning algorithms
in order to handle multi-label data directly.

Problem transformation Method The most common problem transforma-
tion method learns |L| binary classifiers (|L| = 87), one for each different label
[ in L. Tt transforms the original data set into |L| data sets DI that contain
all examples of the original data set, labelled as [, if the labels of the original
example contained [ and as —l otherwise. It is the same solution used in order
to deal with a single-label multi-class problem using a binary classifier. We used
this approach (dubbed PT) with a Support Vector Machine classifier.

Algorithm adaptation methods One strategy can consist in separating
syllables of different classes in the same training recording during preprocessing
like in [10, 9]. This is an signal-processing approach. According to [30, 10, 8, 9],
we chose to use a machine learning approach. We trust in learning by bag-of-
instances in order to realise the tricky task.

Multi-instance multi-label learning (MIML) is a recent learning framework
where each example corresponds to a bag of instances as well as a set of labels
[25, 41]. To handle this MIML task, we tested different matlab toolboxes from
Nanjing University [38, 39, 37]:

e MIMLRBF (MIML Radial Basis Function) is an innovative neural network
style algorithm. As its name implied, MimIRbf is derived from the popular
radial basis function (RBF) method [4]. Connections between instances
and labels are directly exploited in the process of first layer clustering and
second layer optimization. Briefly, the first layer of MIMLRBF neural
network consists of medoids (i.e. bags of instances) formed by performing
k-Medoids clustering on Miml examples for each possible class, where a
variant of Hausdorff metric [19] is utilized to measure the distance between
bags [10]. Second layer weights of MimlRbf neural network are optimized
by minimizing a sum-of- squares error function and worked out through
singular value decomposition (SVD) [33].

e MIML-kNN (k-Nearest Neighbor Based Multi-Instance Multi-Label Learn-
ing Algorithm) is proposed for MIML by utilizing the populark-nearest
neighbor techniques. Given a test example, MIML-kNNnot only consid-
ers its neighbors, but also considers its citers whichregard it as their own
neighbors. The label set of the test example is determined by exploiting
the labeling information conveyed byits neighbors and citers.

e M3MIML (Maximum Margin Method for Multi-instance Multi-label Learn-
ing) assumes a linear model for each class, where the output on one class is
set to be the maximum prediction of all the MIML examples instances with
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2.4 Inference 3 RESULTS

respect to the corresponding linear model. Subsequently, the outputs on
all possible classes are combined to define the margin of the MIML exam-
ple over the classification system. Obviously, each instance is involved in
determining the output on each possible class and the correlations between
different classes are also addressed in the combination phase. Therefore,
the connections between the instances and the labels of an MIML example
are explicitly exploited by M3MIML.

Based on the feature extraction step we described above (see section Detec-
tion) the simplest strategy was to train a MIML classifier from feature vectors
s¢ which are long enough to include a syllabe or a call. We retained the idea
of aggregating all vectors s; from the same test signal to constitute a bag of
present syllables and then let the classifier decide which species are present (see
section Inference).

2.4 Inference

At test time an incoming signal is first preprocessed as explained before in sec-
tion 2.2 : interesting segments are selected and feature extraction is performed.
Second, a MIML learned model is used as explained before in section 2.3 to
compute prediction vectors from the same audio in one K-dimension vector
(K = 87). This yields that an input signal is represented as one bag of variable
number of 96-dimension vectors.

1 000 files compose the test set. The 1 000 bags of vectors obtained after
preprocessing are processed by MIML-RBF classifier to get probabilistic scores
of each one of the 87 labels sets provided in the train data set.

3 RESULTS

Our detection is based on peaks of energy in time-frequency representation of
animals calls and songs. Our 0.85% best score to NIPS4B challenge reveals
that it is relevant to focus on higher levels of energy inside an acoustic pattern
in order to counteract the intraclass variability of patterns. It is a reasonable
biological hypothesis to assert that even if a given species of bird composes com-
plex and variable strophes, it insists more (in terms of signal intensity) on some
precise syllables.

Model | NIPS4B Private AUC score short description
M1 0.7226 5 higher maxima per file + 96 features per segment + PT
M2 0.8247 5 higher maxima per file 4+ 96 features per segment + MIMLRBF
M3 0.6837 5 higher maxima per file + 96 features per segment + MIMLKNN
M6 0.5048 5 higher maxima per file + 96 features per segment + M3MIML
M4 0.8242 all local maxima in a file + 96 features per segment + MIMLRBF
M5 0.8521 all local maxima in a file + PCA/LDA + MIMLRBF
M6 0.8290 5 higher maxima per file + PCA/LDA + MIMLRBF
Mario 0.9175 best team of NIPS4B challenge

5
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4 DISCUSSION

4 Discussion

Figure 2 gives the False Negative Rate (FNR) for each class computed from
model M2 predictions on data test set. One can see that the global FNR (all
classes included) turns around 25%.
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Figure 2: Class-dependant False Negative Rate for NIPS challenge

Expected comments

1.

Scores are much better for classes corresponding to bird calls than for
classes corresponding to bird songs. By instance, scores of classes num-
ber 36, 17, 1, 73, 18 are excellent because the concerned calls consist in
strongly stereotyped signals.

. Predictions remain generally very good for bird species whose songs stay

simple and few variable (cl. 25, 65, 70).

A FNR of 33% for Subalpine Warbler (cl. 76) on a total of 36 test files is
reasonable because it is one of the 4 most difficulty species of the challenge
recognized by an ornithologist. most difficult bird species of the challenge.

It is well-known that European Robin produces complex and much variable
songs (cl. 23). As a consequence, we reach a 65% FNR.

Song Thrush and European Serin (cl. 87 & 67) emit complex songs. Their
respective scores are 57% et 43%. Although European Serin song is dis-
tinctive, it is also composed of a lot of syllables (50 per second). This
comforts our hypothesis (see section Improvements) that in some cases
our currently 130 ms fixed window function is well too large.

Unexpected comments
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5 IMPROVEMENTS

1. A 7% FNR regarding class 78 is very encouraging. Among birds species of
the challenge, Sardinian Warbler is one of the 4 most difficulty recognized
by an ornithologist.

2. Dartford Warbler is equally one of the 4 most complex bird species. Our
flawless score must be tooked cautiously: only 3 test files contains this
class.

3. Cetti’s Warbler and Phylloscopus collybita (cl. 11 & 55) provide good
examples of strongly stereotyped signals for which our FNRs keep too
high (~33%)).

4. The error is important concerning cl. 12 and 44 (European Greenfinch
calls and Coal Tit songs) whereas their signals aren’t particularly compli-
cated because:

e Train and test recordings providing Furopean Greenfinch examples
have a feeble signal-to-noise ratio (S.N.R);

e In train and test recordings, Coal Tit always accompanies other
species;

5. Overall, performances on insects remain disappointing

e FNR turns around 40% for classes 82 and 14;

e FNR regarding Common Cicada (cl. 38) is huge (72%) whereas the
signal of this species is continuous and stable;

except for

e Pygmy Cicada (cl. 81) : 8% FNR. All train and test files concerning
Pygmy Cicada come from the same location. Low FNR for this
species is probably due to the fact that the model we built detect
more the acoustic “signature” of the place rather than the signal of
this insect;

e and Fallow Bush-cricket (cl. 53) : 15% FNR. Its syllables keep similar
to bird syllables: they are temporally-speaking punctual.

This strengthen the idea according to which our current method isn’t well
compatible with uninterrupted signals. In all likelihood, a part of informa-
tion concerning uninterrupted signals is lost during MFCC compression
by spectral subtraction.

5 Improvements

1. According to figure 3, there is 36 classes for which we don’t have any
single-label recording. Plus, one can see that the volume of available
training data (in seconds) varies much from one class to an other. It is
very likely that this disequilibrium brakes performances of our classifica-
tion algorithm. It will be interesting to watch carefully the differences of
classification scores between classes and explain them: are they due to
train data set disequilibrium, differences in signal complexities, variable
S.N.R, acoustic properties of biotopes, etc. 7
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Figure 3: Available singlelabel training recordings total duration (in seconds)
per class

2. Given encouraging performances of authors as Lecun, Bengio, Malikov or
Abdel-Hamid models in [3, 28, 1, 23], we aim at testing in our future works
MIML CNN (Convolutionnal Neural Network) algorithms.

3. One possible way of improvement consists in making variable the size of
our currently fixed window function : 130 ms. Some species of birds emits
more syllabes per second than others (between 1 up to 60 [6]). Moreover,
we could improve learning vectors by adding the information: “Is there
others detected syllables close to the considered syllable?”.

4. Organizers of the challenge made the effort to label and to provide (Dr
Yves Bas) 100 audio files containing only parasite sounds. Parasites con-
stitute the most diversified class because then can be created by an infinity
of different ways: car, bike or plane passage, wind, rain, walking sounds,
etc. Parasites sounds designates the same type of frequency-and-temporal
continuous signals than animals syllables. This is the reason why they
complicate the classification task. An other way to improve our model
consists in gathering all s; vectors of all training files and separating them.
On the one hand, we have the set S, containing s; vectors belonging to an-
imals classes. On the other hand, we have the set \S), containing s; vectors
belonging to parasite class. It is easy to realise separately an optimized
clustering of S, (in K1 classes) and S, vectors (in K2 classes). Thus, one
can create a K1+ K2 multiclassification model by one-vs-all learning ap-
proach (binary relevance). This way, after the extraction of s; from train
and test files, we can identify and exclude s; vectors similar to parasites
s; vectors. This should facilitates afterwards MIML classification task.
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7.2 Bird Song Classification in Field Recordings:

Winning Solution for NIPS4B 2013 Competition’

Mario Lasseck
Animal Sound Archive
Museum fiir Naturkunde Berlin
Mario.Lasseck@mfn-berlin.de

Abstract

The challenge of the NIPS4B competition is to identify 87 sound classes of
birds and other animals present in 1000 audio recordings, collected in the
field. The difficulty of this task lies in the large number of species and
sounds that have to be identified in various contexts dealing with different
levels of background noise and simultaneously vocalizing animals. The
solution presented here ranks first place on the kaggle private leaderboard
and achieves an Area Under the Curve of 91.7% (AUC).

1 Introduction

The audio data was recorded at different places in Provence France and is provided by the
BIOTOPE society, having one of the largest collections of wildlife recordings of birds in
Europe. The nearly 2 hours of recordings are split into smaller clips ranging from 0.25 to
5.75 seconds. The recordings were done with Wildlife Acoustics SM2 and are presented in
uncompressed WAV format with a sample rate of 44.1 kHz. The 87 individual sound classes
within these recordings represent different bird species and their songs, calls and drumming.
Other animal species living in the same environment like insects and one amphibian are also
included. The training set consists of 687 audio files. Each file is paired with the subset of sound
classes present in that recording. Some recordings are empty, containing only background noise,
others contain up to 6 different simultaneously vocalizing birds or insects. Each species is
represented by nearly 10 training files within various contexts, different background noises and an
arbitrary number of other species. The goal of the competition is to identify which of the 87 sound
classes of birds and amphibians are present in 1000 continuous wildlife recordings, using only the
provided audio files and machine learning algorithms for automatic pattern recognition.

2 Preprocessing and Segmentation

The method of segmentation has a big influence on classification results. Several different
approaches were tested. The one that works best regarding leaderboard score is surprisingly
simple. Audio files are first resampled to 22050 Hz. After applying the STFT using a
hanning window with a size of 512 samples and 75% overlap the resulting spectrogram is
normalized to a maximum of 1.0. The 4 lowest and 24 highest frequency bins are removed,

" In proc. of 'Neural Information Scaled for Bioacoustics' joint to NIPS, http://sabiod.org/nips4b,
Nevada, dec. 2013, Ed. Glotin H. et al.
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leaving 228 frequency bins or spectrogram rows representing the relevant frequency range of
approximately 170 to 10000 Hz. The narrowed spectrogram of each audio file is treated as
grayscale image and further processed for noise reduction and segmentation.

To reduce background noise each pixel value is set to 1 if it is above 3 times the median of
its corresponding row (frequency band) AND 3 times the median of its corresponding
column (time frame), otherwise it is set to 0. This Median Clipping per frequency band and
time frame removes already most of the background noise. Variable noise levels in different
frequency regions are compensated and short, broadband distortions coming from rain, wind
or microphone handling are attenuated.

The resulting binary image is further processed using standard image processing techniques
(e.g. closing, dilation, median filter). Finally, all connected pixels exceeding a certain spatial
extension are labeled as a segment and a rectangle with a small area added to each direction
is used to define its size and position. Figure 1 gives an example of the preprocessing steps
involved and Figure 2 shows the outcome of a complete segmentation process.
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Figure 1: Preprocessing of Spectrogram Image

Preprocessing the spectrograms extracts 9198 segments from the training data and 16726
segments from the test recordings.
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Figure 2: Spectrogram Image with marked Segments
3 Feature Extraction

Features are calculated for both, training and test files, coming from three different sources:
File-Statistics, Segment-Statistics and Segment-Probabilities.

File-Statistics include minimum, maximum, mean and standard deviation taken from all
values of the unprocessed spectrogram. Additionally the spectrogram is divided into 16
equally sized and distributed frequency bands and their minima, maxima, means and
standard deviations are also included.

For Segment-Statistics the number of segments per file plus minimum, maximum, mean and
standard deviation for width, height and frequency position of all segments per file are
calculated.

In order to find Segment-Probabilities a variation of Fodor’s method [1] is used which was
already successfully applied in the MLSP 2013 Competition. The highest matching
probability of all segments extracted from training files associated with one or more sound
class is determined in all files by template matching using normalized cross-correlation [2].
A Gaussian blur with a sigma of 1.5 is applied to segment and target spectrogram before
matching. Best matches are only searched for within the frequency range of the segment (+ a
small tolerance of 4 pixels). Unlike Fodor, the template matching uses only absolute-intensity
spectrograms and for better performance the OpenCV library [4] is used.

File- and Segment-Statistics produce 81 features per file scaled to the range [0 1]. Segment-
Probabilities create, corresponding with the number of extracted segments from the training
set, 9198 features per file.

4 Feature Selection

As in [1] already suggested the multi-instance multi-label classification problem is turned
into 87 individual classification problems. In that way the probability for each target sound
class is calculated separately for all files. Each of the 87 classifiers uses all File- and
Segment-Statistics. But as for the Segment-Probabilities, only those belonging to segments
extracted from training files associated with the corresponding target sound class are
included. This way the number of features to be taken into account for learning and
predicting a particular sound class can be reduced significantly which produces much better
classification results.

