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1.Workshop at a glance
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Steven Ness - Department of Computer Science, University of Victoria, Canada 
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George Tzanetakis - Department of Computer Science, University of Victoria, Canada 
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Herve GLOTIN - DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 
Xanadu HALKIAS - DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 
Joseph RAZIK - DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 
Marian Popescu - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Peter J. Dugan - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Mohammad Pourhomayoun - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Denise Risch - Northeast Fisheries Science Center, Woods Hole, MA, USA, 02543 
Harold W. Lewis III - Department of Systems Science and Industrial Engineering, Binghamton University, NY, USA, 
13850 
Christopher W. Clark - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Mohammad Pourhomayoun - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Peter J. Dugan - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Marian Popescu - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Denise Risch - Northeast Fisheries Science Center, Woods Hole, MA, USA, 02543 
Harold W. Lewis III - Department of Systems Science and Industrial Engineering, Binghamton University, NY, USA, 
13850 
Christopher W. Clark - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Mohammad Pourhomayoun - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Peter J. Dugan - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Marian Popescu - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Christopher W. Clark - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 
Erick Stattner - LAMIA Lab. University of the French West Indies and Guiana, France 
Wilfried Segretier - LAMIA Lab. University of the French West Indies and Guiana, France 
Martine Collard - LAMIA Lab. University of the French West Indies and Guiana, France 
Philippe Hunel - LAMIA Lab. University of the French West Indies and Guiana, France 
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Short papers
Ales MISHCHENKO - SATT sud-est / DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 
Herve GLOTIN - DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 
Evgeny Smirnov - Saint-Petersburg State University, Universitetskii prospekt 35, Petergof, Saint-Petersburg, Russia 
198504
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1.2. Workshop Abstract 

Biodiversity  assessment  remains  one  of  the  most  difficult  challenges  encountered  by 
ecologists and conservation biologists. There is a critical need to describe and quantify the 
spatio-temporal  dynamics  of  biodiversity  over  ecologically  meaningful  scales  and  to 
provide  timely  syntheses  and  interpretations  so  as  to  enable  responsible  decisions  that 
reduce risks to endangered species, populations and habitats from anthropogenic activities.

This task has become even more urgent with the current increase of habitat loss and global  
environmental changes as a result of global commercial and industrial activities. The field 
of animal bioacoustics has received increasing attention due to its diverse potential benefits 
to science and society,  and is  increasingly required by regulatory agencies as a tool for 
timely  monitoring  and mitigation  of  environmental  impacts  from human activities.  The 
increased  expectations  from bioacoustic  research  have  been  coincident  with  a  dramatic 
increase in the spatial, temporal and spectral scales of acoustic data collection efforts. The 
bottleneck at this point is not access to raw data. It is the inability to efficiently process, 
visualize and interpret large volumes of data within an advanced, data management system.

This workshop brings together a cohort of world class scientists with expertise in animal 
bioacoustics,  digital  signal  processing  and  machine  learning  to  specifically  address  the 
emerging field of bioacoustic machine learning, from basic to applied research.

The features and biological significance of animal sounds, while constrained by the physics 
of  sound  production  and  propagation,  have  evolved  through  the  processes  of  natural 
selection. Additional insights have been gained through analysis and attempts of modeling 
of animal sounds as related to critical life functions (e.g. communicating, mating, migrating, 
navigating, etc.); social context; and individual, species and population identification. Most 
recently,  researchers in the field have been exploring and identifying possible links and 
correlations  between  the  dynamics  of  animal  sound  development  and  the  evolution  of 
human  speech.  These  observations  have  led  to  both  quantitative  and  qualitative 
advancements such as using MRIs for  monitoring bird song ontogeny and human brain 
activity associated with linguistic metaphors, or the use of genetic algorithms to identify a 
possible  common  framework  in  the  evolution  of  human  and  non-human  cultural 
relationships. From an applied perspective, very basic, semi-automated systems for near-
real-time acoustic detection of species of concern are being used by regulatory agencies to 
dynamically monitor and mitigate human activities, and there is increasing demand for such 
near-real-time capabilities.

Although,  the  majority  of  the  existing  applications  lend  themselves  to  widely  used, 
advanced  acoustic  signal  processing  methodologies,  the  field  has  yet  to  successfully 
integrate  robust  signal  processing and machine learning algorithms due  to  multiple  and 
diverse  challenges.  Specifically,  the  dynamic  and  variable  factors  in  the  collection  and 
analysis of raw data from both wild and captive environments often require the use of real-
time  or  near-real-time  systems  that  minimize  manual  interaction/supervision.  This 
requirement  can  be  strongly  coupled  with  the  creation  and  employment  of  on-line 
algorithms and stochastic optimization techniques allowing field researchers to assess the 
computational and accuracy trade-offs without compromising the data collection process. 
Eventually,  results  from intelligent,  open-access  systems could  offer  significant  societal 
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benefits by raising public awareness of natural phenomena and exposing possible hazardous 
interactions between wildlife and humans allowing for swift mitigation procedures.