To give an example: Sound class 86 appears in 8 training files (107, 172, 264, 353, 387, 504,
510 and 596). For learning and predicting this particular sound class, only matching
probabilities belonging to segments extracted from these 8 files are included as features. The
number of relevant features selected from Segment-Probabilities for each sound class is
listed in Table 1.
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Table 1: Number of selected features and estimators per sound class plus AUC scores

Class Features
No. Name Scientific Name File Segment Segment | Estimators AUC
Statistics Statistics. Probilities

1 | Aegcau_call Aegithalos caudatus 68 13 148 458 95.6%

2 | Alaarv_song Alauda arvensis 68 13 213 500 97.8%

3 | Anttri_song Anthus trivialis 68 13 27 500 95.0%

4 | Butbut_call Buteo buteo 68 13 131 424 98.5%

5 | carcan_call Linaria cannabina 68 13 224 500 87.1%

6 | Carcan_song Li a cannabina 68 13 137 436 94.9%

7 | Carcar_call Carduelis carduelis 68 13 192 500 82.6%

8 Carcar_song Carduelis carduelis 68 13 301 500 99.8%

9 | cerbra_call Certhia brachydactyla 68 13 183 500 28.7%
10 | Cerbra_song Certhia brachydactyla 68 13 298 500 99.8%
11 | Cetcet_song Cettia cetti 68 13 226 500 99.6%
12 | Chlichl_call Chiloris chloris 68 13 203 500 96.4%
13 | Cicatr_song Cicadatra atra 68 13 240 500 100.0%
14 | Cicorn_song Cicada orni 68 13 98 358 93.3%
15 | Cisjun_song Cisticola juncidis 68 13 118 398 97.5%
16 | Colpal_song Columba palumbus 68 13 103 368 91.6%
17 | Corcor_call Corvus corone 68 13 158 478 95.7%
18 | Denmaj_call Dendrocopos major 68 13 157 476 97.7%
19 | Denmaj_drum Dendrocopos major 68 13 392 500 98.8%
20 | Emboir_call Emberiza cirlus 68 13 208 500 96.1%
21 | Embeir_song Emberiza cirlus 68 13 283 500 96.2%
22 | Erirub_call Erithacus rubecula 68 13 325 500 97.3%
23 Erirub_song Erithacus rubecula 68 13 275 500 98.8%
24 Fricoe_call Fi illa coelebs 68 13 361 500 71.6%
25 | Fricoe_song Fringilla coelebs 68 13 230 500 97.6%
26 | Galeri_call Galerida cristata 68 13 331 500 98.5%
27 | Galcri_song Galerida cristata 68 13 152 466 93.4%
28 | Galthe_call Galerida theklae 68 13 117 396 91.1%
29 | Galthe_song Galerida theklae 68 13 155 a72 87.0%
30 | Gargla_call Garrulus glandarius 68 13 235 500 97.1%
31 | Hirrus_call Hirundo rustica 68 13 76 314 82.5%
32 | Jyntor_song Jynx torquilla 68 13 166 454 98.9%
33 | Loperi_call Lophophanes cristatus 68 13 252 500 99.3%
34 | Loxcur_call Loxia curvirostra 68 13 377 500 92.1%
35 | Lularb_song lullula arborea 68 13 323 500 97.1%
36 | Lusmeg call Luscinia megarhynchos 68 13 211 500 96.3%
37 | Lusmeg song Luscinia megarhynchos 68 13 307 500 91.7%
38 | Lyrple_song Lyristes plebejus 68 13 235 500 99.3%
39 Motcin_call Motacilla cinerea 68 13 176 500 95.8%
40 Musstr_call Muscicapa striata 68 13 154 470 99.9%
41 | Oriori_call Oriolus oriolus 68 13 96 354 99.0%
42 | Oriori_song Oriolus oriolus 68 13 255 500 96.4%
43 | Parate_call Periparus ater 68 13 446 500 95.7%
44 | Parate_song Periparus ater 68 13 609 500 96.0%
45 | Parcae_call Cyanistes caeruleus 68 13 253 500 83.8%
46 | Parcae_song Cyanistes caeruleus 68 13 351 500 96.9%
47 | Parmaj_call Parus major 68 13 312 500 83.3%
48 | Parmaj_song Parus major 68 13 532 500 89.3%
45 | Pasdom_call Passer domesticus 68 13 308 500 93.1%
50 | Pelgra_call Pelophylax kl. grafi 68 13 101 364 97.7%
51 | Petpet_call Petronia petronia 68 13 202 500 96.8%
52 | Ppetpet_song Petrania petronia 68 13 176 500 97.3%
53 Phofem_song Pholidoptera femorata 68 13 279 500 98.2%
54 | Phycol_call Phylloscopus collybita 68 13 168 498 78.4%
55 | Phycol_song Phylloscopus collybita 68 13 500 500 99.4%
56 | Picpic_call Pica pica 68 13 185 500 88.1%
57 | Plaaff_song Platycleis affinis 68 13 287 500 96.7%
58 | Plasab_song Platycleis sabulosa 68 13 324 500 94.9%
59 | Poepal_call Poecile palustris 68 13 335 500 99.7%
60 | Poepal song Poecile palustris 68 13 253 500 87.2%
61 | Prumod_song Prunella modularis 68 13 304 500 96.8%
62 | Ptehey_song Pteronemobius heydenii 68 13 132 426 99.7%
63 | Pyrpyr_call Pyrrhula pyrrhula 68 13 120 402 99.0%
64 | Regign_call Regulus ignicapillus 68 13 264 500 97.2%
65 | Regign_song Regulus ignicapillus 68 13 375 500 98.7%
66 | serser_call Serinus serinus 68 13 178 500 80.1%
67 | Serser_song Serinus serinus 68 13 465 500 97.5%
68 | siteur_call Sitta europaea 68 13 147 456 91.3%
69 Siteur_song Sitta europaea 68 13 466 500 95.6%
70 | Strdec_song Streptopelia decaocto 68 13 66 294 94.7%
71 | Strtur_song Streptopelia turtur 68 13 118 398 94.0%
72 | Stuvul_call Sturnus vulgaris 68 13 155 472 92.9%
73 | Sylatr_call Sylvia atricapilla 68 13 178 500 90.7%
74 | Sylatr_song Sylvia atricapilla 68 13 152 466 76.7%
75 | Sylcan_call Sylvia cantillans 68 13 227 500 96.2%
76 | Sylcan_song Sylvia cantillans 68 13 344 500 97.4%
77 | Sylmel_call Sylvia melanocephala 68 13 287 500 86.8%
78 | Sylmel_song Sylvia melanocephala 68 13 224 500 93.9%
79 | Sylund_call Sylvia undata 68 13 a8 258 99.4%
80 | Sylund_song Sylvia undata 68 13 189 500 98.8%
81 | Tetpyg song Tettigettula pygmea 68 13 222 500 98.7%
82 | Tibtom_song Tibicina tomentosa 68 13 159 430 98.1%
83 | Trotro_song Troglodytes troglodytes 68 13 400 500 97.9%
84 Turmer_call Turdus merula 68 13 358 500 89.0%
85 Turmer_song Turdus merula 68 13 441 500 97.1%
86 | Turphi_call Turdus philomelos 68 13 22 206 94.8%
87 | Turphi_song Turdus philomelos 68 13 386 500 96.6%
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5 Classification

The scikit-learn library is used for classification [3]. For each sound class an ensemble of
randomized decision trees (sklearn.ensemble.ExtraTreesRegressor) is applied. The number
of estimators is chosen to be twice the number of selected features per class but not greater
than 500. The winning solution considers 4 features when looking for the best split and
requires a minimum of 3 samples to split an internal node. During 12-fold cross validation
the probability of each sound class in all test files is predicted and at the end, after removing
the lowest and highest value, averaged.

Good classification results are possible even without calculating File- and Segment-Statistics
and therefor without the need to segment the test recordings. Just with Segment-
Probabilities, using the same parameter settings as mentioned above, a score of 91.6% AUC
on the private leaderboard can be achieved. A score around 84% is achievable using File-
and Segment-Statistics exclusively.

By ranking feature importance returned from the decision trees during training one can find
important segments to identify each sound class. Figure 3 and 4 show the ten most important
segments to identify the songs of Cetti's Warbler (sound class 11) and Common Chiffchaff
(sound class 55). Both sound classes achieve very good classification results with a score
close to 100%. Figure 5 gives an example of a sound class with poor classification results.
The feature ranking returned from decision trees to identify the call of the European Serin
(sound class 66) is partly incorrect and segments are not properly assigned.

To give an idea how well individual species can be identified, a score per sound class is
calculated on one third of the training data during 3-fold cross validation. The average of
this score is listed and visualized in Table 1.

Figure 4: Important segments to identify the song of Phylloscopus collybita (Common
Chiffchaff)

Figure 5: Important segments to identify the call of Serinus serinus (European Serin)
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6 Conclusion

This working note describes the winning solution of the NIPS4B 2013 multi-label Bird
Species Classification Challenge. The solution of the MLSP 2013 Competition, implemented
and described by Fodor, was used as a starting point for further development. The here
proposed method includes an efficient way of extracting single sound events and connected
sequences of bird calls and syllables in complex acoustic scenes and noisy environments. An
ensemble of randomized decision trees is used to learn and predict the binary relevance of
each sound class separately with individually selected features per class. The complete
source code to reproduce the classification results and additional figures are available at
www.animalsoundarchive.org/RefSys/Nips4b2013.php.
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7.3 Feature design for multilabel bird song
classification in noise (NIPS4B challenge)
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Bird vocalisations are highly varied, containing natural variation across a range of timescales. In
recent work we have modelled the transitions between syllables [5]], and combined this with repre-
sentations which capture fine FM variations within syllables [3]]. Following on from such work we
are exploring feature design for the representation of temporal structure in sounds such as birdsong.

The 2013 NIPS4B bird song challenge is concerned with automatically recognising the presence of
a number of species, from sound alone. For training, 687 audio clips are provided (each annotated
as containing 0-6 species); for testing, 1000. The clips are around 5 seconds long, recorded by
automated monitoring units, and often noisy and with the target sounds both distant and quiet.

Our submission to the challenge therefore focusses on feature design for two goals: noise robustness,
and the representation of temporal structure. We first analyse each sound file into basic features,
either MFCCs (13 MFCC:s plus delta features) or our peak-chirplet representation [4]]. Importantly,
both of these feature algorithms are modified to apply noise reduction in their spectral analysis
step, simply by median-filtering: taking a spectral profile across time (the energy 75-percentile),
subtracting this profile from the values, and keeping only the positive values.

We then reduce the time-series data for each file down to an atemporal summary vector. We sum-
marise our noise-reduced MFCCs by their mean and standard deviations, a simple and common
baseline approach. We summarise our chirplets by a histogram of all the bigrams found in the file:
in other words, for every transition from one packet of energy to another, we record the time sep-
aration as well as the frequency and chirp-rate values, and these parameters form the axes of the
high-dimensional histogram we create (related to the method in [4]]). The time-separation between
bigram pairs is not constant: we examine all possible transitions shorter than 1 second. Note that we
avoid any need to perform segmentation on the input audio files. The histogram represents the set
of all transitions observed in the audio data, and is used directly for multilabel classification.

For multilabel classification we use Random Forests [1] implemented in scikit-learn [2]. In vari-
ations of our submission, we use either MFCC statistics (52 dimensions), chirplet histograms (up
to 20,000 dimensions), or both. We experimented with dimension reduction but found this unnec-
essary. We also experimented with other multilabel classifiers, but found they generally reduced
performance relative to Random Forests.

Figure [1] illustrates the two types of feature, as well as the effect of noise reduction. For both
feature types, even the noise-reduced plots are visually noisy, but a strong difference between the
features is visible: the chirplet representation captures many of the fine-grained pitch trajectories
in the segments containing bird vocalisations. We observed informally that the chirplet features
performed well for tonal songbird sounds, for which the features were originally designed, but did
not completely generalise to the less tonal vocalisation types in this challenge. In practice, this
led to the MFCCs outperforming the chirplet features (by only a small margin) when considered in
isolation. As future work we intend to consider schemes to combine aspects of these features, which
go beyond the simple stacking or PCA tested during this challenge.

By the Area Under the Curve (AUC) score, we attain 89.5% on the public leaderboard and 88.5%
on the held-out leaderboard.

In Proc. of ‘Neural Information Scaled for Bioacoustics’ joint to NIPS, http://sabiod.org/nips4b, Nevada,
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Figure 1: Illustration of features for an excerpt of training file 007, comparing Mel spectra (left)
against peak chirplet data (right). The lower plots show the same features after noise reduction.
Note that the left plots show Mel spectra which we further process to MFCCs, and the right plots
show chirplets which which we further process to bigram histograms.
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Abstract

Multi-label Bird Species Classification competition provides an excellent oppor-
tunity to analyze the effectiveness of acoustic processing and mutlilabel learning.
We propose an unsupervised feature extraction and generation approach based on
latest advances in deep neural network learning, which can be applied generically
to acoustic data. With state-of-the-art approaches from multilabel learning, we
achieved top positions in the competition, only surpassed by teams with profound
expertise in acoustic data processing.

1 Introduction

Acoustic data is a common and natural representative of multilabel data, i.e. data in which an exam-
ple, in this case an acoustic sample, can be mapped to several, non-exclusive classes or categories.
Examples are the popular emotions benchmark with the objective of assigning emotions to music or
the hifind dataset where the tasks is to identify used instruments, genres, moods, languages, styles
etc. in songs [12]. In the Multi-label Bird Species Classification competition (NIPS4B) the task was
to identify 87 birds, insects and amphibians in short audio recordings. Of course, these could appear
in the same sample. More specifically, the objective was to maximize the area under the ROC curve
(AUC) on 1000 unlabeled recordings, a common measure for the quality of a label ranking.

The challenge was thus two fold: On the one hand it was necessary to process the data in a way
appropriate for machine learning approaches, since the data was only available in a raw format or
in very basic preprocessed format. This article presents a combination of recent and state-of-the-
art approaches from neural network and deep learning which allows an unsupervised generation
of an aleatory number of features, appropriate for being processed by standard machine learning
algorithms. It basically consists of random patching, a Denoising Autoencoder unit and subsequent
convolution and represents a general approach for processing acoustic data.

On the other hand, it was essential to learn the data accurately in order to produce high quality
predictions and to get the most out the provided information in form of input feature and binary
(relevant/irrelevant) label information. We tried out three approaches: firstly, a pairwise ensemble
of SVMs which actually is geared towards the base of AUC, the correct order of pairs of labels. The
popular and effective LibSVM library was specifically adapted to allow pairwise learning and the
modifications are made available. Secondly and thirdly, random decision trees and a single layer
neural network were applied. The diversity of the classifiers ensured that the combination of the

*In proc. of int. symposium Neural Information Scaled for Bioacoustics joint to NIPS, Nevada, dec. 2013,
Ed. Glotin H. et al.
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predictions was effective. Our final ranking in the very competitive contest show that our acoustic
prepocessing provides a good base for the following machine learning step and that the multilabel
learner exhaust this.

2 A Multilabel Bird Species Classification Dataset

The dataset for the Multi-label Bird Species Classification competition contains 687 labeled training
examples, including 100 noise samples which are not labeled with any bird species, and 1,000
unlabeled test examples for measuring the generalization performance. The recordings belong to
87 categories (bird species like the subalpine warbler), each of which is associated with approx.
13 training instances. The average labelset size is 2.00 excluding noise samples, maximally 6, and
there are 265 distinct labelsets in the training data. The dataset comprises two format: one is in
raw wav format in which bird songs and calls are recorded with distant insects, and the other is
Mel-Frequency Cepstral Coefficients (MFCCs) of the wav files following preprocessing steps in [4]]
where each time frame is represented with 17 coefficients. Each audio clip in both train and test data
varies in length.

3 Unsupervised Feature Generation and Extraction for Acoustic Clips

Lets € R™*T be the input vector for an audio clip where 7' is the total number of frames in time and
each time frame ¢ consists of an m dimensional feature vector. In our first attempts, we just padded
(repeated) smaller samples so that in the end all samples had the same length max; 7; = 1288,
resulting in 21,896 total number of features (referred to as raw dataset). However, the results were
not satisfactory, thus we applied the following operations and methods from unsupervised feature
learning. These were already successfully applied e.g. on image data, hence the question was
whether they would work for acoustic data.

Firstly, we extract My, and M, random patches, totally M = My, + M, whose size is psz = m X
wnd from training and test data, respectively, where wnd denotes the size of window. An extracted
patch is then normalized along the time frame axis which makes each coefficient has zero mean and
unit variance. Secondly, the randomly sampled patches are concatenated to form training examples
® € Rrs*>*M for Denoising Autoencoder or DAE [[14], which learns hidden representations from
inputs in an unsupervised way. A DAE is a neural network architecture consisting of encoder fen
and decoder gg4.. with parameters 6 = {W, b, ¢} to minimize the squared error loss function ||p —
Gadec(WT fone(W@ +b) +¢))||3 where W € RY*P5* is the weights matrix connecting visible units
and hidden units, b and c are biases for hidden units and visible units, and ¢ is the corrupt input by
adding Gaussian noise n ~ A(0, o?) to an input ¢ . Once training DAE is done, each column of
the weights WT acts as a feature detector. F' feature detectors can be considered in total, and each
feature detector has the same size as the randomly extracted patches, that is, the k" feature detector
is WTk € R™>wnd_ Finally, we can obtain a fixed feature representation for an input signal s in
terms of 1" while convolving it with learned feature detectors.

ap = fconv (5 * WZ; + bk) ag+F = f(:onv (5 * (7W’1;¢) + bk) (1)
T—wnd+1 T—wnd+1
Ty = Z akj — TheF = Z A(k+F),j 2
j=1 j=1

where * stands for a 2D discrete convolution operatOIF_-] and f.ony 1S to provide non-linearity to the
convolved feature representations. We use ReLUs f(z) = max(0, z) for nonlinear function feuny-
In order to make use of the negative part as well as the positive part of inputs to ReLUs, we apply
polarity splitting [2] in Eq. [T} Then, we sum up the convolved feature values a;, over time which
is analogous to accumulated activations of s with respect to the feture detector VVT,C (Eq. . For
instance, xj will be higher if a feature k defined by VVT,C is detected many times in s.

For training DAE, we extracted 100,000 17 x 80 patches randomly from training data and 100,000
from test data in the MFCC format. We then trained two DAE models with Gaussian noise o = 0.2

'The convolution operator yields a matrix of size 1 x (T — wnd + 1).
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on the patches; the models have 400 and 800 hidden units resulting in 800 (small) and 2000 (big),
respectively. We used ReLU for the encoder and sigmoid f(x) = 1/(1 +exp(—=x)) for the decoder.

4 Multilabel Learning

Multilabel classification refers to the task of learning a function that maps instances x; € X to
label subsets or label vectors y; = (Y;1,...,¥in) € {0,1}", where L = {A1,..., A}, n = |£]
is a finite set of predefined labels and where each label attribute y; corresponds to the absence (0)
or presence (1) of label \;. In the following, we will present the different learning algorithms we
applied on the NIPS4b dataset.

Pairwise Support Vector Machines The most common approach for multilabel classification is
to use an ensemble of binary classifiers, where each classifier predicts if an instance belongs to
one specific class or not (binary relevance or BR). An alternative is to do pairwise decomposition.
Here, one classifier is trained for each pair of classes, i.e., a problem with n different classes is
decomposed into "(”271) smaller subproblems [6]. More precisely, for each pair of classes (Ay, Ay ),
u < v, we learn a binary base classifier h,, ,,, whose training set is composed of examples for which
Ay 18 a relevant class and A, is an irrelevant class, or vice versa. All other examples are ignored
for this particular subproblem [10]. During classification, all of the 2n=1) pase classifiers make
a prediction for one of the both corresponding classes, which is interpreted as a full vote (0 or 1),
hence resulting in a full ranking over the labelsE]

Pairwise learning method is often regarded as superior to BR because it profits from simpler decision
boundaries in the subproblems [6l 8]. The reason is that each of the pairwise classifiers contains
fewer examples. In fact, it has also been shown that the complexity for training an ensemble of
pairwise classifiers is comparable to the complexity of training a BR ensemble [6, [10]. During
prediction, however, we have a quadratic number of classifiers we have to evaluate. But particularly
for support vector machines this problem is alleviated by the fact that easier (sub-)problems lead to
less support vectors and that support vectors can be shared among the pairwise SVMs.

Multilabel LibSVM Because of this and because SVMs trained in a pairwise fashion already
obtained state-of-the-art results on standard benchmark datasets [12] in previous works [11]], we
decided to use the very popular and effective SVM software library LibSVM [1]] for training our
pairwise SVMs. However, during preliminary experiments, we found out that just plugging in Lib-
SVM was not feasible since a simple experiment on the dataset apparently required more than 20
GB of memory. The reason is that the used Java interface copies every training instance each time
for every base learner. Additionally, each of the 3741 LibSVM instantiation could request up to
40 MB of cache. We thus extended LibSVM directly in order to support the pairwise learning of
multilabel data. Our extension does not copy a training instance more than once and also shares a
common cache for Kernel computations, so that we managed to perform an experiment in less than
250 seconds for training 618 instances and 9 seconds for testing 68 instances and with less than 100
MB of memory (worst cases, respectively) despite the quadratic number of models to be trained,
stored and evaluated. The LibSVM modifications and interfaces for the multilabel learning toolkit
MULAN [[13]] are available from http://www.ke.tu-darmstadt.de/resources/multilabellibsvm.

Random Decision Trees Zhang et al. [[15]] recently proposed to use ensembles of random decision
trees (RDTs) for learning multilabel data and also provide a software libraryE] The main idea is to
generate k1 RDTs with random attribute tests at the inner nodes and maximal depth k;. Comparably
small values of k1 and k5, around 10 or 20 and maximally 100, are sufficient in their experiments.
During the extremely fast training, the leafs incrementally collect statistics about the label distri-
butions y which passed all tests to the leafs. Hence, each RDT predicts an average distribution,
which is subsequently averaged over all trees. RDTs are very suitable for data with a high number
of examples and labels, since the costs are bounded by the selection of k; and ko. However, they
may have problems with high number of features and particularly sparse features, which is not the
case for NIPS4B.

*Ties in the final votes counting are broken by using the prior probabilities of the labels.
*http://www.dice4dm.com/
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Neural Networks with a Single Hidden Layer Neural networks (NNs) have attracted increasing
interest in recent years thanks to success of NNs with multiple levels of trainable feature extractors,
namely deep learning in various domains such as object recognition and speech recognition. In
order to achieve state of the arts performance, one usually trains deep neural networks on a large
amount of training examples or initialize parameters by pretraining the networks on unlabeled data
in an unsupervised manner, followed by learning whole parameters including a classification layer
using labeled instances. As the bird species classification dataset has only 587 labeled examples and
only 11 positive training instances are available per label, on average, we decided to train NNs with
a only single hidden layer rather than ones with multiple hidden layers.

The single hidden layer NNs perform surprisingly well when we combine them with AdaGrad
[3], which makes it possible to adapt the learning rate per parameter, and Dropout [7] to pre-
vent overfitting and hence improving generalization performance. The output ¥ of NNs for a
given training example x is computed by using the following composition of non-linear functions
§ = LW f,(WDx + b0) + b)) where f,(x) = 1/(1 + exp(—z)) and fu(x) = max(0, z)
are activation functions for the output layer and the hidden layer, respectively. At the output layer,
we compute the cross entropy error CE(y,y) = — > . y;log(9;) + (1 — y) log(1 — §;) where
9; s the predicted score for label \;. We run Stochastic Gradient Descent (SGD) to train NNs with
1,000 hidden units for 50,000 epochs, which corresponds to 300,000 parameter updates, and use
mini-batches of size 100 for computing gradients.

5 Experimentation

In order to estimate the performance on the public and private test set, we performed 10 fold cross
validation on the available labeled training data.

Evaluation Measures The competition submissions were evaluated by computing the area under
the ROC curve of the label rankings and then averaging over the instances. This measure can be
defined as

AVO(y,9) = s S5 (> isl) + 5090 = 5] ®

PN 2 25,
T k3

where [[z]] denotes the indicator function and §; the predicted score for \;, e.g. the inverted ranking
position. It is obvious that 1 — AU C corresponds to the popular ranking loss used for evaluating mul-
tilabel classification [3)]. There are several discrepancies in computing this measure, e.g. sometimes
the second term is skipped and tied pairs are arbitrarily counted as wrong or correct, or sometimes
test instances with an empty labelset are skipped. We compute the score for each instance, i.e. we
additionally set AUC(Q,y) = 1, but note that for the cross validation results it is easy to obtain
the other less optimistic version with AUC’ = (687 - AUC — 100)/587 = 1.17 - AUC — 0.17.
However, this does not explain the discrepancies between the estimated AUC values and the values
on the test set, since our best 0.94 would be only reduced to 0.93.

Results Table[I|shows our estimated results and the AUC values on the public and private test set.
The first observation is that our preprocessing approach substantially improved the ranking quality
over using the provided raw MFCC features. The achieved improvement is greater than the possible
improvement by any other tried approach or combination of approaches. This demonstrates the
applicability and effectiveness for acoustic data of our neural network based unsupervised feature
generation process. Before heading to the comparison between the used approaches, we also note
that there is an important discrepancy between the CV estimations on the training set and the test set
results which cannot be explained by overfitting or differences in computing AUC (cf. Sec. [3).

We see that the pairwise LibSVM approach (SVM), the random decision trees (RDT) and the neural
network (NN) with a single hidden layer obtain similar results on the test sets, with a small advantage
for the NN approach. This submission obtained the 5% rank on the public test set and the 8 rank
on the private test set With the arrival of the big dataset the last day of the competition, used for
training the RDTs, and some struggling in merging teams and results, so that only the predictions
of the SVMs with v = 0.5 and the RDTs could be merged, we managed to reach the 4" and 6™

*http://www.kaggle.com/c/multilabel-bird-species-classification-nips2013/leaderboard/public, & |../private,
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Table 1: Results for the different multilabel approaches and settings in terms of AUC, estimated on the training
data via 10 fold cross validation (with standard deviation) or a train/test split of 600/86 and computed on the
public and private test set. Training and prediction times are given in seconds. The features column indicates
which feature set was used. The second block shows post-competition results.

Approach features (6)% public private training predicting
SVM C = 2000y = 1073 raw 0.8994 - - 681.8 49.76
SVM C =10y =0.5 small  0.93883 £0.0180 0.89202 0.88967 60.18 19.39
SVM C =108y =1 small  0.93915 £0.0179 0.89130 0.88996 60.96 19.44
RDT 50000 trees big 0.93718 + 0.0189  0.89129 0.88195 13444.44 290.83
NN big 0.92595 £+ 0.0200 0.89650 0.89374 5585.15 pu)  0.01 GPU)
SVM & RDT - - 0.90104 0.89525 - -
SVMC =5-10*y = 0.1 big 0.94022 4+ 0.0181  0.88699 0.88710 119.71 45.98
SVMC =2-10°y=0.1 big 0.93976 + 0.0178  0.88752  0.88696 109.26 45.96
SVM & RDT & NN - - 0.90331 0.89824 - -
RDT & NN - - 0.89903  0.89279 - -
SVM & NN - - 0.89807 0.89556 - -

positions on the public and private leaderboard, respectively. The ranking merging effect had a
small impact on absolute numbers, but a considerable effect on the test set ranking due to the high
competitiveness in the contest.

It seems clear that merging rankings exploits the diversity of the underlying classifiers by reinforcing
predictions if the individual classifiers agree and by (tendentially) correcting rankings if for some
instances some of the rankers fail. For binary decision ensembles it can be shown that the accuracy
approximates 1 with increasing number of voters, though assuming a certain diversity (in the sense
of probabilistic independence) [9, Sec. 4.2.1]. We could confirm this when joining predictions of
classifiers of the same family, which did not lead to any improvement. But as the post-competition
results in the second half of Table 1| show, combining different approaches almost always improved
the AUC. Indeed, if we had submitted a joined prediction of all three approaches, we would have
been ranked 4™ on both test sets. This is just below the three competitors using advanced and sophis-
ticated acoustic signal processing techniques relying on expert knowledge and on own processing
of the raw acoustic data, as reflected by the relatively big gap between them (with AUC greater than
0.91) and the rest of the competitors.

However, please note that our best approaches with almost 0.93 AUC had roughly 10 wrongly paired

labels per instance (cf. Eq. . It holds that this number e equals 2‘1131 ri — | P|(|P| + 1)/2 with r;
being the ranks of the positive labels in P, thus for examples with |P| = 1 the label is on average
ranked at the 11" position, for two labels e.g. on positions 5 and 6. On the other hand, additional
evaluations show that for approx. 64.6% of the instances a relevant label was predicted on the first
position (one-error loss), and that we could obtain an F1-score of 75% using perfect thresholding.
Remind however, that our CV results are overestimations.

6 Conclusions

We have presented a general and unsupervised approach for processing acoustic data, particularly
for short recordings of birds’, insects’ and amphibian sounds. It is based on recent findings and state-
of-the-art approaches from the field of neural networks and deep learning. The generated features,
which basically are activation signals by using learned feature detectors, achieved an important
improvement over using the unprocessed MFCCs in terms of AUC.

The three applied multilabel approaches, which we applied on the data, were highly suited for the
particular task and carefully optimized so that we were able to obtain top results in the competition.
By combining the individual approaches we could exploit the diversity among them and obtain the
4™ rank on the public test set and 6™ position in the final ranking. Unfortunately, we did not manage
to combine all three classifiers on time, since this would have allowed us to obtain 0.90 AUC and
hence the overall 4™ rank, right after the three solutions based on expert knowledge and therefore
unreachable with our means.
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We see some space for improvement in the pairwise learning approach, which currently ignores
examples in the label overlaps, and the neural network approach, which still has a lot of unex-
plored degrees of freedoms for optimizing. However, the narrow range of AUC results in the top
10 (excluding the top 3) indicates that we already got nearly the most out of the provided acoustic
representation and multilabel learning. Next steps hence include to find new representations directly
from the raw data, and we believe from our work with the birds sounds dataset that supervised and
unsupervised techniques from neural networks and deep learning can make important contributions
to this.
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7.5 Ensemble logistic regression and gradient
boosting classifiers for multilabel bird song
classification in noise (NIPS4B challenge)
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Abstract

This technical report details the author’s approach in the NIPS4B competition which led to a
final result of an area under the ROC curve of 0.89575 in the public leaderboard and 0.89041
in the private one. The described approach involved building an ensemble of generalized
linear models, such as a logistic regression and a classification model by hinge loss as
provided by the Vowpal Wabbit, an open source learning system library and program based
on stochastic gradient descent optimization, and boosted trees ensembles provided by Scikit-
learn library in Python.

1. Description of the competition

The contest, held on the big data predictive analytics Kaggle web site (www.kaggle.com),
required participants to identify which of 87 sound classes of birds (for some species the
contest required to discriminate the song from the call) and their ecosystem are present in
1000 continuous wild recordings provided by the BIOTOPE society from different locations
in Provence, France.

The training set contained 687 .wav files, each one featuring one or more species. Each
species was overall represented by nearly 10 training files (within various context / other
species). The files were recorded at a frequency sample of 44.1 kHz on an SM2 system.

The test set, matching the training set conditions, was composed of 1000 files. All species in
the test set were also in the training set, posing quite an interesting discrimination challenge
in distinguishing signals proper to each species.

The organizers of the competition have also provided some baseline features on the train and
test .wav files. These were the optimized MFCC features, as described in the ICML4B 2013
bird challenge [1]. The format is a matrix 17xN: 17 cepstral coefficients x N frames (frame
size 11.6 ms, frame shift 3.9 ms, one line per frame).

2. Data preparation

First of all the presented approach is entirely based on the original MFCC data, without the
creation of further new features. The original MFCC data has just been manipulated in order
to fit the training schedule of the different machine learning algorithms involved.

The MFCC matrices have been transposed in the matrix format Nx17, so that cepstral
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coefficients become variable columns of the matrix and each row represented a time unit.
Then, for each one of the matrices, it has been creating a “sliding window” of various sizes,
from 3 to 20, horizontally stacking contiguous rows from the matrices, thus opening an
“observation window” for the learning algorithm to evaluate at the same time more instants
of the analyzed sounds.

Empirically the author found that the best windows to feed a linear model with were in the
range of 15 to 20 horizontally stacked rows. The same observation proved true for different
learning algorithms, such as gradient boosting classifiers.

Basically, with a sliding window of 20 rows, the learning algorithm had 340 variables to
learn from each example (time unit).

3. Training, hyper-parameters choice

The choice was to learn a single model for each of the 87 species involved in the study,
though the model choice and the parameters were generally chosen.

Therefore, the author first trained 87 first logistic (Logistic loss: L(p,y) = log(1+exp(-y*p)))
and then hinge (Hinge loss: L(p,y) = max(0,1-y*p)) regression models relying on the
computational speed of the open source software Vowpal Wabbit [2].

In order to let the learning process discriminate at best the different species, for every target
species in each model the author over-weighted its instances in order that the sum of the
weight of the target species was equal to the sum of the weight of the other species under
analysis (a one against all approach).

As for as Vowpal Wabbit hyper-parameters, the best results were obtained by an 24bits
hashing with 5 passes over the data. No regularization (L1/L2) has been used.

4. Predictions from single models and ensemble

The author, after estimating the probabilities of species being present in a time unit in a
sound file (as for as logistic regression models using its link function, as for as hinge
regression models by rescaling and clipping the results), simply averaged logistic and hinge
probability results and therefore obtained a first ensemble forecast of the presence of every
singular species in every row of every target transposed test MFCC matrix.

In order to turn the results relative to single time units into overall probabilities of species
presence in each sound file, the author empirically experimented that using for each test
matrix a moving average of 200 rows and retaining for each species the maximum
probability result allowed to obtain a prediction whose public AUC was 0.87791 and its
private one was 0.87120.

Noticing, by direct inspection of the fitted results on the train set and on the test results, that
the estimations had surely an high recall of the species (systematically a large number of
species had high scores for each test MFCC matrix, pointing out the likelihood of many false
positives) but were likely lacking the necessary precision to reach higher scores on the
Kaggle’s leaderboard, the author decided to integrate the linear models by a different
approach based on gradient boosting classifiers [3], as implemented in the Scikit-learn
library [4] in Python (using the function GradientBoostingClassifier).

The underlying idea was that gradient boosting classifier (GBC), allowing interactions, has
surely less bias than the linear models (thus an increased precision) but were suffering from
an higher variance in estimates.
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The ensemble approach required to create a new training dataset, resampling the initial one,
in order to obtain, for each target species, all the examples of the target species itself and a
5% of examples available in each training MFCC matrix.

As for as hyper-parameters, it has been used a GBC with 30 trees, learning rate 0.1, max
depth of 10 interactions and minimum sample split of 30 cases.

By itself alone, this sole model when submitted to Kaggle obtained a public AUC of 0.87779
and a private one of 0.87143, results analogous to the ensemble of logistic and hinge
regression.