An additional, yet critical issue in present bioacoustic analysis strategies is the inability to 
provide comprehensive, accurate species validation across the full suite of signals available 
in very large sets of raw data. The process of extracting ground-truth, typically involves 
manual  interaction  by  experts,  which  is  an  intractable  task.  This  inherent  bottleneck 
significantly limits our ability to identify a species’ complete signal variability across the 
multiple dimensions of its acoustic signals, which thereby constrains our ability to process 
data  at  scales  commensurate  with  the  spatial-temporal-spectral  biodiversity  needs.  The 
application of advanced, unsupervised learning algorithms offers a possible solution to this 
problem because it would enable rapid computational access into the unique, underlying 
characteristics of the species-specific features, which would accelerate the recognition task. 
Successful completion of this stage could then be combined with supervised methodologies 
to yield a robust, iterative system for automatically processing very large amounts of data 
and visualizing those data products over appropriate ecological scales.

Moreover, automatic and accurate species recognition remains a top priority in the field. 
This  is  a  highly  complex  and  challenging  task.  To  be  effective  it  needs  to  mirror  the 
complexities of the hierarchical acoustic structures so often found within animal acoustic 
signaling  behaviors,  which  would  involve  the  application  of  both  discriminative  and 
generative  approaches.  Depending on the  type  of  species  under  study,  shallow or  deep 
architectures might be favored. However, the diversities of the vocalization repertoires of 
the different species combined with their underlying biological structures indicate that any 
analysis and modeling would greatly benefit by integrating sparse constraints in order to 
increase the discriminative power of the models.

Finally, the lack of standardization and unified comparative framework, combined with the 
different environments and contexts of large scale data collection creates a unique domain 
adaptation  and  transfer  learning  framework  whereby  the  proposed  machine  learning 
methodologies need to provide an adequate intra- and inter-species generalization.

In  conclusion,  the  application  of  machine  learning  processes  to  bioacoustic  signal 
recognition analysis and modeling of large data sets promises to yield significant theoretical 
and applied advances in present understandings of complex, learned animal vocal behaviors 
and  in  the  quantitative  description  of  biodiversity  over  ecologically  meaningful  spatio-
temporal-spectral scales.
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1.3. Workshop objectives

The main objectives of this workshop are two-fold:

1. Firstly, the workshop aims at bringing together experts from the machine learning 
and computational auditory scene analysis fields with experts in the field of animal 
acoustic communication systems to promote, discuss and explore the use of machine 
learning techniques in bioacoustics.

2. Secondly, by presenting current approaches, their limitations and open problems in 
bioacoustics to the ICML community, this workshop will encourage interdisciplinary, 
scientific exchanges and foster collaborations among the workshop participants.

The proposed workshop is organized jointly by experts in the field of animal bioacoustics, 
digital signal processing and machine learning and depending on participation rates, it will 
take place over two days. The target audience covers researchers working in the fields of 
bioacoustics  signal  analysis  and detection-classification,  as  well  as  researchers  from the 
whole ICML community sharing an interest in real-world applications ranging from natural 
to  cultural  sounds.  Given  the  combined  participation  of  computer  scientists  and 
bioacousticians, the invited speakers will be asked to give talks with a tutorial character and 
make the covered material accessible for both communities.

A special  technical  challenge  on  automated  computer  recognition  of  bird  and  marine 
mammal sounds will  be organized in order to foster a common, quantitative framework 
bridging the two communities, while creating an initial, open-access and standardized data 
library for the communities.

The proposal and all future additional information can be found on line at

http://sabiod.univ-tln.fr.
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1.4. Invited talks overview

• "Application  of  advanced  analytics  and  high-performance-computing  technologies  for 
mapping occurrences of acoustically active marine mammals over ecologically meaningful 
scales" 

C. W. Clark1; P. J. Dugan1; Y. A. LeCun2; S. M. Van Parijs3; D. W. Ponirakis1; A. N. Rice1 

1Bioacoustics Research Program, Cornell University, 159 Sapsucker Woods Road, Ithaca, New 
York 148504, USA
2The Courant Institute of Mathematical Sciences, New York University, 715 Broadway, New York,  
New York 10003, USA
3Northeast Fisheries Science Center, Woods Hole Oceanographic Institute, 166 Water Street,  
Woods Hole, Massachusetts 02543, USA