By examining some randomly chosen predictions from the test set, it can be observed that, as
depicted in figure 1 for test sound file no. 500, an ensemble of logistic and hinge
regressions tends to polarize the results in high and low probability ends and to mark many
species as possibly present in the sound file.
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Figure 1. Estimated probabilities of test file no. 500
by an ensemble of logistic and hinge regressions

The same graphical inspection for the GBC model reveals a completely different patter,
being the estimated probabilities limited in value, with spikes relative to only the most likely
ones. Such a pattern, repeated all over the test file, confirms the author’s expectation of the
gradient boosting approach to point out only the species certainly present with an high
probability and confidence, thus penalizing the recall of other species whose presence is
suspected, but with equivalent certainty, confirmed.
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Figure 2. Estimated probabilities of test file no. 500
by a single gradient boosting classifier constituted by 30 trees

Finally, on the basis of such an insight, it has therefore been created an ensemble bringing
together the results from both the averaged linear models and the gradient boosting
classifier, by means of an harmonic mean, brought the final result of a public AUC of
0.89575 and a private one of 0.89041.

It is observed in figure 3 how the previously polarized predictions have naturally arranged
themselves into probability tiers, allowing a better probability estimation, as for as the AUC
measure.
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Figure 3. Estimated probabilities of test file no. 500
by an ensemble (by harmonic mean) of the previous models (logistic/hinge, GBC)
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5. Reflections and open opportunities for improvement

The proposed approach highlights how an ensemble mixing high bias / low variance models
and low bias / high variance ones may prove an effective strategy in bioacoustics problems.
Moreover, the gradient boosting classifiers are a tree based machine learning methodology
that should, in the author’s opinion, better explored. The author recognizes that there are
furthermore open opportunities in further tuning of models’ hyper-parameters and in
simplifying the ensemble strategy.
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Abstract

Bioacoustic data science aims at analyzing and modeling animal sounds for neu-
roethology biodiversity assessment. The goal of competition is to automatically
identify which species of bird is present in an audio recording using supervised
learning. Devising effective algorithms for bird species classication is a prelimi-
nary step toward extracting useful ecological data from recordings collected in the
field.

In the competition, we analyze a real-world data which contains 1000 continuous
wild recordings from different places in Provence, France We identify prominent
features from windowing mfccs with overlap and leverage them to build a a en-
semble classifier which is a blend of different classifiers (Gradient Boosting Tree
models, Random Forest models and Lasso and elastic-net regularized generalized
linear model etc). Our evaluation and final private leaderboard shows that our
Team DB2 method was capable of classifying large number of the bird songs,
which put us on the 4th place in the final ranking.

1 Preprocessing and Feature Extraction

Our preprocessing is based on mfcc cepstral coefficients which have been proved useful for bird song
recognition[1,2]. A signal is first transformed into a series of frames where each frame consists in
17 mfcc (mel cepstra feature coefficients) feature vectors, including energy. Each frame represents
a short duration (e.g. 512 samples of a signal sampled at 44kHz).

Besides, we also following [1] to do the Windowing, silence removal and feature extraction step. In
Final step, a reduced set of features for any remaining segment / window can be computed. In final
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step, we will have each segment consists in a series of n 17-dimensional feature vectors (with n in
the order of hundreds).

2 Training

Our solution consists of a blend of many single predictors. The standard way of training a single
predictor consists of two steps. In the first step, the validation set is created from the training dataset
and the model is trained on the remaining dataset. Then predictions for the validation set are stored.
In the second step training is done on all available data with the same meta parameters as in the first
step, such as number of tree in gradient boosting machine and so on. Last, the predictions for the
test set are stored. We use the following algorithm for the training model:

2.1 Gradient Boosting Machine

Gradient boosting is a machine learning technique used for classification problems with a suitable
loss function, which produces a final prediction model in the form of an ensemble of weak prediction
decision trees[3].

2.2 RandomForest

Random forests[4] are a combination of tree predictors such that each tree depends on the values of
arandom vector sampled independently and with the same distribution for all trees in the forest. We
set number of tree as 500 for the configuration.

2.3 Lasso and elastic-net regularized generalized linear model

In statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a
regularized regression method that combines the L1 and L2 penalties of the lasso and ridge methods.

We used the implementation of Generalized Boosted regression Models (GBM) RandomForest and
Lasso and elastic-net regularized generalized linear model in R’s package.

3 Blending

As blending algorithm we use a simple basic blending - linear blending. A linear blender is easy to
implement. The most basic blending method is to compute the final prediction simply as the mean
over all the predictions in the ensemble. Better results can be obtained, if the final prediction is
given by a linear combination of the ensemble predictions. In this case, the combination coefficients
have to be determined by optimization procedure, in general by regularized linear regression. In our
case, All inputs (the predictions) are normalized to [0...+1]. We use linear blending approach and
the coefficients are determined by cross-validation performance on average precision. For validation
we use 10-fold cross-validation. The performance of each individual model and blending is shown
in table 1.

Table 1: Performance for different algorithm

Method ROC (public) | ROC (private)
GBM 88.762% 88.732%
RandomPForest 88.850% 88.239%
GLMNET 86.079% 86.332%
Blending 89.740% 89.624%

Besides the overall performance, we also try to investigate the performance of individual classifi-
cation performance, we found that class 38/57/80 is easy to predict with ACU more than 98 % and
the class 20/66/78/85 is the difficult class to predict. We suspect that it is because the data sparsity
problem which hurt the performance of classifier.
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4 Conclusion

We described our approach to NIPS4B challenge. In summary, we try extract the feature using
MFCC with time overlap from various statistics such as velocity acceleration etc. With the feature
extraction, we building our effective classifiers using Gradient boosting machine, RandomForest
and Lasso and elastic-net regularized generalized linear model. Each single predictor is trained
individually. A linear blending of single predictor is used for final prediction. The experiments
presented in this paper, and the ranking on the Privateleaderboard! , suggests that our methods are
effective in multi label and multi instance classification tasks.
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8.1 Analyzing the Temporal Structure of Sound
Production Modes within Humpback Whale
Sound Sequences’
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Abstract

Past analyses of humpback whale song have often focused on
classifying the sequential structure of discrete sound types. An
alternative approach is to analyze the temporal dynamics of
sound production by singing whales. Temporal variations in
sound production modes within and across individual sounds
can by quantified in terms of duty-cycle measures. Low duty-
cycle values correspond to pulse trains, medium duty-cycle
values correspond to tonal sounds, and high duty-cycles
correspond to higher-pitched sounds. The temporal structure
within song sessions can then be analyzed by performing time-
frequency analyses of sequences of duty cycle measures.
Advantages of this approach include that it readily
accommodates graded variations within and across individual
sounds, it does not involve arbitrary/subjective criteria for
sorting sounds, and it reveals modulation in song structure that
would be lost in analyses of symbolic sequences.

1 Introduction

The first step in most past structural analyses of humpback whale songs has
been to sort individual sounds into discrete types (typically based on
subjective visual or aural criteria). Even when automated sorting techniques
such as self-organizing maps have been used to sort individual sounds [1], the
success of these quantitative methods has been judged relative to how human
observers sort the same sounds. This approach is highly problematic because
many sounds that humans judge to be different might be perceptually
equivalent for humpback whales and sounds that humans judge to be highly
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similar might be completely different from a whale’s perspective.
Consequently, analyses of song structure based on such discrete classification
approaches likely reveal more about human perception than they do about the
actual structural features that whales are producing and receiving.

If the individual sounds within humpback whale songs were stereotypically
produced, such that the acoustic structure of each sound could be matched to a
specific acoustic template, then mismatches between human and humpback
perception would be largely irrelevant to identifying structure within songs.
For instance, birds most likely do not perceive their songs in the same way as
humans, but because the notes they use within their songs are often quite
distinctively different, one can be confident that structural organization is
being accurately described by symbolic sequences representing the notes
within songs. In contrast, humpback whales are continuously morphing the
features of individual sounds that they produce within songs along multiple
acoustic dimensions [2], to the extent that the sound repertoire that a single
whale uses in one year can differ considerably from the sounds it was using
five years earlier.

The kinds of acoustic transformations present within humpback whale songs
are similar in certain respects to modulations present within human music.
Analytical approaches commonly used to analyze musical structure suggest
one way of handling the graded acoustical transitions present within
humpback whale songs [3-4]. Specifically, analyses of the temporal structure
within a sequence can reveal sequential periodicities, even when the
individual sounds giving rise to regularities are constantly changing.

The individual sounds produced by singing whales can all be described as the
result of variations in the vibrating modes of paired membranes [2]. A major
factor that determines the aural qualities of any particular sound is the rate of
vibration. Because the vibrating membranes act as a relaxation oscillator, low-
rate vibrations generate more pulsatile sounds, whereas higher-rate vibrations
tend to produce more sinusoidal sounds. Consequently, although the sounds
fall along a graded continuum of different vibration rates, sounds at the
endpoints of this continuum sound dramatically different and also will appear
qualitatively different in time-frequency representations. Using measures of
waveform features that directly reflect production mechanisms (e.g., vibration
rate) provides a way to avoid the subjective biases that can be introduced by
the nature of this continuum. Duty-cycle measures provide a convenient way
of quantifying how sinusoidal versus pulsive a signal is [2], providing a way
to convert produced oscillations into points along a continuum. Temporal
structure analyses such as those applied to musical recordings can then be
used to analyze the structural properties within sequences of measures of
whale-generated vibration modes.

2 Methods

The analysis presented here serves to illustrate how temporal structural
analysis can be applied to a recording of a singing whale. To get precise
measures of production-related features, it is important that the recording be
made from relatively close to the singer. The 26-min recording analyzed in
this study was collected from a short distance, with minimal background noise
(media/NIPS4B_Humpback Darewin LaReunion Jul 03 2013-
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001 26min.wav).

The time-domain waveform was analyzed in its raw form, with no pre-
processing. The recording was segmented into sequential 100 ms duration
frames and each frame was converted into a single duty-cycle measure. Duty-
cycle was calculated regardless of whether the frame corresponded to a sound
produced by the singer or to a silent interval between sounds (for details of
duty-cycle calculation, see [2,5]). The duty-cycle measure provides a ratio
scale measurement in which zero corresponds to no deflections. Trains of
pulses produce a lower duty-cyle value (near 0) and more sinusoidal signals
produce a higher value (1 for a perfect sinusoid). This measure has previously
been used to analyze the vocalizations of false killer whales [5] and singing
humpback whales [2]. The sequence of duty-cycle (DC) measures is referred
to hereafter as a DC-gram. Conversion of the 26 min recording into a DC-
gram (15410 elements, 32 kB file) took ~10 s using Matlab R2010b on a 3.1
GHZ Apple iMac.

3 Results

The DC-gram is similar to the envelope of the waveform, but provides
additional information, such as evidence of dynamic transitions between
sound production modes within individual sound units, even when signal
amplitude remains constant (Fig. 1). Although the DC-gram consists only of
positive values between 0 and 1, it can still be analyzed using standard time-
frequency representations. Here, the DC-gram was analyzed by transforming
it into a spectrogram (Fig 2). A spectrographic analysis of a DC-gram
produces a representation comparable to a rhythm spectrogram (e.g., see
[2,6]). Unlike the rhythm spectrogram, however, the spectrogram of the DC-
gram reveals temporal patterns in production modes rather than (or in addition
to) temporal patterns in amplitude or pitch. Consequently, it is more sensitive
to modulations that a singer is controlling.

The Figure 2 shows transitions in the temporal structure within the 26 min
recording of a singing whale. The spectrogram shows that overlaying a
relatively constant .5 Hz rate of sound generation, the singer is modulating the
timing/modes of its sound production in stereotypical ways.

4 Discussion

Temporal structure is aurally evident in all recordings of singing humpback
whales, yet few attempts have been made to measure this structure (however,
see [7-8]). Instead researchers have focused on analyzing subjectively salient,
repeating sound patterns. Analyses of apparent hierarchical structure within
sequences of subjectively categorized sound types may bear little relation to
the informational structures that are produced and used by humpback whales
[9]. The current analysis suggests that more objective methods of analyzing
song structure are feasible and may reveal previously unsuspected temporal
dynamics within humpback whale sound sequences.

Ultimately, the criteria for a successful structural analysis depend on the
purpose of the analysis. If the goal is to systematically describe the vocal
behavior of humpback whales in a particular year and locale, then
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classification strategies that focus on clustering individual units (or subunits,
or phrases) into discrete types clearly provide a useful way of doing this [10].
If, however, the goal is to identify functionally relevant structure within the
sound sequences produced by humpback whales, then it is important to keep
in mind that the information bearing properties of elements within these
sequences remain unknown.

Figure 1.(top) DC-gram of the first minute of the 26 min recording. Each frame corresponds to a 100
ms segment of the recording. Here, duty-cycles above ~0.2 reflect energy within units. The DC-gram
shows that production modes vary more in some sounds than others (unimodal peaks reflect
continuous gradations in production), that the overall rate of sound production is quite stable, and that
the duration of units and intervening intervals are also stable (at least during this 1 min segment).

Raw spectrographic analysis of DC-gram
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Figure 2. Spectrographic DC-gram of a 26 min song bout. In the first 9 min of singing, the whale
slows down the rhythm of sound production, while maintaining production rate (~.5 Hz). After 10 min,
the whale shifts to a rhythm that closely matches the rate of sound production. Near 12 min, the whale
transitions through several rhythms before settling into a new mode near the 13 min mark.
Interestingly, the time spent in this new mode matches that spent in the rate-synchronized mode; later,
near the 17 min mark, the whale repeats this temporal pattern, again producing each mode for ~1 min.
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Abstract

In this work we propose to extend the finite parsimonious Gaussian mixture to
the infinite case so that the classification of our data could be performed in one
stage. We implemented the eigenvalue decomposition of the covariance matrix
of each cluster to the Infinite Gaussian mixture model and made it parsimonious.
We developed an MCMC algorithm (Gibbs sampling) to learn the various models
and we named this approach the bayesian non-parametric parsimonious approach
for cluster analysis. The new approach will be more flexible in terms of modeling
and will automatically provide the partition of the data and the number of clusters.
This approach will be applied into the challenging problem of Whale song decom-
position NIPS4B challenge. These algorithms would also give efficient clustering
on complex sequence of pulses, and then may allow muti-source/multi-animals
labelling.

1 Introduction

Clustering is one of the essential tasks in machine learning and statistics. One of the main problem
in data analysis is to estimate the number of clusters that fits best the data. For that we find different
approaches in the literature, where one of the most popular is the model-based clustering [[1} [2]].
These finite parsimonious Gaussian mixtures rely on the eigenvalue decomposition of the covari-
ance matrix, allowing the models to change between the simplest spherical one to the more general
[3]. The model parameters can be estimated in a Maximum Likelihood (ML) framework by the
Expectation Maximization (EM) algorithm [4] or in a Maximum A Posteriori estimation (MAP) [3]
framework or by using MCMC sampling techniques[6, [7]. In this approach, as well as in standard
model-based clustering techniques, the selection of the number of clusters is performed by using
penalized likelihood criteria such as the Bayesian Information Criteria (BIC) [8]], Akaike Informa-
tion Criterion [9]], Integrated Classification Likelihood (ICL)[10], etc. So we need to perform a two
stages for classification, first estimate the number of clusters and then run th EM algorithm for the
classification of the data.

An alternative well-principled approach for the difficult problem of model selection is to use the
Bayesian Non-Parametric (BNP) [11] methods for clustering, one of them being the infinite Gaus-
sian mixture model (IGMM) [[12]. Indeed, the principle of IGMM is based on the one of the Chinese
Restaurant Process (CRP) 13,114} 15|16} [17] which is well suited to the problem of non-parametric
clustering. This alternative gives us the possibility to obtain the number of clusters in the same
stage of clustering so that as the new data will be observed the number of model parameters can
be changed. The general (full GMM) model used in IGMM is not so flexible as in the case of the
model-based clustering [3. [18]] where the covariance matrix can take different forms, depending on
the volume shape and orientation. Therefore we proposed to develop a new approach that will rest
being an infinite Gaussian mixture model approach that will give us the possibility to automatically
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provide the number of classes but know with an eigenvalue decomposition of the covariance matrix
giving more flexibility for the model.

The paper is organized as follows. Section [2] briefly discusses previous work on finite Gaussian
mixture clustering, in particular we show the model-based clustering approach. Then, Section [3}
presents the proposed approach and Section [4| shows experiment results after application to the
Whale song decomposition NIPS4B challenge of the EM algorithm with ML and MAP frameworks
and the proposed bayesian non-parametric parsimonious approach.

2 Parametric parsimonious Gaussian clustering

It is supposed that X = (x,...,X,,) is a sample of n i.i.d observations in R%, and z = (21, ..., 2,)
is the corresponding unknown cluster labels where z; € {1,..., K} represents the cluster label of
the 7th data point x;, K being the possibly unknown number of clusters.