Abstract
Marine mammals are adapted to produce and perceive a great variety of sounds that collectively 
span  4-6  orders  of  magnitude  along  the  dimensions  of  frequency,  time  and  space.  Thus,  for 
example,  blue  and  fin  whales  produce  intense,  long,  very-low-frequency  songs  that  can  be 
acoustically detected and tracked at ranges of 1500 miles over periods of many weeks. In contrast, 
sperm  whales  hunting  for  squid  at  half-mile  depths  produce  intense,  very  short,  broadband 
echolocation pulses that can be acoustically detected and tracked at ranges of a few miles over 
periods  of hours.  This perspective leads to  two important concepts referred to here as acoustic 
ecology and acoustic habitat; where acoustic ecology is the study of the acoustics involved in the 
interactions of living organisms, while acoustic habitat is the ecological space that is acoustically 
utilized by a particular species. Marine mammals are dependent on access to their normal acoustic 
habitats for basic life functions, including communication, food finding, navigation and predator 
detection.  Acoustic  masking  from  anthropogenic  sounds  (vessel  noise,  energy  exploration, 
commercial  activities)  can  result  in  measurable  losses  of  marine  mammal  acoustic  habitats. 
Masking leads to a reduction in the space within which an animal effectively operates, which is 
ecologically  a  reduction  in  an  animal’s  acoustic  habitat.  Traditional  mechanisms  for  detecting, 
classifying and analyzing acoustically  active marine  mammals  are  insufficient  for  mapping the 
ecological scales over which animals normally operate and anthropogenics influence their acoustic 
habitats.  Here we process a  relatively large acoustic data set  (40 months,  6-10 channels)  using 
advanced detection-classification analytics combined with a high-performance-computing system to 
explore  the  spatio-temporal  dynamics  for  a  suite  of  acoustically  active  marine  mammals  (fin, 
humpback, minke, and right whales) and a fish species (haddock) whose sounds can be confused 
with whales. The results yield insights into mechanisms for optimizing the analytical system as well 
as dynamic maps and metrics that describe the species-specific, spatio-temporal variability for these 
acoustically  active  animals  as  well  as  the  spatio-temporal  variability  of  their  background noise 
environments. When considered from the large-scale, ecological perspective, these results point to 
an entirely novel approach for analyzing, visualizing and understanding ocean acoustics at scale. 

• "Machine learning and Ecology" 
 Prof. D. Sheldon and T. G. Dietterich - Oregon State University, USA 

Abstract 
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This talk will discuss current work and open problems in applying machine learning to conservation 
ecology. It will begin with a broad overview of challenges and opportunities for machine learning in 
ecology. It will then discuss two example problems: approximate Bayesian inference to infer the 
velocities of migrating birds from weather radar data, and species distribution modeling. Finally, it 
will  highlight  the  important  role  of  latent  process  models  in  ecology and discuss  some of  the 
algorithmic challenges related to these models. 
The work discussed in the talk is joint work between University of Massachusetts Amherst, Oregon 
State University, and the Cornell Lab of Ornithology. 
Short  Bio:Daniel  Sheldon  is  an  assistant  professor  in  the  School  of  Computer  Science  at  the 
University  of  Massachusetts  Amherst.  The  primary  goal  of  his  research  is  to  develop  new 
algorithms to understand and make decisions about the environment using large data sets. He leads 
the UMass portion of the NSF-funded BirdCast  project  for  developing novel  machine learning 
algorithms to model and forecast bird migration, in collaboration with Oregon State University and 
the Cornell Lab of Ornithology. 

• "Sparse  operators  for  deformed  marine  or  terrestrian  bioacoustic  event  classification  / 
challenges in bird and whale cocktail party labeling" 

Hervé Glotin; Joseph Razik; Sébastien Paris - USTV, Inst.Univ.de France, CNRS LSIS, FR 

Abstract
We first recall the machine learning baseline developped for automatic speech classification. We 
discuss on efficient approaches for classification of animal sound units : sparse coding. We illustrate 
their advantages with various cases of species, from birds to whales. 
For example, since Humpback whale calls present several similarities to speech, including voiced 
and unvoiced type vocalizations, a great variety of methods have been used to analyze them. Most 
of  the  studies  of  these  songs  are  based  on the  classification  of  sound units,  however  detailed 
analysis of the vocalizations showed that the features of an unit can change abruptly throughout its 
duration making it  difficult  to characterize and cluster them systematically.  We then show how 
sparse coding can help to determine in a song the stable components versus the evolving ones. This 
results in a separation of the song components, and then highlights song copying between males. 
We  finaly  discuss  how  such  combined  models  are  relevant  for  the  derivation  of  statistical 
algorithms for solving ill-posed inverse problems like the source localisation, applied to bird or to 
whales. We'll present a challenge on 3D whale localization using passive acoustics to illustrate this 
perspective. 