In the model-based clustering [[1, 2} 5] the data X is proposed to be generated from a mixture model
with the density:

n K
p(xi;0) = [ D mafie(xis 0x) (1
i=1k=1
having fj, a distribution with parameters 6, and the non-negative mixing proportions 7 that sum to
one.

We will suppose in particular the multivariate Gaussian Mixture Model (GMM) [1]] to cluster the
data X so that in this case we have f, being a multivariate Gaussian distribution (equation [2) with
the parameters 8y, = (pu,;,, X)) which are respectively the mean vector and the covariance matrix for
the kth Gaussian component density.

1 1
FulolOn) = Nl B30 = 28l exp { =30 - i) T2 - ) f @)

The finite parsimonious GMM by the eigenvalue decomposition of the covariance matrix makes the
model more flexible, giving a possibility to variate each cluster density by volume, orientation and
shape. The parametrization of the covariance matrix is given in equation 3}

¥r = MDA, DY 3)
where )\, is a scalar that defines the volume, Dy, a orthogonal matrix that defines the orientation and

A, is a diagonal matrix with determinant 1 witch defines the shape. This decomposition leads to
fourteen flexible models [3]] going from simplest spherical models to the complex general one.

One of the most used algorithm for learning the model is the Expectation Maximization(EM) algo-
rithm that maximizes the likelihood [[19, 20] is an iterative algorithm consisting of two stages, the
expectation of the complete data log-likelihood named the E-step and the maximization of the ex-
pected complete data log-likelihood named the M-step. Maximizing the likelihood (ML framework)
will maximize the mixture likelihood p(X|7g, s, k).

n K
PX i, g, Bx) = [ [ D 7k Na(xil g, S)
i=1k=1
The maximizing of the posteriori (MAP framework) can be also performed by the EM algorithm [3].
It leads by adding a prior to the mixtures parameters so that it maximizes the following posterior

parameter distribution p(0|X)
p(01X) = p(6)p(X|0)

where p(0) = p(X)p(p) is the prior for the parameters of the mixture. Also we find in the literature
different extension of the EM algorithm like CEM, GEM, etc. that could also be used to learn
the model. Another alternative to learn the models are the Markov Chain Monte Carlo (MCMC)
algorithms (like Gibbs sampling) [7, 21} 22].

However before learning the model with one of these finite gaussian mixture model we must have the
answer to what is the number of mixtures in our model. For that we pose K, that is a maximum
number of cluster possible and we compute the penalized log-likelihood criteria (BIC, AIC, ICL,
etc.) After choosing the optimal number of clusters that fit best the data we can run one of the
learning algorithms.
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3 Bayesian non-parametric parsimonious clustering

First off all we make attention that the term of non-parametric learning does’t mean at all that the
model doesn’t have parameters, indeed it means that it could have an infinite number of them as
the data grows, in other words it is assumed that the observed data are governed by an infinite
number of clusters, but only a finite number of them does actually generates the data. Bayesian non-
parametric (BNP) mixtures for clustering offers a good alternative to infer the number of clusters
form data within one stage, rather then in two stages like in the case of the parametric modeling
(L1423 241 [12]. BNP approach proposes to pose a prior on an infinite partitions in such a way that
a finite number of clusters will be active. We could use the Chinese Restaurant Process (CRP) prior
[25) 126} 23] or a Dirichlet Process Mixture (DPM) [27, 23] 28]].

In this work we proposed to develop the previous work called the infinite Gaussian mixture model
[12], based on the full GMM, by extending it to a more flexible mixture model where the covari-
ance matrix has an eigenvalue decomposition [3}[18]. We call the new approach the bayesian non-
parametric parsimonious approach. We assumed the Chinese Restaurant Process (CRP) prior for the
cluster assignments.

Indeed CRP provides a distribution on the infinite partitions of the data, that is a distribution over
the positive integers 1,...,n. Considering the following joint distribution of the unknown cluster
assignments: p(z1, ..., 2zn) = p(z1)p(22]21)p(23|21, 22) . . . p(2n|21, 22, - - - , Zn—1) We can compute
each term by using the CRP distribution. The problem of the Chinese Restaurant Process can be
expressed by a real human situation if supposing a restaurant that could be extended in a real time
by having the possibility to add an infinite number of tables if the number of customers grows. So
the CRP is explained as follows: supposing we have this kind of restaurant where one customer
is visiting it. This customer enters and sits at the first table. When the second customers enters
the restaurant he will sit with a probability 1_%& to the first table and with probability £ to the
second table where v will be a dispersion parameter. Going future we say that the n-th customer
will be sitting at a new table with a probability equal to —3-— or at the table £ with the probability
. where ny is the number of customers sitting at table k. The idea of this model is that
humans adaptively learn the number of categories of their observations. In the clustering problem
the customers are the the observations, so that the new observations can enter the clustering method
and choices the table meaning the cluster. This can be explicitly formulated as follows
— if k<K
— — . — i—1+a — +

p(ZZ —k|21,...,Zi,1) —CRP(Zl,...,Zifl,Oé) = { if?ia lf kJ>K+ (4)
where K, is the number of tables that have customers sitting on that table n; > 0 or it is also known
as active classes. We note k£ < K, when the k-th table is occupied or in clustering problem the new
data observed will be associated to the k-th cluster and £ > K, when a new table will be occupied
or the new observation will form a new cluster.

It is also used a prior for the mixture parameters as in MAP approach or the MCMC Gibbs sampling.
This priors are used to be conjugate priors so that for example we have the normal inverse-Wishart
prior distribution for the mean and the covariance matrix if we use a full GMM. We note this prior
distribution as G so that we can show the following generative process.

9, ~ Gy )]
zi ~ CRP(z1,...,2i-1;) (6)
x; ~ p(6:,) @)

According to this generative process we see that 6; exhibit a clustering property so that the unique
values of the parameters are the number of mixtures that fits the data. Gy is called the base distri-
bution [27} 123]]. The distribution over the partition z; as it was talked before is a CRP distribution.
We proposed to develop the infinite parsimonious Gaussian mixture, where the covariance matrix is
parameterized in term of eigenvalue decomposition to provide more flexibility of this model. So the
priors on the parameters depends on the type of the parsimonious model. Having chosen the MCMC
Gibbs sampling [12} 29| 16} 23|] for learning the model we will have different sampling depending
on the covariance matrix decomposition.

Indeed, yet we investigated seven parsimonious models, covering the three families of the mixture
models which are the general, the diagonal and the spherical family. The parsimonious models
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therefore go from the simplest spherical one to the more general full model. In table[] we summarize
the considered models and the corresponding prior for each model used in Gibbs sampling.

[ Nr. | Decomposition | Model-Type | Prior [ Applied to ]
1 Al Spherical G A
2 Akl Spherical g Ak
3 2B Diagonal 6 each diagonal element of \B
4 . B Diagonal zg each diagonal element of A\, B
5 ADAD” General Iw > = ADAD”
6 A«DAD” General | ZG and IW Ar and ¥ = DAD”
7 | MDipALDY General w 3 = A\ DrA DT

Table 1: Considered Parsimonious GMMs via eigenvalue decomposition and the associated prior distribution
for the covariance. Note that Z means that it is an inverse distribution, G means that it is a Gamma distribution
and WV means that it is a Wishart distribution.

4 Experiments

We compared our Bayesian non-parametric parsimonious mixture with model-based clustering
(ML-based and MAP-based) approaches. For the ML and MAP approaches, we used the EM algo-
rithm to estimate the model parameters. The model selection is performed by ICL for values of K
between 1 and 60. For each value of K, we considered 10 runs of EM, with different initializations,
to estimate the mixture model parameters and the one providing the best solution (corresponding to
the maximum value of the log-likelihood is selected). Then, the value of K corresponding to the
highest ICL value is considered as the best solution with the optimal number of clusters.

For the Bayesian non-parametric approach (IGMM), we used the Gibbs sampler by running it ten
times and selecting the best solution in the sense of the posterior.

We illustrate the estimations of the number of classes for Gibbs samplings for 2 spherical models A\I
and A1, 2 diagonal models AB and \;B and two general models A\, DAD? and \;D;A;D? in
the histograms of figure[I} Note that we dont take in consideration the first 50 iterations of the Gibbs
sampling. For this whale song data we can conclude that for these models we have been estimated
a different number of clusters, that could be compared when estimating the number of clusters by
using the information criteria.

0 0
345678 9101112131415 1617 181920212223 24 25 345678 91011121314151617 1819 2021 2223 24 25 34 5678910111213 14151617 1819 2021 222324 25
K K K

Al AB A:DADT

45 6 78 91011121314 151617 18 19 20 21 22 23 24 2 456 78 91011121314151617 18192021 2223 24 45 B 78 9101112131415 1617 18 19 20 21 22 23 24 2
K K K

PN | B MDA DY

Figure 1: Posterior distribution of the number of clusters obtained by the proposed bayesian non-
parametric approach.
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The table [2| shows the log-likelihood values that are divided by 10 and the number of estimated
classes obtained by using the Expectation Maximization (EM) algorithm with one of the information
criteria and the proposed bayesian non-parametric parsimonious method for clustering the data. By
analysing the results we can conclude that the best solution is by using the more general model with
the eigenvalues decomposition of the covariance matrix Ay Dy Ay Dg, meaning that the volume, the
orientation and the shape can vary for each cluster. The best likelihood obtained here is by using the
EM with maximum a posteriori framework algorithm, that estimates 18 classes. On the other hand,
the bayesian non-parametric model estimates 15 classes. By using the spherical models, the one with
the equal volumes AI and the other one with different volumes A;I, we notice that the estimation of
classes are taken to be the maximum, equal to 60, when using the finite Gaussian Mixture Models
(GMM), while for the infinite case we have estimated 9 classes for the AI model and 23 classes
for the A\;I model. Also, for the diagonal models, we have the model with equal volumes AB that
estimates 22 classes for the finite mixture models when using the EM ML approach or EM MAP
approach with the Integrated Classification Likelihood (ICL) criteria, and 18 classes when using the
proposed non-parametric bayesian clustering.

Table 2: Log-likelihood values (divided by 10°) and the number of estimated classes obtained for
the whale song data set by using the Expectation Maximization approach with maximization of the
likelihood (ML) approach and with the maximization a posteriori (MAP) approach and the proposed
bayesian parsimonious approach (IPGMM).

EM ML EM MAP IPGMM
Model K | loglik | K| loglik | K [ loglik
A 60 | —2.2198 [ 60 | —2.1924 | 9 | —2.3413
AT 60 | —2.1129 | 60 | —2.0858 | 23 | —2.2133
B 22 | —2.1435 | 22 | —2.1339 | 18 | —2.1958
B 59 | —2.0059 | 53 | —1.9595 | 11 | —2.1900
ADAD7” - - 34 | —2.0815 | 33 | —2.1695
MDADT | 51| —1.9811 | - - 24 | —2.1589
MDyALDY | 19 | —1.9418 | 18 | —1.9381 | 15 | —2.1234

In the figure [2| we show the spectrograms of the whale songs obtained with the proposed bayesian
non-parametric approach with the most general model AyDj A, DZ. We chose to show these spec-
trograms of the whale songs because we obtained the best log-likelihood solution when using the
new method. On the vertical axes the frequency is showed and on the horizontal axes we have the
frames, each frame being represented by 10 ms. As we observe in the table 2] we have 15 clusters
for the A\, D, Ay Df model when using the infinite Gaussian mixture model, so in figure [2| we show
the 6 spectrograms of the whale songs that the time repass 10 ms.

By classification the whale song data with the infinite gaussian mixture model using the most general
model )\kaAkDf we see in the ﬁgurethe song that where observed for each observation. The
songs (classes) 8, 12 and 15 are uniformly activated in time, therefore we may figure out that they
are representing the sea noise. Whereas the songs (classes) 10,13 and 14 are clearly conveying
information (low entropy).

5 Conclusion

This work presents a new Bayesian non-parametric approach for clustering. It is based on an infinite
Gaussian mixture with an eigenvalue decomposition of the cluster covariance matrix and a Chinese
Restaurant Process prior. It allows deriving several flexible models and avoids the problem of model
selection in maximum likelihood-based and Bayesian parametric Gaussian mixture. We applied this
method on the Whale song decomposition NIPS4B challenge. The obtaining results highlight the
interest of using parsimonious Bayesian clustering as a good alternative namely to finite parsimo-
nious GMM clustering. We saw that the infinite parsimonious Gaussian mixture model IPGMM) is

!'The missing values for the two state of art models (ADAD7 model for EM ML and the A\ DAD7 model
for EM MAP) are due to some trobles when executing the em algorithm for this data and are currently being
fixed.
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Figure 2: Spectrograms for the whale songs obtained with the proposed bayesian non-parametric
approach with the most general model A, DA ;D7T.

observ ations

song units

Figure 3: Clusters activities versus time sea noise obtained by IPGMM with A\, D k,Ak,DZ model

more flexible in terms of modeling and automatically provides a partition of the data and the number
of clusters for the data needed to be clustered.
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Abstract

Following a production-based approach, this paper proposes a new kind of rep-

resentations of humpback whale songs. Simple acoustic descriptors are used to
characterize specific features of vocal sounds (e.g. fundamental frequency, for-

mants, chaos), which can be traced back to their vocal mechanisms. Such repre-
sentation of songs allow to interpret acoustic features of vocalizations in terms the

characteristics of vocal organs. It may be a very useful tool for researchers dealing

with the acoustic behavior of humpback whales.

1 Introduction

The vocal repertoire of humpback whales (Megaptera novaeang)isanges widely, with a great
variety of bandwidths, durations and intensities of the emitted sounds. More specifically, the vo-
cal diversity of humpback whales includes acoustic features such as harmonic sounds with a huge
fundamental frequency range, noise-like sounds, formant structures [1], pulse-like sound units and
various non-linearities (e.g. frequency-jumps). Scientists have particularly been interested in the
complex stereotyped songs that male individuals of humpback whales, one of the most studied
species of mysticetes, emit during the winter-spring breeding season. One major topic of research
when analysing these songs is the characterization and classification of their constitutive sounds.
Two main approaches can be distinguished in this task. [2] proposed a famous hierarchical frame-
work (songs - themes - phrases - sub-phrases - sound units), in which the temporal structure of these
songs has been longly studied. The method used is to perform spectrogram analysis to determine
salient acoustic features characterizing discrete sound patterns, which are further used to build an
organized structure in regards to their relative presence/prevalence within a song. Numerous studies
(see review in[[B]) have followed this approach, including [4] who studied temporal song evolution
and [5] who proposed a manual categorization of humpback whale sounds. A second approach is
the use of machine learning methods, with the obvious advantages of building objective, automatic,
time-saving tools of analysis for humpback whale songs. Baseline surveys include [6] who used

*Also at Centre de Neurosciences Paris Sud - CNRS UMR 8195 - TdecBustics Team - 91400 Orsay
France
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information theory techniques to study song structure, [7] who developed a cluster-based learning
to classify sound uts.

Recently, [[8] have called for the rejection &f [2]'s framework, prompted by the involvement of
human subjectivity in the characterization of information-carrying vocal sounds whose semantic and
syntax are unknown to humans. Especially, how can you tell if this hierarchical descriptive structure
is relevant for the whales when producing their sounds? A similar critic could be formulated for
the machine learning technique, whose representations of humpback whale songs do not directly
provide an understandable insight in their acoustic communication.

To deal with this issue, some authors [9) AD[ 8, 11] have proposed to adopt a production-based
approach by analysing the factors involved in the overall sound production system of humpback
whales. This approach consists in the study of the whale sound producing anatomy in order to eval-
uate the acoustic characteristics of potential vocal organs (e.g., the fundamental frequency range
of a sound generator, or the maximal airfl@@mplitude), but also of other constraint-like factors

that are not directly "controlled” by the whale, being either physical (e.g., composition of internal
respiratory gases) or environmental (e.g., depth-related ambient pressure). Humpback whale vocal
production should reflect the physical interaction between all these factors, through for example
the temporal sequencing or the different acoustic contrasting types of sound patterns. Therefore,
by studying the vocal material of humpback whales in direct relation with their sound producing
mechanisms, and with any other factors which may influence them, this work should bring us more
relevant and objective descriptive information to understand humpback whale vocal behavior. The
general production-based approach has been widely applied to different mammal species [12, 13].
This approach most often combines predictions based on functional morphology, supported by com-
putational model of sound production systems (e.g.,[s€e [14] for doves,|or [15] for dolphins). One
of the reasons why similar research on mysticete cetacean in general has fallen largely behind is that
their vocal production mechanisms are still under investigation. Although agreements have been
found on the fact that vocal production results from air movements and is included in the process
of internal air recirculation, the precise acoustic origins of the different vocal features observed in
humpback whale songs have remained elusive. Recent advances have been made with the work of
[16,[17], focusing respectively on two laryngeal components : the U-fold, so called for its particu-
lar U-like shape and for its similarities with vocal folds, and the laryngeal sac, which is an air sac
located at the ventral aspect of the larynx. While [1] &nd [8] mostly based their studies on com-
putational analyses of humpback whale sound sequences, the authors have used anatomical data to
develop a biomechanical modeling of the vocal production mechanisms, and quantify the acoustic
features of synthesized sound units|[10, 11].