• "Classification of Mysticete Sounds: Extracting spectro-temporal structures of calls using 
spare architectures" 

 Dr. Xanadu Halkias - CNRS LSIS and USTV, FR 

Abstract
Classification of mysticete sounds has long been a challenging task in the bioacoustics field. The 
diverse nature of the signals due to the inherent variations as well as the use of different recording 
apparatus and low Signal to Noise Ratio conditions,  often lead to  systems that  are  not able  to 
generalize across different species and require either manual interaction or hyper-tuning in order to 
fit the underlying distributions. This talk presents a Restricted Boltzmann Machine (RBM) and a 
Sparse Auto-Encoder (SAE) in order to learn discriminative structure tokens for the different calls, 
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which can then be used in a classification framework. 

• "Deep Learning : Looking forward" 
 Prof. Y. Bengio - Department of Computer Science and Operations Research Canada Research 
Chair in Statistical Learning Algorithms 

Abstract
Deep learning research aims at  discovering learning algorithms that  discover multiple levels of 
distributed representations, with higher levels representing more abstract concepts. Although the 
study of deep learning has already led to impressive theoretical results, learning algorithms and 
breakthrough experiments, several challenges lie ahead. 
This talk proposes to examine some of these challenges, centering on the questions of scaling deep 
learning algorithms to much larger models and datasets, reducing optimization difficulties due to ill-
conditioning  or  local  minima,  designing  more  efficient  and  powerful  inference  and  sampling 
procedures, and learning to disentangle the factors of variation underlying the observed data. It also 
proposes a few forward-looking research directions aimed at overcoming these challenges for AI 
applications such as those involving images, text or acoustics. 
Accompanying paper: http://arxiv.org/abs/1305.0445 

• "Gaining insights into the structure and use of dolphin whistle repertoires" 
Prof. Diana Reiss - Hunter College - CUNY, NY USA 

Abstract 
In sharp contrast with descriptions of contact calls in all other species, the contact or cohesion calls 
used  by  bottlenose  dolphins,  Tursiops  truncatus,  in  contexts  of  social  isolation  have  been 
historically described as individually distinctive and categorically different whistle types, termed 
"signature whistles". These whistle types have been proposed to function as labels or names of 
conspecifics. Other studies have reported an absence of signature whistles and have demonstrated 
that dolphins, like other species, produce a predominant shared whistle type that probably contains 
individual variability in the acoustic parameters of this shared whistle type. To further understand 
the  discrepancies  between  different  studies  on  dolphin  whistle  communication  and  the  vast 
differences reported between the isolation calls of dolphins and other species, we conducted a study 
replicating the approach and methodologies used in the studies that originally and subsequently 
characterized signature whistles.  In contrast  to these studies,  we present  clear evidence that,  in 
contexts of isolation, dolphins use a predominant and shared whistle type rather than individually 
distinctive signature whistles. This general class of shared whistles was the predominant call of 10 
of  the  12  individuals,  the  same  shared  whistle  type  previously  reported  as  predominant  for 
individuals  within  both  socially  interactive  and  separation  contexts.  Results  on  the  further 
classification of this predominant shared whistle type indicated that 14 subtle variations within this 
one whistle type could be partially attributed to individual identity. 

Short  Bio:  Prof.  Reiss  earned  her  Ph.D.  in  Speech  and  Communication  Science  from Temple 
University and is an internationally recognized researcher in animal cognition and communication. 
In 1982, she developed a laboratory at  Marine World in California,  where she investigated the 
nature of dolphin communication and cognitive abilities. 
Her  research  focuses  on  marine  mammal  cognition  and  communication,  comparative  animal 
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cognition,  and  the  evolution  of  intelligence.  Her  past  work  includes  cognitive  studies  with 
interactive  keyboards  with  dolphins  to  investigate  their  learning  and  communicative  abilities, 
research in mirror self-recognition in marine mammals, marine mammal vocal repertoires and vocal 
and behavioral development in dolphins. Her work also involves the rescue and rehabilitation of 
stranded marine mammals. She was one of the scientists instrumental in the campaign to protect 
dolphins from being killed in tuna nets that resulted in the labeling of "dolphin safe" tuna. 
Prof.  Reiss’s  work  has  been  published  in  numerous  international  scientific  journals  and  book 
chapters and has been featured in many television science programs, included Nature,  National 
Geographic, Wild Kingdom, the Today Show and several BBC nature shows. 
Prof. Reiss au lephant, The fallacy of "signature whistles" in bottlenose dolphins: a comparative 
perspective  of  "signature  information"  in  animal  vocalizations,  Mirror  self-recognition  in  the 
bottlenose dolphin: A case of cognitive convergence, and others. 