2 Production-based classification of sound units

2.1 Physiological division of the respiratory tractus into three different configurations

The anatomical scheme of figure 1 has been derived from the wdrklof [16, 17]. The two symmetric
lungs are connected to a short broad cone-shaped canal called trachea. In the laryngeal region, three
respiratory valves are present. The U-fold (see phbto 1) possesses some strong similarities with
common mammal vocal fold$ [116], particularly in regards to its geometrical dimensions (length

to thickness ratio) and slit-like glottal shape, tissue composition (presence of a thin mucosa in the
outermost layer) and associated laryngeal muscles and cartilages (e.g. presence of homologous
thyroid and arytenoid cartilages). The two sides of the U-fold do not attach directly the thyroid
cartilage, but fuse together caudally into one midline connective tissue ridge within the laryngeal sac
lumen. In front of the epiglottis, whose classical valve function is to protect the lower respiratory
system from foreign bodies (mainly water), a third pair of lips-like organ called corniculate cartilage
flaps (see photdl 1) is present and is characterized by its long shape, the high elasticity of its tissues
and the proximity of its two symmetric lips. The laryngeal sac can be seen as a soft extensible oval
balloon with an extensive surrounding musculature. On the opposite side of the laryngeal sac, the
nasal region is composed of the nasopharynx, a short flexible region of muscles and soft tissues, and
of two tube-like parallel nasal cavities with rigid walls. On the top side, these tubes both end on
thick nose plugs.

Although the term of air will be mostly used through thisttex reference is actually implicitly made to
any kind of internal gases flowing into the respiratory tractus of the whale.
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It is noteworthy that the strong muscular structures surrounding both the laryngeal sac and the lungs
(i.e. respectivgl abdominal muscles, the diaphragm and the intercostal muscles) should have three
different roles: 1) pressurize all the system to a specific pressure different from the depth-related
ambient pressure, 2) manage the different airflows in the different configurations and 3) allow them
to withstand large variations in hydrostatic pressure and avoid “chest squeeze” while diving and
surfacing. The hypothesis that airspaces inside the whale are undisturbed by the depth-dependent
ambient pressure is then anatomically reasonable.

Figure 1: On the left, simplified anatomical scheme of the respiratory tractus. On the right, photo
of a dissected whale fgnx, hilighting the locations of the two sound generators with black lines.
These pictures come frorn [18].

Considering this overall system through successive respiratory phases, two processes may induce
different configurations of this system: the laryngeal valves (i.e. the epiglottis, the U-fold and the
corniculate cartilage flaps) movements and the air recirculation. The physiological properties of the
lungs and the laryngeal sac allow them to ensure alternatively two opposite functions, i.e. storing the
incident airflow or emitting it back in the respiratory tractus for further uses. By combining valve
states (open when an airflow can pass through it, or closed otherwise) and air source locations, we
highlight the formation of three mutually exclusive configurations of the respiratory tractus, further
subdivided by the direction of the airflow, which we will now describe.

Configuration 1 , where only the U-fold and the epiglottis are open. Based on the left graph of
first row in figurd 2, the air flow in this configuration can either come from the lungs or the laryngeal
sac, and then pass through the U-fold. Here, the folds are parted and the epiglottis is pressed against
the wall ;

Configuration 2 , where only the corniculate cartilage flaps and the epiglottis are open. Referring
to the second row of graphs in figuire 2, the U-fold is now replaced by the corniculate cartilage flaps
and the pulmonary air going through is directly guided into the nasal cavities, before being stored in
the laryngeal sac. The longitudinal shape of these flaps do not allow them to let pass an airflow in
the opposite direction, which eliminates the laryngeal sac as an air source. In this configuration the
glottal airflow will be more distant from the laryngeal sac than in the first configuration ;

Configuration 3 , where only the U-fold is open. We consider in this configuration 3, illustrated
with the two bottom schemes in figuré 2, that both the lungs and the laryngeal sac may act alter-
natively as an acoustic source. The epiglottis and the corniculate cartilage are tightened together,
making the nasal cavities inaccessible to the airflow. The lungs, the trachea, the U-fold and the
laryngeal sac are the sole anatomical components to be taken into account here, providing a certain
symmetry to this configuration.

2.2 Acoustic characterization of each sound unit

Previous acoustic models developed by the authors [11, 18] have allowed the association of quanti-
tative spectral features to the previously described physiological configurations. Briefly, considering
the configurations 1 and 2, acoustic resonances inside the respiratory tractus result mainly from the
acoustic parallel coupling between the nasal cavities and the laryngeal sac. The tube-like nasal
cavities with its rigid walls generate formants through acute acoustic resonances, characterized by
harmonically related frequencies (whose dispersion depends on the length tube) spanning a large
spectrum. The large laryngeal sac with its softer elastic walls is expected to play a role of low-pass
filter with a poor sustaining of higher frequency resonances. Also, the U-fold is more likely to
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a. Configuration 1

Figure 2: Schemes of the three physiological configurations. The blue circles stand for the acoustic
source. A closed vae is drawn in red, while an opened one is drawn in green. On the right, photos
illustrating the different configurations of the pair epiglottis / corniculate cartilage flaps, from top to
bottom : epiglottis lowered and flaps closed (config. 1), epiglottis lowered and flaps open (config.
2) and epiglottis lifted and flaps open (config. 3)

generate higher fundamental frequencies trough a thickness-to-length ratio and a laryngeal muscle
structure quite similar to common mammal vocal folds. This preliminary analysis allows us to also
discriminate the three physiological configurations in regards to the active sound generator, produc-
ing either a low-pulsé range (below 50 Hz) with the corniculate cartilage flaps (configuration

2), or a medium (50 - 800 Hz) to high (above 800 Hz) frequency range with the U-fold (configura-
tion 1 & 3, with a reversed U-fold for opposite airflow). Figlide 3 illustrates the different types of
vocalizations formed through the three physiological configurations, with real vocalizations taken
from recorded whale songs. The three types of calls proposed allow to explain anatomically the
acoustic differences in the fundamental frequency range (low / medium-high) and the presence of
formants. Also, the movable precarious structure of formant patterns observed across humpback
whale vocal displays fits well the idea of an active temporal dynamic, based on a temporally-shaped
laryngeal sac impacting the overall acoustic behavior of the respiratory system. Further studies will
be needed to explain source-related acoustic features, such as the noisy characteristic of a sound and
the modifications due to a reverse glottal flow. Basic LPC Andracking [19] have been used to
automatically detect values of these acoustic features within each sound unit.
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Figure 3: On the left, spectrograms of three types of real sounds units extracted from recordings
of humpback whales, corsponding to the three configurations (labeled from a to ¢ in reference
to figure[2). The first type presents an harmonic structure with a medium fundamental frequency
and modulated by formants, the second type presents a pulse sound with a periédTs (i.e.

Fy = 17Hz), and the third type presents an harmonic structure with a high fundamental frequency
without formants. Fronmi [18]. On the right, illustrations of detection of chaotic segments.

To these three basic sound unit types, only discriminated based on fundamental frequency range

and presence/absence of formants, we can add an acoustic feature traducing the occurrence of vocal
non-linearities. Mostly two types of vocal non-linearities are present in humpback whale songs :
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frequency-jumps and chaos. These two features are very interesting in a production-based approach,
as easily tractablto specific vocal mechanisms. Indeed, frequency jumps result either from a cross-
over betweenF; and a formant[[20], or from a register transition durind'@ modulation [21].

Chaos result exclusively from chaotic oscillations of the vocal folds. We propose to define a chaotic
descriptor as the sum of three classical tools from non-linear dynamic methods [2Enttbey,

the Lyapunov Exponentsand theCorrelation Dimension. TheEntropy E quantifies the rate of

loss of information about the state of a dynamic system as it evolves overitiine [22]. For regular
behaviors (i.e. static states, periodic and quasi-periodic oscillations), the entropy is equal to zero.
For chaotic systems with finite degrees of freedom, the entropy is finite. Chaotic systems display
a sensitive dependence on initial conditions. Such a property deeply affects the time evolution of
trajectories starting from infinitesimally close initial conditions, dydpunov exponentsare a
measure of this dependence. These characteristic exponents give a coordinate-independent measure
of the local stability properties of a trajectory. A trajectory is chaotic if there is at least one positive
exponent. Theorrelation dimension D, proposed by [23], quantifies the complexity or irregularity

of a trajectory in phase space, describing the geometrical scaling property of a vocal sound in a state
space. Figurg]3 on the right illustrates the use of such descriptors in the discrimination between
harmonic / chaotic segments in two different sound units.

3 Discussion and Conclusion

At the final step of analysis, we can use the production-based call types previously described and
identify their occurrences over different songs of humpback whales. Higjure 4 illustrates two repre-
sentations of humpback whale songs based on this production-based approach. All sound units are
preliminary isolated, characterized individually and then concatenated over time.

100 200 300 400 500

Frequency (Hz))

100 200 300 400 500
Sound units Sound units

Figure 4: Curves of two descriptor3; and D, detecting respectively chaotic vocalizations and
formant occurrences. On the right, a fundamental frequency tracking over a song is represented.

A more "high-level” representation could be extracted from figure 4, with the identification of the
different configurations developed in sectionl 2.2, based on the continuous temporal distribution of
formants and fundamental frequencies. This would potentially provide an insight into internal res-
piratory mechanisms of the whale, and its management of sound production. Also, the temporal
distributions of vocal non linearities give us an interesting support to speculate on what they could
traduce within humpback whale communication framework (e.g. exceptional vocal features, lack of
vocal skills, pathological signs). The main goal of the proposed representation is then to provide a
useful tool for biologists. This kind of representation offers a meaningful support for direct interpre-
tation and discussion of humpback whale vocal strategies within their communication framework.
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1 Introduction

It has been well documented that Humpack whales produce songs with a specific structure [Payne].
The NIPS4B challenge provides 26 minutes of a remarkable Humpback whale song recording produced at
few meters distance from the whale in La Reunion - Indian Ocean, by "Darewin" research group in 2013 at a
frequency sampling of 44.1kHz, 32 bits, mono, wav format (Fig 1).
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Figure 1: Spectrum of around 20 seconds of the given song of Humpback Whale (start from about 5'40 to 6.
0 to 22.05 kHz - frameshift of 10 ms)

Usually, the Mel Filter Cepstrum Coefficients are used as parameters to describe these songs [Pace
and al.] We propose here another efficient representation, the scalogram, and we demonstrate that the sea
noise is efficiently removed, even in the case of lower SNR recordings, allowing robust song representations.

2 Scalogram for robust whale song unit extraction

We compute the first layer of the scattering transform of the ScatNet Toolbox to perform the Gabor
wavelet transform. We then generate different scalograms on the challenge 2 wav file, but also on some of
others whale songs recorded in 2013 in New Caledonia with low cost material in order to emphasize the
potential of this representation for bio-acoustic analysis even at low SNR.

According to our experiments, the parameters that were performing the best were the Gabor mother wavelet,
with opt.Q=8 , opt.J=62 , opt. T=948.1 = Q*2~(J/(Q+1) . T is then a the minimal physiological scale (<2ms).
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Then the first layer appears to loose few units which are also missing in the other scattering layers,
however it has a strong energy coefficient. However some specific patterns appear and could possibly be
used to describe and identify the singer. For example, the chirps have a specific length and slope as shown
with some examples extracted from 4 different samples recordings in the next sections (the original figure
are at : http://sabiod.univ-tln.fr/pimc/rapport/ ).

We give the scalogram and spectrogram of around 2 minutes on each signals. For all the scalogram
none additionnal non-linear transformation has been applied. This comparison emphasizes the strength of the
scattering decomposition conpared to the spectrogram containing the sea noises.

We illustrate this with different occurrences of some specific patterns, computed on window lasting
2”716 samples which is the maximum window length we can use in ScatNet toolkit.

3 Challenge results
Results on the NIPS4B_humpback.wav challenge data are in Fig 2.

(http,[[sablgd,lrmv tln,fr[n1ps4b[ghallenge2,html)
).We give in

ﬁgure 3 some extracted examples of a recurrent partrcular shape (spectrogram window = 128, overlap = 64)
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Figure 2 : scalogram and spectrogram of the challenge data including the 20 seconds of the challenge
part 8,J=62, Q=8, T=948.0957
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Figure 3: Chirp extracted from the same challenge data and corresponding times. Duration of each window : 1.49 sec.
Begin time, Sample 1 : 0.11 sec., Sample 2 : 38.19sec., Sample 3 : 44.52sec., Sample 4 : 59.04sec.

3. Results at low SNR of various songs on same area and different days

In this section we compute with the same parameters the scalogram on a noisy recording taken in the
New Caledonian Lagoon.

/NAS3/PIMC/SITE/FGAB_WAV all/20130720_BB_en_plusieurs_points/DECAV_20130720 _113312.wav
The full results are at

http://sabiod.univ-tln.fr/pime¢/RAPPORT_DECAV_20130720_113312_J62_Q8_T948.0957/

A sample is given in figure 4 below, showing again clear chirps.
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Figure 4: 2-minute scalogram and spectrogram of this file
part 2,J=62, Q=8, T=948.0957
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The figure 5 shows for the same file a recurrent particular chirp :

Sample 1: begin at 30.6715sec. , duration : 1.3653sec. ,

energy captured : 0.90387 Spectroggam of the samples (specgram function : window=128, noverlap=64)

10 E] ® 0 E] C]

Sample 5: begin at 43.7917sec. , duration : 1.3653sec. , energy captured : 0.89964

Sample

Sample

10 E] E] o E] o 02 04 o6 08 1 12

Sample 2: begin at 91.9118sec. , duration : 1.3653sec. , energy captured : 0.96222 @

Figure 5: Chirp extracted from the same recording.

Another similar analysis is conducted on a whale recorded two days laters at the same place, on SABIOD
data:
/NAS3/PIMC/SITE/FGAB_WAV all/20130722_triangulation_avec GOPRO/DECAV 20130722 103948.wav

The full representation of the wav using the scattering decomposition and the FFT is at
http://sabiod.univ-tln.fr/pimc/RAPPORT DECAV_ 20130722 103948 J62 Q8 T948.0957/

We give one sample below (figure 6), showing other kind of pattern, from another kind of song units.
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Figure 6: 2-minute scalogram and spectrogram of this file

part 2,J=62, 0Q=8, T=948.0957
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Here is the zoom on other units found into these file (figure 7):

n

Sample 1: begin at 87.4855sec. , duration : 1.3653sec. , energy captured : 0.91573 Spectrogram of the samples (specgram function: window=128, noverlap=64)

@

n

Figure 7: Chirp extracted from the same recording.

We conduct the same analysis 3 days later, showing again different kind of units:
/NAS3/PIMC/SITE/FGAB_WAV _all/20130725_triangulation_et TASCAM/DECAV_20130725_093238.wav

The full representation is available at :

http://sabiod.univ-tIn.fr/pime/RAPPORT_DECAV_20130725_093238 J62_Q8_T948.0957/

A 2-minute sample already shows different patterns (figure 8) :
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Figure 8: 2-minute scalogram and spectrogram of this file
part 3,J=62, Q=8, T=948.0957
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And here (figure 9) a recurrent chirp appearing multiple times on this file :

Sample 1: begin at 71.7803sec. , duration : 1.3653sec. , energy captured : 0.9163 Spectrogfam of the samples (specgram function : window=128, noverlap=64)
» . : : : T

Sample 2: begin at 77.6265sec. , duration : 1.3653sec. , energy captured : 0.90311

10

Sample 3: begin at 104.3685sec. , duration : 1.3653sec. , energy captured : 0.89999

10t

Figure 9: Chirp extracted from the same recording.

4 Conclusion

We demonstrate the advantage of Gabor scalogram to reveal humpback whale songs analysis : it
distinguishes fine details that are possibly linked to individual signature. This representation may be usefull
for research on whale identification [Cazeau 2013, in this workshop].

Looking at the recurrent units found in each file, we can see that the NIPS4B_humpback.wav has
some really flat and mid-sized units of approximately 0.7 to 1 second, the DECAV 20130720 _113312.wav
file (figures 4 and 5) has longer chirps (lasting for the whole time window taken, about 1.35 second) and also
caracterized by a small positive slope.