• Monitoring bioacoustic diversity for research, conservation and education 
Prof. Gianni Pavan Pavia - Italy 
Centro  Interdisciplinare  di  Bioacustica  e  Ricerche  Ambientali,  Department  of  Earth  and 
Environment Sciences, University of Pavia, Italy, Gianni.pavan@unipv.it 

Abstract
Bioacoustics  is  an  emerging  technology  in  biodiversity  science  and  conservation:  from  the 
recognition and monitoring of individual species through to soundscape description in terrestrial 
and aquatic environments, it provides new insights and approaches. 
However, the complexity of the acoustic world is difficult to manage and requires new dedicated 
smart algorithms to process the data and extract useful and easy to handle information. 
Soundscape analysis, or sonic environment analysis, also provides insights into the noise pollution 
problem. Natural soundscapes can be contaminated by the noise produced by human activities; this 
may produce behavioural and physiological changes and interfere with the communicative sounds 
used by animals (masking). Noise may have a severe impact on their life and an impact on natural 
habitats; this is particularly true in the underwater environment where sound propagates well and 
animals use sound as a primary system to communicate, navigate and find food. 
Examples of sound monitoring and sonic environment analysis will be presented in the framework 
of wildlife conservation and acoustic ecology issues. 

• "Physiological brain processes that underlie song learning" 
Prof. Ofer Tchernichovski - Hunter College - CUNY, NY, USA 

Abstract 
Sleep  affects  learning and development  in  humans  and other  animals,  but  the  role  of  sleep  in 
developmental learning has never been examined. Here we show the effects of night-sleep on song 
development in the zebra finch by recording and analysing the entire song ontogeny. During periods 
of rapid learning we observed a pronounced deterioration in song structure after night- sleep. The 
song  regained  structure  after  intense  morning  singing.  Daily  improvement  in  similarity  to  the 
tutored song occurred during the late phase of this morning recovery; little further improvement 
occurred  thereafter.  Furthermore,  birds  that  showed  stronger  post-sleep  deterioration  during 
development achieved a better final imitation. The effect diminished with age. Our experiments 
showed that these oscillations were not a result of sleep inertia or lack of practice, indicating the 
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possible involvement of an active process, perhaps neural song-replay during sleep. We suggest that 
these oscillations correspond to competing demands of plasticity and consolidation during learning, 
creating repeated opportunities to reshape previously learned motor skills. 

Short Bio: Ofer Tchernichovski is a professor at Hunter College - CUNY. His research uses the 
songbird to  study mechanisms of vocal  learning.  Like early speech development  in  the human 
infant, the songbird learns to imitate complex sounds during a critical period of development. The 
adult bird cannot imitate any more - we do not know why. His lab studies the animal behavior and 
dynamics of vocal learning and sound production across different brain levels. The lab aims to 
uncover the specific physiological and molecular (gene expression) brain processes that underlie 
song learning. He has extensive publications in Nature and Science as Nature Letter Vol 459, 28 
May 2009, "De novo establishment of wild-type song culture in the zebra finch" 

• "Practical  considerations  for  using  high  performance  computing  for  applied  detection 
classification on continuous-passive-acoustic data" 

Dr. Peter J. Dugan - Cornell University, NY, USA 
P. J. Dugan (1), C. W. Clark (1), Y. A. LeCun (2), S. M. Van Parijs (3), D. W. Ponirakis (1), M.  
Popescu (1), M. Pourhomayoun (1), Y. Shiu1, A. N. Rice (1) 
(1) Bioacoustics Research Program, Cornell University, NY USA 
(2) The Courant Institute of Mathematical Sciences, New York University, USA 
(3) Northeast Fisheries Science Center, Woods Hole Oceanographic Institute, MA USA 

Abstract
From biology to technology, the rate of data collection often far exceeds the ability to process the 
information.  Processing large data sets  is becoming a major point of interest  for every field of 
science. The ease of digital data collection allows for the capture of many terabytes of data, yet this 
often  creates  major  computational  bottlenecks  when  trying  to  analyze  such  datasets.  This  talk 
focuses on a new system developed by Cornell University that uses high performance computing 
(HPC),  and  combines  it  with  parallel  and  distributed  processing  approaches  to  process  large 
amounts of bioacoustic data. 
This work will discuss how the HPC system was developed using commercial off the shelf (COTS) 
tools  creating  a  flexible  client-server  model  that  is  expandable,  flexible  and  portable.  The 
presentation will demonstrate a strategy for providing a flexible software interface for running a 
plurality  of  data  mining  algorithms  using  a  dense  computer  cluster  called  the  Acoustic  Data 
Accelerator, or HPC-ADA. In addition, a variety of tools have been developed to complement the 
system, providing efficient methods for data processing. 
The  authors  will  also  summarize  a  specific  example  for  processing  multiple  months  of  multi-
channel, continuous data recorded in the Stellwagen Bank National Marine Sanctuary, MA, USA. 
Results show distinct seasonal distribution patterns of species-specific vocalization for right whales 
(Eubalaena glacialis) and minke whales (Balaenoptera acutorostrata). 
These  examples  will  also  show other  related  acoustic  activity  from a  variety  of  other  marine 
animals. Results from these data products illustrate daily and seasonal patterns as shown across 
multiple sensors. As the scale of data collection continues to expand (the bioacoustics community 
will  soon be faced with the  challenges  of  processing pedabytes  of  data),  such high-throughput 
computational approaches will be essential in bringing passive acoustic monitoring and analysis 
into the realm of big data science. 
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2. Organisation committee

Workshop Chairs:

• Pr. H. Glotin - Institut Universitaire de France, CNRS LSIS and USTV, FR
Email: glotin@univ-tln.fr

• Pr. Y. LeCun - Computational and Biological Learning Lab at New York University, 
USA
Email: yann@cs.nyu.edu

• Pr. C. Clark - Director of Bioacoustics Research Program at Cornell University, NY, 
USA
Email: cwc2@cornell.edu

Co-Organizers:

• Dr. X. Halkias - CNRS LSIS and USTV, FR
Email: xanadu.halkias@univ-tln.fr

• J-M. Prévot - USTV, FR

Technical Session Chairs:

• Dr. Peter Dugan - Corne  ll University  , NY, USA
Email: pjd78@cornell.edu

• Associate. Pr. Jérôme Sueur, Habilitated - Muséum National d'Histoire Naturelle, 
Paris, FR
Email: sueur@mnhn.fr

Preparation and compilation of the Proceedings
• Ales Mishchenko SATT sud-est, CNRS LSIS and USTV, FR

Email: alesmichtchenko@mail.ru

2.1. Organizers short CV

Prof. Hervé Glotin - Institut Universitaire de France, CNRS LSIS and USTV, FR

Hervé Glotin is a Professor at the Insitut Universitaire de France and Univ. of Toulon, in the 
Systems & Information Sciences CNRS lab. He is leading the DYNI team on stochastic 
multimodal  information  retrieval.  He  received  a  diploma  in  computer  science  from 
University  Pierre  et  Marie  Curie-Paris.  During  his  master  thesis  he  proposed  the  first 
modelisation of vocalic system evolution, addressing the emergence of a common phonetic 
code in a society of communicating speech agents using evolutionary learning, which has 
been extended in many other  works.  He carried out  his  PhD at  the  Inst.  of  Perceptual  
Artificial Intelligence (IDIAP), CH and Inst. of Spoken Communication - Perception Team 
Grenoble on "Robust adaptive multi-stream automatic speech recognition using voicing and 
localization cues". In 2000 he was involved as an expert at the Johns Hopkins CSLP lab 
with the IBM human language team in audiovisual Large Vocabulary Speech Recognition. 
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After two years as a research engineer at CNRS lab on phonology and Semantic analysis, he 
became an assistant professor at the University of Toulon in 2003. His research focuses on 
multimodal pattern analysis and retrieval systems, audiovisual indexing, cognitive models 
and bioacoustics. He is the co-author of one hundred of international refereed articles, and 
of an international (US, CANADA...) patent on a real-time bio-acoustic indexing algorithm. 
Herve Glotin is  leading the  CNRS interdisciplinary project  2012-2016,  Scaled Acoustic 
Biodiversity with LIP6 Paris 6, the CNPS, MNHN and LIG. He is invited as a keynote 
speaker at the American Society of Acoustics workshop in June 2013 - Montreal for the 
special session on "Conditioning, Segmentation and Feature Extraction in Bioacoustics".

Prof. Yann LeCun - New York University, USA

Yann  received  a  Diplôme  d'Ingénieur  from  the  Ecole  Superieure  d'Ingénieur  en 
Electrotechnique et Electronique (ESIEE), Paris in 1983, a Diplôme d'Etudes Approfondies 
(DEA)  from Université  Pierre  et  Marie  Curie,  Paris  in  1984,  and  a  PhD in  Computer 
Science  from  the  same  university  in  1987.  His  PhD  thesis  was  entitled  "Modèles 
connexionnistes de l'apprentissage" (connexionist learning models) and introduced an early 
version of the back-propagation algorithm for gradient-based machine learning. In 1987, he 
joined Geoff Hinton's group at the University of Toronto as a research associate. He then 
joined the Adaptive Systems Research Department at AT&T Bell Laboratories in Holmdel, 
NJ in 1988. In 1991, he spend six months with the Laboratoire Central de Recherche of 
Thomson-CSF in Orsay, France, after which he returned to Bell Labs. Shortly after AT&T's 
second breakup in 1996, he became head of the Image Processing Research Department, 
part of Larry Rabiner's Speech and Image Processing Research Lab at AT&T Labs-Research 
in Red Bank, NJ. In 2002, he became a Fellow of the NEC Research Institute (now NEC 
Labs America) in Princeton, NJ. He joined the Courant Institute of Mathematical Sciences at 
New York University as a Professor of Computer Science in 2003. He was named Silver 
Professor in 2008. Yann LeCun has been associate editor of PLoS ONE (2008-present), 
IJCV  (2003-present),  IEEE  Trans.  PAMI  (2003-2005),  Pattern  Recognition  and 
Applications,  Machine  Learning  Journal  (1996-1998),  IEEE  Transactions  on  Neural 
Networks  (1990-1991).  Yann LeCun has  published over  130 technical  papers  and book 
chapters on machine learning. He is leading the Computational and and Biological Learning 
Lab at NYU.