For the DECAV 20130722 103948.wav file (figures 6 and 7), the chirps are smaller (the length is
about three times smaller than the previous example) and the slope is greater, also note the concave shape.
For another whale, in the record DECAV_ 20130725 093238.wav (figures 8 and 9), we see chirps with mid-
sized length, a small positive slope, and a convex pattern. These, are the kind of signature we are looking for
individual indexing

Even if a log spectrogram may have also revealed some interesting patterns, we demonstrate the
advantage of the scalogram representation compared to spectrogram according to the sea noise level that has
been removed into the scalogram.
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8.5 Automatic analysis of a whale song
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Abstract

Male whale vocalizations have the characteristics of a song. Male whales form temporal
sequences of different syllabic types making repeated phrases. We provide a method for the
automatic quantitative analysis of a single humpback whale song by decomposing these
songs in their constituent syllabic types and studying their temporal sequencing. This work
describes our approach to the humpback whale song processing challenge organized and
hosted as part of the 2013 Neural Information Processing Scaled for Bioacoustics: NIPS4B.

1 Introduction

Animals use vocalization for reasons that are vital for their existence. Mate selection,
courtship rituals, coordination, alarming and marking of territory are the most important
ones. Cetaceans vocalize for these reasons although the complete mapping of vocalization to
behavioral modes is not yet fully clarified. The growing concern of signal processing and
pattern recognition applications with marine mammals is associated with assessing the
impact of anthropogenic noise on cetaceans [1], providing means to avoid collisions with
ships [2] and detecting species that are in endangered status [3]. In this work we focus on a
humpback whale song. Both female and male humpback whales produce sounds that are
referred to as ‘social sounds’, while ‘songs’ are produced exclusively by male humpbacks. In
order to be clear with the terminology we also adopt the widely accepted definition of a
single vocalization of a humpback whale constituting a ‘syllable’ which is a distinct compact
segment of continuous sound separated from other syllables by silence. A ‘phrase’ is a
sequence of heterogeneous syllables in close succession [4] whereas a song is a structured
stereotyped repetition of phrases. For more elaborate representation of the types of structural
components typically present in sequences of sounds produced by singing humpback whales
please refer to [5]. It has been well documented that humpback whales produce songs with a
specific structure [6]. A song typically lasts from 10-20 minutes and is repeated
continuously, possibly over hours with small variations in its phrase composition. The song
changes gradually from year to year and the songs of populations around the globe are
distinctively different. There is a long list of studies concerning whale songs (see [6] and the
references therein).

The 2013 Neural Information Processing Scaled for Bioacoustics: NIPS4B featured a signal
processing and pattern recognition challenge on the domain of song whale processing [7].
The NIPS4B event provides 26 minutes of a single, high quality humpback whale song
recording produced at a few meters distance from the whale in La Reunion - Indian Ocean.
The purpose of this study is to propose an efficient representation of a given humpback
whale song that helps to study its structure, as well as discover and index its units [8]. Our
contribution is an automatic segmentation approach of a whale song and clustering of the
resulting syllables into an approximate alphabet of syllables. Moreover, we discuss a
sequence modelling of the whale song based on modelling their succession with N-grams.
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2 Signal Analysis

2.1 Elementary Vocalizations and Distinct Syllable Types

We manually examined the spectrogram and listened to the 26-minute song and ended with 9
distinct syllables. This is in accordance with [6] that also reports 9 distinct syllables of humpback
whales. The syllables consist of a series of 200-19 kHz spectral chunks. Syllables are of varying
duration uttered at rates of about 30 per minute and are both amplitude and frequency modulated.
A description of the units of this particular humpback whale song follows:

S1: has a flat tonal. It is broadband with very strong harmonics reaching up to 16 kHz. Its
duration is of 1 sec mean.

S2: has a small low-frequency flat tonal subunit followed by a downsweep of frequencies. Its
mean duration is of 1.5 sec.

S3: has weak harmonics and an initial downsweep followed by a vibrating flat tonal. Duration of
1 sec.

S4: is relatively broadband, with strong frequency modulated harmonics reaching up to 12 kHz
ending with an upsweep. Its mean duration is of 2 sec.

S5: is broadband with harmonics plus noise reaching up to 15 kHz. Its mean duration is of 2 sec.
S6: is relatively narrowband having a mostly noisy structure. Its duration is of 2 sec.

S7: has bird like chirps, a strong tonal and is relatively narrowband. Its mean duration is of 1 sec.
S8: is a small low-frequency flat tonal subunit followed by a short-time chirp segment. It
possesses strong harmonics. S8 appears alone or with one or two following characteristic subunits.
These subunits never appear in isolation but when present they come always after S8. Its mean
duration is of .75 sec for the main syllable and about .5 sec for two following subunits.

S9: is strongly tonal with higher frequency harmonics, demonstrating an almost chirp-like
character. Its mean duration is 1 sec.

Most energy is concentrated between 200-2500 kHz except syllable S1 that has high energy
harmonics up to 16 kHz. Manual examination shows silent intervals ranging in duration from .1-3
sec. In Fig. 2 we give a distribution of durations as found by our automatic segmentation system
(see par 3.1 and Fig. 3).

Once we had a clue about what the syllables should look like we proceeded into examining which
features might serve as a basis for classification and employing machine learning techniques to
examine the possible number of clusters.
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3 Signal Processing & Pattern recognition
3.1 Signal Segmentation

Let x(n) denote the discrete time-domain signal holding the original recording, where n is the
discrete-time index. The recording is sampled at 44.1 kHz, 16 bit and downsampled to 16 kHz as
we are interested in deriving cluster indices of segments and the signal energy beyond 8 kHz is
small. The SNR is quite good as the hydrophones were close to the whale [7]. In order to extract
the useful audio event from its background we applied the Hilbert follower, also known as
envelope follower. The Hilbert follower follows the characteristic shape of the time-domain audio
envelope of vocalizations. We briefly describe its derivation and function:

Let, xn(n) = Hilbert(x(n)) return a complex sequence called the analytic signal of x(n). The analytic
signal xn(n) = x(n) + jxi(n) has a real part x(n) which is the original data, and an imaginary part,
xi(n), which contains the Hilbert transform of x(n). The envelope y(n) of the sampled time-domain
recording is calculated as:

v (n) = (%, (n) ® %, (n))”* (1)

where %: (7) stands for the conjugate of Xx(n) and X for component wise multiplication.

The envelope in Eq. 1 is compared against a threshold 6. When y(n) > § the sample x(n) is
classified as belonging to the activity class otherwise to the non-activity class (see Fig. 2). The
threshold is calculated from the whole recording. The envelope y(n) is sorted by value and a
conservative threshold is calculated as 8 =3*01 where 6, is the mean of the 90% of the lowest
values of the envelope. Let xe(n) hold the recordings for which y() > 6.

Spectrogram
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Figure 2: Top: Spectrogram of the first 10 syllables. 2. Middle: envelope of the Hilbert detector.
Last: Detection result and segmentation

In Fig. 3 we give a distribution of silence and syllable durations as found by our automatic
segmentation system. As regards inter-syllable silence durations, the mean is 0.66 sec with a
standard deviation of 0.53 sec whereas the syllables have a mean of 1.25 sec and standard
deviation of 0.46 sec.
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Figure 3: Histogram of inter-syllable silence durations. Right: Histogram of syllable durations

3.2 Features
In the next steps we outline the manner in which x(n) is transformed into a set of low dimensional
descriptors that subsequently are fed to the clustering stage.

Once the song is segmented into syllables, each syllable undergoes a transformation in order
to derive the characteristics that are distinct for each syllable and will allow its clustering to
a syllable class. The following features are derived on a per frame basis for each segment
provided by the segmentation procedure. Subsequently, the features are averaged on a per-
segment basis and provide one feature vector per segment. We included features that can
capture the general shape of the syllable as well as its tonal or possible noise character. We
included the following audio descriptors used in the MPEG-7 standard:

1. Mel Frequency log spectrum (12 coefficients). The spectrum of the signal is passed
through 12 bandpass filters. The Mel frequency filter bank is used to reduce the
dimensionality of the spectrum and to reduce the within band spectrum variability. The
application of log energy decreases the dynamic range of the spectrum.

2. Delta MFCC (12 coefficients): Deltas are calculated as MFCC difference between frames
and serves to measure the dynamic variation of the signal.

Zi_M 7C, (t + 7)
PN
r=—M

where, M is the number of frames before and after the frame t, and in our case M=2.

Ac, (t) =

3. Spectral Bandwidth (1 coefficient): the frequency extent of each segment.

4. Spectral Entropy (8 feature): the Shannon entropy, calculated as:

H(x) = —Zil p(x,)log, p (xl)

where p(x) is the spectrum amplitude normalized so that it can be considered a probability
distribution. Spectral entropy is sensitive to predominant peaks or spectral flatness. We
calculated spectral entropy every 1 kHz (8 bands in total) and averaged the results. N is the
total number of spectral amplitudes.

5. Spectral Crest (1 feature): a measure of how noisy/tonal is the signal. It is by definition
the ratio of the maximum value of the spectral amplitude to the arithmetic mean of the
energy spectrum. We calculate spectral crest independently for 8 bands and sum.
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max A (n)
SCr(t) = -
> AWM/ N

n=1

6. Spectral Centroid (1 feature): the center of mass of the distribution of spectral amplitude.
It has a robust connection with the impression of "brightness"” of a sound.

2, A
2., Ao

where, Ai(n) is the magnitude of the Fourier transform at frame t and frequency bin n. A higher
centroid correspond to a spectrum with dominant high frequencies.

SC() =

7. Spectral Flatness (1 feature): a measure of how noisy/tonal is the signal. It is by definition
the ratio of the geometric mean to the arithmetic mean of the energy spectrum.

Alt), = log(A(t))

exp (z:zl A, .(n)/ N)
' Am /N

n=1

SF(t) =

We measured spectral flatness across the whole spectral band.

8. Spectral Slope (1 feature): represents the decreasing slope of the spectral amplitude and is
calculated as a linear regression of the spectral amplitude.

9. Spectral Roll-off (1 feature): the cutting frequency ¢ below which the signal energy is
85% of the total signal energy. It is an indicator of the general shape of the spectrum.

> A (i) =0.85%>" A ()

10. Skewness of Spectral Flux (1 feature): skewness is a measure of asymmetry of a
distribution around its mean value and spectral flux represents the variation of the spectrum
along time. The spectral flux is defined as the squared difference between the normalized
magnitudes of successive spectral distributions

Fo) = Y (A (2) - A (4))

where A and A.1 are the normalized magnitude of the Fourier transform at the current time
frame t, and the previous time frame t-1, respectively. The spectral flux is a measure of the
amount of local spectral change.

The feature extraction procedure results into a 39 dimensional array and therefore the
segmentation and feature extraction produce a real matrix S of dimension 612x39.

11. Segment duration (1 feature): the duration of a segment in seconds. It is derived from the
signal segmentation procedure described in par. 3.1.

3.3 Estimating the number of Clusters

We manually selected the distinct syllables of the song by carefully observing the spectrogram of
each syllable and listening to every syllable. However, this is not possible for recordings of many
whales, or for recordings scaling up to months or years. Since we wanted a generic approach to
automatically label a song we tried some methods that do not require the number of clusters to be
set a-priori but try to discover it themselves. We analyzed these syllables using an approach that
embeds a set of high dimensional data points, estimating the intrinsic geometry of a data manifold
based on a rough estimate of each data point’s neighbors to represent high dimensional data in
lower dimensions. What we would need is a visualization technique that would map the high
dimensional space of features to 2 or 3 dimensions so that we have an idea of the presence of
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several clusters indicating distinct syllable types. We would then expect the number of clusters to
match (in principle) the number of classes. t-Distributed Stochastic Neighbor Embedding (t-SNE)
is a powerful technique for dimensionality reduction that is particularly well suited for the
visualization of high-dimensional datasets [10]. In Fig. 4 we see the results of applying this
technique on humpback syllable segments. The method indeed is capable of bringing this real-life
data set into clusters and discovering the intrinsic dimension of the number of syllables. Although
the correct number of clusters is unknown to us and the manual labelling of Fig. 4 can be done in
many ways, we can see that we have a number of clusters between 9 and 15. This estimation now
allows to set the number of classes in several clustering methods and examine the outcome.

t-Distributed Stochastic Neighbor Embedding
50 T T T T T

50
-40 -30 20 -10 3 10 20 30 a0

Fig. 4: t-DSNE approach on whale syllables. Ellipses inserted manually

4 Clustering Models and Results

The k-means is a well-known method of vector quantization and quite popular as a means to
apply clustering to a dataset. k-means aims to partition the observations in clusters where the
mean of the cluster serves as prototype. As soon as the observations are clustered a new
mean is calculated for each cluster. The process is repeated until no significant change is
detected. The k-means requires that the number of clusters is set a -priori. The hand-labelled
syllables and the t-DSNE lead us to set the number of clusters in K-means from 8-11 and to
perform a series of experiments.

Affinity Propagation is based around the idea of examining the suitability of having one
observation to be the exemplar of the other. Therefore messages between observations are
sent until convergence. The dataset is then described by the small number of exemplars [11].
Affinity Propagation is quite suitable to our problem because rather than requiring the
number of clusters to be known a-priori, it discovers it itself. A threshold of preference=-8 is
set in this algorithm which discovers 10 clusters [12].

For visualization clarity we show the clustering results of the 34 first members of S1, S2 and
S5 as classified by K-means in Fig. 5 and using Affinity Propagation in Fig. 6 we show
$8,S5 and S1 syllable clusters.
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Fig. 5: k-means as applied to syllables dataset. The first 34 syllables of each cluster.

100 200 300 400 500 600 700 800 900 1000

Fig. 6: Affinity Propagation. Spectrograms of the first syllables in each cluster.

5 Temporal Evolution

The humpback whale song demonstrates strong temporal regularities. That is, the syllables
do not appear in random order but seem to construct phrases that are uttered as regular and
repeated temporal sequences. In order to model this effect we used the cluster labels of k-
means as an alphabet and tagged the whole recording. We then proceeded in calculating the
transition probabilities from syllable to syllable (bigrams). Silence duration is modelled as
Gaussian distributed with mean and variance as derived from Fig. 3. Although the duration is
clearly bimodal as a first approach we sampled silence duration from a Gaussian having as
mean 0.66 and standard deviation 0.534.
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In Fig. 7 (left) we have the number of unigrams, that is, the frequency of each syllable in the
alphabet and in Fig. 7 (right) the bigram frequencies in a Hinton diagram. A Hinton Diagram
gives an immediate view of the probability of moving from one syllable to another. Bigram
frequencies are calculated by counting the number of occurrences of every transition from
syllable to syllable and normalizing by the number of all transitions. The larger the box the
larger the transition probability. One should note that modelling of temporal evolution is
based on the derived alphabet tagged by the k-means and Affinity projection methods and
cannot correct their mistakes. The following results as shown in Fig. 7 are based straight on
the raw classification and only shown as a proof of concept. A detailed n-gram of manual
labels as well as a more accurate clustering of the syllable in order to have a realistic model
of syllable transitions will be shown elsewhere. We propose that bigrams are an
indispensable tool for studying phrase composition of whale phrases and subsequently of
songs based on phrase transitions.

Bigrams

Unigrams

1 0.13378 s1

2 0.08919 S2

3 0.13649 sS3
4 0.07973 sS4
5 0.08108 S5
6 0.16622 S6
7 0.17973 s7

8 0.05270 S8

9 0.08108 s9

Fig. 7 Left: Frequency of humpback whale alphabet (unigrams). Right: the alphabet with
transition probabilities from syllable to syllable (bigrams).