Dr. Christopher Clark - Cornell University, NY, USA

Christopher  Clark  is  currently  the  Imogene  P.  Johnson  Director  for  the  Bioacoustics 
Research  Program  at  the  Cornell  Lab  of  Ornithology,  and  a  senior  scientist  at  the 
Department  of  Neurobiology and Behavior  at  Cornell  University,  NY.  He oversees  and 
directs  a vigorous,  multidisciplinary program that  is  actively engaged in both basic and 
applied  research.  Dr.  Clark  is  an  expert  in  engineering  design  and  implementation  of 
automatic acoustic detection, classification, localization and tracking systems as applied to 
animal  acoustic  communication,  behavioral  ecology  and  quantifying  potential  risks  to 
wildlife from anthropogenic activities. Projects include migratory bird monitoring on DOD 
installations, nicaloise effects on endangered bird species, rare bird monitoring, miniaturized 
radio tracking transmitters and advanced radio tracking receiver networks. His scientific 
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conservation research on a variety of large whale species continues throughout the world's 
oceans.

Dr. Xanadu Halkias - CNRS LSIS and USTV, FR

Xanadu Halkias received her PhD from the Electrical Engineering Department of Columbia 
University, NY. Her research focused on advanced signal processing and machine learning 
as it applies to bioacoustics. She is currently a post-doctorate fellow at the Université du 
Sud - Toulon working on machine learning and specifically deep architectures and their 
applications.

Dr. Peter Dugan - Cornell University, NY, USA

Peter Dugan is currently the PI on the National Oceanic Partnership (NOPP) Grant focusing 
on detection, classification and localization of marine mammals. He received his PhD in 
Electrical Engineering and Combined behavioral biology from Binghamton University in 
NY. Prior  to  Cornell  University he held positions  in the industry in  companies  such as 
Hughes Link Flight Simulation and Lockheed Martin. He also has an extensive publication 
and patent portfolio showcasing advanced methodologies in machine learning for marine 
mammal vocalizations. His interests and motivations include the research and development 
of  computationally  intelligent systems,  by combining traditional  "shallow systems" with 
"deep learning systems" for object detection and classification in order to enhance system 
accuracy. The NOPP grant has been awarded 1M$ for the years 2012-2015. As the PI, his  
goal  is  to  investigate  new  approaches  and  deliever  comparative  studies  working  on 
integrated teams representing Science, Technology, Engineering and Mathematics (STEM).

Associate Prof. Jérôme Sueur - Muséum National d'Histoire   Naturelle  , Paris, FR

Jérôme  Sueur  is  currently  an  habilitated  Associate  Professor  at  the  museum of  natural 
history  in  Paris,  France.  With  a  strong international  academic  background in  biological 
sciences,  his  interests  and expertise  can  be  found  in:  acoustics  ecology i.e  biodiversity 
assessment  through  acoustics;  Animal  audition,  i.e.  the  nano-mechanics  of  tympanal 
audition in insects; Animal behavior and animal systematics. He has an extensive list of 
international publications in journals such as Ecological Indicators, Journal of Experimental 
Biology and Plos ONE.

Dr. Ales Mishchenko SATT sud-est, CNRS LSIS and USTV, FR

Ales Mishchenko is currently a post-doctorate fellow at the Université du Sud - Toulon and 
senior  researcher  of  SATT  sud-est.  His  current  research  focuses  on  advanced  signal 
processing, machine learning and Neural networks with application to bioacoustic data and 
EEG/MEG/fMRI data processing. 
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3. Workshop challenges
3.1. Challenges overview

Data and submission of results through Kaggle.com
Avian Data
Whale Data

The field of bioacoustics faces similar challenges to those defined in the general machine 
learning and advanced signal processing communities.  However,  in the former case,  the 
unknown extent of signal feature variability, unknown informational significance of features 
and limited  knowledge  of  the  signal's  semantics  may  hinder  the  robustness  of  existing 
machine learning algorithms as a result of highly tuning and adapting these methodologies 
for the different collections of data.

As previously mentioned, bioacoustics aims at analyzing and modeling animal sounds for 
biodiversity assessment. However, given the large amount of the collected data along with 
the different taxonomies of the different species and their environmental contexts, it would 
be intractable to attempt to analyze each of the different sounds or even to offer general 
solutions that would be applicable across different species.