Discussion

We have shown that it is possible to have an accurate decomposition of a raw recording of a
whale song into its constructing syllables and a way to model the transition between
syllables in order to study the sequencing of the song. The whole process is quite practical as
it takes under half minute from the raw 26 minute recording to the final clustered segments
on an i7, 16 GB RAM computer. One practical significance of temporal modelling beyond
studying the transition pattern and phrases of whales is that it can be used in games either as
standalone devices or programs or in audio-books. These usually use pre-recorded signal
segments that are very small due to memory constraints that the device imposes and
therefore completely predictable to the point of being annoying after a while. With our
approach the device only needs to store the syllables and an endless song can be derived on
the spot by sampling first a syllable from its cluster with uniform probability, then a silence
duration from the Gaussian distribution that we fitted on real data and then moving to the
next syllable with probability given by the bigram calculations. This process can be repeated
as long as is needed and produces a rich repertoire that is quite realistic and actually costs
less in memory than a single recording of a song.
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Chapter 9

Big Bio-Acoustic Data

9.1 Cabled observatory acoustic data: challenges and opportunitie
Hoeberechts M.

Kindermann L.
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9.1 NIPS4B: Neural iInformation Lrocessing acaled for Oioacoustics

Lake Tahoe, Nevada, November 10, 2013
Cabled Observatory Acoustic Data: Challenges and Opportunities

Maia Hoeberechts

Ocean Networks Canada
University of Victoria
TEF160 - 2300 McKenzie Ave
Victoria, BC V8P 5C2
Canada

maiah@uvic.ca

Ocean Networks Canada operates several world-leading ocean observatories including the NEPTUNE
observatory off the West coast of Vancouver Island, British Columbia, the VENUS coastal observatory
in the Salish Sea, British Columbia and the Cambridge Bay mini-observatory in the Canadian Arctic.
These observatories connect instruments to shore stations via submarine cables permitting the
collection of data on physical, chemical, biological and geological aspects of the ocean over long time
periods. Analysis of data from co-located sensors and integration with complementary data sets
enables interdisciplinary research on complex Earth-Ocean processes. Among the wide variety of
instruments deployed are hydrophones in diverse settings: in the Strait of Georgia, a busy marine
shipping channel (100 m — 300 m), in Barkley Canyon, a submarine canyon on the continental slope
(400 m — 1000 m), at Cascadia Basin, in the middle of an abyssal plain (2660 m), at Folger Passage, a
near-shore site at the mouth of an inlet channel (100 m) and at Cambridge Bay in the Arctic (7 m).
Researchers have used Ocean Networks Canada hydrophone data in a multitude of ways, from the
study of seismicity to the detection of fish sounds, from the analysis of shipping traffic to the study of
marine mammals.

Cabled observatory deployments permit data to be acquired continuously, over long time periods. This
capability presents a “big data” challenge to the scientist using and accessing the data, and likewise to
the designers of the observatory data archive. Automated analysis, including the classification of
acoustic signals, event detection, data mining and machine learning to discover relationships among
data streams are techniques which promise to aid scientists in making discoveries in an otherwise
overwhelming quantity of acoustic data. Increasing numbers of deployed instruments and the ever-
growing data archive necessitate scalable, efficient solutions for data analysis and delivery. This talk
will survey research in bioacoustics and automated analysis currently underway with observatory
hydrophone data, and outline challenges and open problems which present opportunities for

interdisciplinary collaboration and new innovations in bioacoustics.
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

Characteristics of observatory instrumentation ALl
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» Co-located sensors
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

Hydrophones (example) SCIENCE

» OceanSonics icListen Smart Hydrophones
» Ethernet-ready
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» 24-bit LF (1 Hz — 1600 Hz)
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

ONC: Current deployments
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

Big Data Challenge

SCIENCE
On Ocean Networks Canada’s observatories:

> 250 science instruments in the water
> 8.5 million point measurements / day

All parsed, calibrated, QC checked and archived upon
arrival: ~100 million data manipulations / day !

Plus:
~ » Engineering data = 5x this amount!
)}/Qomplex data, video, hydrophone etc. > 30 TB / year
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

ONC archived data

SCIENCE

HF hydrophone:

24 bits, 96 kHz #

23 GB / day

+ active acoustic
instruments...
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

Data acquisition process SCIENCE

0.5 Hz to 5kHz

S

@ University
In: proc. of int. symp. Neural Information Scaled for Bioacoustics, sabiod.org/nips4b, joint to NIPS, Nevada, ded &Y of Victoria




CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

Selected research highlights (1/3)

SCIENCE

Averaging underwater noise levels for environmental assessment of shipping.
Nathan D Merchant, Philippe Blondel, D Tom Dakin, John Dorocicz,
The Journal of the Acoustical Society of America, Volume: 132, Issue: 4 (2012)

Addressed need for method of averaging local shipping noise to assess effects on
marine mammals.

Analysed 110 days of continuous data from Strait of Georgia (VENUS observatory).
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

Selected research highlights (2/3)

SCIENCE

Automatic Event Detection for Long-term Monitoring of Hydrophone Data.

F. Sattar, P.F. Driessen, G. Tzanetakis, S.R. Ness, W.H. Page

In Communications, Computers and Signal Processing (PacRim), 2011 IEEE Pacific
Rim Conference on (pp. 668-674), IEEE.

Automated event detection using two-stage denoising process followed by event
detection function which estimates temporal predictability.

Analysed data from NAXYS hydrophones (NEPTUNE observatory).

Transient killer whale calls
recorded on NEPTUNE observatory
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

Selected research highlights (3/3)

SCIENCE

Automatic Event Detection for Long-term Monitoring of Hydrophone Data.

F. Sattar, P.F. Driessen, G. Tzanetakis, S.R. Ness, W.H. Page

In Communications, Computers and Signal Processing (PacRim), 2011 IEEE Pacific
Rim Conference on (pp. 668-674), IEEE.

Collaborative web-based interface for annotation enhanced with automatic
retrieval and classification. Mobile client for crowdsourcing introduced.

Based on data from OrcalLab (Hanson Island, BC) but method also applicable to
observatory data.

Visit http://www.orchive.net
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

Data access & tools SCIENCE

» Web-based data search tools

» Code Runner (cloud processing tool)

» Web services o—
» Audio highlights

» Online visualization (prototype)
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

Feedback: What tools are useful in your research?

» Visualization ideas?
» On-line annotation?
» Event detection?

» Collaborative tools?

» Data formats?

SCIENCE

we have a long way to gol
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CABLED OBSERVATORY ACOUSTIC DATA: CHALLENGES AND OPPORTUNITIES

Connect With Us!

OCEANNETWORKS.CA

Explore Ocean Networks Canada’s online resources
Plotting Utility | Data Search | Sea Tube | Digital Fishers

Download free publications, ibooks and ap.

Invitation to Science | Deep-Sea Marine Field Guide | Coastbu

n Like us on Facebook. OceanNetworksCanada

B Follow us on Twitter @Ocean_Networks

Yo
Watch the Ocean Networks Canada Youtube Channel

Contact

Dr. Maia Hoeberechts | Associate Director, User Services |
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9.2 A challenge for computational bioacoustics

Lars Kindermann

Alfred Wegener Institute
for Polar and Marine Research
Bremerhaven, Germany
lars.kindermann@awi.de

Abstract

Antarctic Minke whales are the most abundant baleen whale species on earth. As
the main target of today’s controversial “scientific whaling” and possibly of a re-
established commercial whaling enterprise as proposed by some countries, they
are in the focus of interest for many NGOs and the public. Until few month ago
nothing was known about their vocal behavior, so they had no “own voice” and
no bioacoustic methods could be used to investigate the many open questions
about them. On the other hand, for several decades a strange sound of unknown
origin has been recorded repeatedly in the Southern Ocean — but only during po-
lar winter when the sea is covered almost completely by a dense layer of ice.
Long term recordings from our acoustic observatory at the ice shelf show it is in
fact the dominant acoustic emission around Antarctica during that time. Tenth of
thousands of hours of this sound have been recorded during the last § years and
are published under an open access policy. And recently, during a winter expe-
dition to Antarctica we could finally assign this sound to the Minkes. We invite
everybody to look into that data using advanced methods to extract definitely
new knowledge about this important species.

1 Antarctic Minke Whales Acoustics

Throughout the southern ocean a unique rhythmic underwater sound with a frequency range of
100 Hz to 20 kHz has been recorded repeatedly by many researchers and navy sonar officers [1-6].
The first published evidence of its existence dates back to 1964 where it appeared in an audio
recording as an "unidentified signal in the background" [1]. The crew of an Australian submarine
designated the sound "the bioduck" because of is auditory impression [3,4]. The PALAOA observa-
tory, located north of Neumayer Station on the Antarctic Eckstrom ice shelf [8] and several moored
audio recorders throughout the Weddell sea pick up this sound regularly - but strictly during austral
winter only, which explains much of the difficulty in its investigation. From end of April to begin
of November it is continuously audible and most of that time it even constitutes the most intense
sound source in the southern ocean. However, the source of this signal remained a mystery until
recently.

The largest inhabitant of thee winterly pack ice is the Antarctic Minke whale, Balaenoptera bonae-
rensis. Up to 10 meters long and weighing 10 tons it is a rather small member of the baleen whale
family. While its larger relatives like blue, fin, and humpback whales mostly leave Antarctica
during winter for their subtropical mating grounds, this species has adapted for a permanent life in
the ice. Little is known about this most frequent of all great whale species, population estimates dif-
fer between 360.000 to 1.000.000 individuals and there are contradicting opinions whether the
stock is growing or shrinking. To the public it became famous as the main target of the controver-
sially discussed contemporary whaling. Especially during polar night the study of this animals is
extremely difficult.
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While it had been suggested, that the unidentified rhythmical sound might be produced by Antarc-
tic Minke whales [2] along with some known irregular downsweeps [7] this was proven by several
parties only recently in 2013 [e.g. 9].

So far, no detailed study of the acoustic behavior of this species has been performed yet. The 8 year
continuous acoustic recordings from the PALAOA observatory thus provide a unique opportunity
to investigate this species for the very first time. As the minke sounds are present continuously
from April to November more than 20.000 hours are available in total, making it a good candidate
for modern computational methods.

A livestream of the under-ice hydrophone is available under http://www.awi.de/PALAOA and the
complete data set (2005-2013) is published in the PANGAEA database of the World Data Center
for Marine Environmental Sciences [10]: http://doi.pangaea.de/10.1594/PANGAEA.773610

In: proc. of int. symp. Neural Information Scaled for Bioacoustics, sabiod.org/nips4b, joint to NIPS, Nevada, dec. 2013, Ed. Glotin H. et al.

247


http://doi.pangaea.de/10.1594/PANGAEA.773610
http://doi.pangaea.de/10.1594/PANGAEA.773610
http://doi.pangaea.de/10.1594/PANGAEA.773610
http://www.awi.de/PALAOA
http://www.awi.de/fileadmin/user_upload/PALAOA/spectrum.html

Underwater Acoustics in Antarctica
Presenting a unique open Dataset

Lars Kindermann

NIPS Scaled for Bioacoustics Workshop - Lake Tahoe 2013

Alfred Wegener Institute for Polar and Marine Research (AWI), Germany, 2013

The Southern Ocean - One of the most productive ecosystems on earth during austral summer

Drilling camp
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AWI - Ocean Acoustics — Anna-Maria Seibert
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Data and control flow of the PALAOA observatory
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Blue Whale Z-Calls

Spectrogram of blue whale "Z"-calls, recorded by MARU#1 on 28.12.2008 17:55
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Ship based acoustics suffers from propeller noise
Solution: Deploy acoustic recorders on ice flges
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Just identified: A unique vocalisation

Perfect a-major accord

Antarctic Minke Vocalisation — 5 Minute Scale

e At S

.

L. An -__ol':'i'nlnke\nMale
Acurostrata borealis

-

~ Size 10 m / weight 20 tons
Population estimate 515.000

Antarctic Minke Vocalisation — 5 Minute Scale
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Antarctic Minke Vocalisatibn — 2 Year Scale

. Open Access Live Data: www.awi.de/PALAOA

2005-2013: 50.000 Hours of Audio and Metadata

CTD - Weather — Webcam - AIS — Satellite Images - Spectrograms

Published In the World Data Center for Marine Environmental Data (WDC-MARE)
www.PANGAEA.de .
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Schedule of the Workshop

07:30 Introduction
Glotin - A Bioacoustic Turing test ?

07:40 * Natural Neural Bioacoustic Learning

07:40  Tchernichovski - Physiological brain processes that underlie song learning

08:10  Pollack - Neuroethology of hearing in crickets: embedded neural process to avoid bat
08:45  Stathopoulos - Bat call classification

09:00 Coffee Break

09:25 * Representation for bioacoustics
09:25  Glotin & Razik - Sparse coding & whale tracking and song evolution
09:45 Halkias - SAE & DBN for whale classif.

10:05 * Advanced ANN
10:05 LeCun - ConvNets & DNN for Bioacoustics
10:40 Kindermann - ANN for sequences interpolation

10:55 * Learning to Track by Passive Acoustics

10:55 Doh - Inter Spectral Attenuation ANN: Range & Bearing Physeter est.
11:03  Paris - Physeter Localization: Sparse coding & Fisher vectors

11:20  Mathias - Physeter Multiple Range estim.

11:30  Mishchenko - Bat tracking with LM acceleration

11:35 * Non Human speech processing

11:35  Trone - Speech of Dolphin : transient formant ?
11:45  Janvier - Speech of Monkey ?

11:50  Shokoohi - Mouse Genome & Biocoustics

12:10 Lunch break

13:30 Posters (1/2) & Discussion

15:30 * Bird song multilabel multi-instance Challenge Kaggle NIPS4B
15:30  Dufour - Challenge overview / Baseline

15:40  Lasseck - Winner of Kaggle Bird NIPS4B

15:48  Stowell - http://vimeo.com/81440385
15:55 Potamitis - Bird syllabic classif.

16:00 * Whale song Challenge

16:00 Mercado - www.voutube.com/watch?v=YHM18ImC9Eo
16:05 Potamitis - Eff. syllabic clustering

16:10  Bartcus - Infinite Parcim. GMM

16:15 Cazeau - Chaos and whale song

16:20  Randall - Gabor Scatnet filtering

16:20 Posters (2/2) & Discussion

17:00 Coffee break

17:30 * Feature learning

17:30  Elie - Data driven bearing features

17:50 * BIG Bioacoutic DATA

17:50  Hoeberechts - Canadian submarine bioacoustic Big Data
18:05 Kinderman - Antartic submarine bioacoustic Big Data
18:20  Glotin - Mediterranean submarine Big Data

18:25  Panel Discussion : Al & Bioacoustics

18:45 Closing
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Neural Information Processing
Scaled for Bioacoustics
- from Neurons to Big Data -

Glotin H., LeCun Y., Artieres T, Mallat S., Tchernichovski O., Halkias X.
Toulon, New-York, Paris - http://sabiod.org

This book is the content of the 1st Big Bioacoustics Data [NIPS4B] that took place at Tahoe lake,
Nevada, in december 2013, during the NIPS international conference. The 40 attendies provided further
insights into the analysis of large scale bioacoustic data and modeling of animal sounds, not only from a
neuro- perspective, but also by highly reinforcing the need to approach these unique signals within the
machine learning community.

As a result both the bioacoustics community and the mainstream NIPS community met, leading to
new collaborations: the communications ranged from the complexity of bioacoustics to scaled analyses,
from understanding and monitoring bird song ontogeny, to cricket auditory neural functions, from use of
sparse architectures for whale sound classification, to range estimation and bat tracking...

Although, in recent years, the majority of the existing applications lend themselves to advanced
acoustic signal processing methodologies, our efforts are successfully integrating robust processing and
machine learning algorithms for scaled analysis of these abundant recordings. Major issues such as data
repositories and the need for standardizations within the bioacoustics field discussed and addressed.

We exchanged ideas on how to proceed in understanding bioacoustics to provide methods for
biodiversity indexing, and to open a novel paradigm toward a Bioacoustic Turing Test: one might model
animal communication before tackling the original Turing test for human being.

The scaled bioacoustic data science is a novel challenge for artificial intelligence that require
new methods. For example Minke whales, observed all around the planet have been recorded by
Kindermann's acoustic observatory at the ice shelf around Antarctica during 8 years. Big data scientists
are today invited to look into that data using advanced methods to definitely new knowledge about this
important species.

Similarly, large cabled submarine acoustic observatory deployments permit data to be acquired
continuously, over long time periods. For examples, Neptune observatory in Canada, Antares or Nemo
neutrino workshop on Neural Information Processing Scaled for observatories in Mediterranean sea are
'big data’ challenges to the scientists. Automated analysis, including the classification of acoustic signals,
event detection, data mining and machine to discover relationships among data streams are techniques
which promise to aid scientists in discoveries in an otherwise overwhelming quantity of acoustic data as it
is presented in this book.

We acknowledge the SABIOD.ORG MASTODONS project for its support. ISBN : 979-10-90821-04-0


Vrael
Typewritten Text
We acknowledge the SABIOD.ORG MASTODONS project for its support.          ISBN : 979-10-90821-04-0

Vrael
Typewritten Text

Vrael
Typewritten Text
        

Vrael
Typewritten Text

Vrael
Typewritten Text

Vrael
Typewritten Text


	couverture_actes_nips4B (1)
	finpreface
	PdfFinalv5
	Page vierge

	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Blank Page
	Bartcus_etal_NIPS_4B_IGMM_Whale_Challenge_14_01_14_nips_format.pdf
	Introduction
	Parametric parsimonious Gaussian clustering
	Bayesian non-parametric parsimonious clustering
	Experiments
	Conclusion

	DufourNIPS13Wshp_v14.pdf
	Introduction
	Description of the method
	Detection and feature extraction
	Feature extraction
	Training
	Inference

	RESULTS
	Discussion
	Improvements
	Acknowledgments

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