The goal of the technical session is to provide possible solutions for targeted applications 
that have been popular in the field, but remain either partially solved or require significant 
manual  interaction.  Moreover,  we  hope  that  by  building  a  representative,  standardized 
collection of validated acoustic data we will provide a much needed comparative framework 
within the bioacoustics community.

In the hopes that the proposed workshop could become a repeated event, the desire would 
be  for  any  subsequent  technical  challenges  to  focus  on  increasingly  complex  acoustic 
phenomena representative of a particular set of signal types which generally occupy a high-
dimensional, acoustic feature space: for example, short duration, broadband transients; or 
hierarchically  organized  combinations  of  stereotypic,  frequency-modulated  sounds, 
syllables, and phrases repeated in long bouts; or hierarchically organized combinations of 
highly variable, two-voiced, frequency-amplitude-modulated sounds, repeated in long bouts. 
Further complexity could include acoustic scenes with multiple, higher variable sources or 
data from coherent, multi-sensor systems. These would provide a diverse set of algorithms 
to allow parallel or cross-comparison classification schemes and would aid in elucidating 
how different algorithms perform on different levels of acoustic complexity. The expected 
outcome would be the significant advancement of our abilities to explore and understand 
different classes of bioacoustics data within natural context, and across the broad spectrum 
of biodiversity.

Technical Challenge Data

The  automatic  analysis  of  marine  mammal  sounds  has  long  been  an  interest  in  the 
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bioacoustics community given the sounds' intrinsic complexities, the underlying concerns 
for  these over-exploited species,  and the  fact  that  in  the U.S.  there are explicit  statutes 
protecting marine mammals. The same level of interest easily applies to avian songs and 
calls, which are easily experienced, aesthetically pleasing, and have served as the basis for a 
rich  and  productive  history  in  fundamental  research  on  vocal  ontogeny,  memory,  and 
computational neuroscience.

For that reason we propose that the first Technical Challenge is focused on sounds of marine 
mammals and birds.

A training, development and test set will be provided for each of the data sets. In both the 
avian  and  marine  mammal  sets.  The  development  sets  will  be  comprised  of  artificial 
mixtures offering a controlled environment for system creation. On the other hand, the test 
sets will include real life mixtures, thus exposing the created systems to the variability and 
diversity of bioacoustic recordings.

Sample examples of the avian data set are shown in the images below.

Figure : Avian data set examples; Left: Aegcau species, Right: Alaarv species

Data Avian (from MNHN Paris)
Marine mammals (from Cornell 
Univ)

Description

TRAIN: Clean recordings from the 

MNHN soud library1

TEST: Recordings form the 
Regional Park of the Upper 
Chevreuse Valley in France, daily 
for 30min prior to sunrise.

TRAIN: Recordings of single 
species (one call per hour), Right 
Whale (3 types of calls)
TEST: Recordings in the wild from 
the Stellwagen Bank National 
Marine Sanctuary

Duration

TRAIN: 30 sec x 35 bird recordings 
= 18min
TEST: 150sec x 3 mics x 90 
recordings = 11.2 hours

TRAIN: approximately 48 hours x 1 
species
TEST: approximately 96 hours

Equipment

TRAIN: 1 microphone, 16bit, 
44.1kHz
TEST: 3 microphones on trees in 
the same area, into different forest 
state (mature, young, open), 16bit, 

44.1kHz2

Audio format: .wav

Hydrophones, 16 bit, 2-10kHz 
MARU, bit depth = 11, Sensitivity 
-167.5 dB re: 1uPa/V
Audio format: .aif

SNR
TRAIN: 20-60 dB
TEST: 5-9 dB

TRAIN: 1-20 dB
TEST: 1-20 dB

Ground 
truth

Sample level: Call/no call
Call level: Species class

Sample level: Call/no call, 
frequency start/end
Call level: Species class (by 
spectrogram expert analysis and/or 
by on the field visual identification)
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Features
Raw audio
Mel Cepstral coefficients are given

Raw audio

Meta-data

TRAIN / TEST : The phylogenetic 
tree (usual format, including R 
package to read/manipulate) of the 
target species 
Location, Time, Temperature, 
locationMeteo

Location (longitude, latitude), Time, 
Depth, ambient sound level

1 The data  for  this  challenge are  copyright  of Fernand Deroussen Jerome Sueur of  the 
Musee  National  d  Histoire  Naturelle,  their  usage  is  restricted  to  this  challenge.  The 
competition test data was graciously provided by Jerome Sueur. More details on the train 
data are given in : Deroussen, F., 2001. Oiseaux des jardins de France. Nashvert Production, 
Charenton, France ; Deroussen, F., Jiguet, F., 2006. La sonotheque du Museum: Oiseaux de 
France,  les  passereaux.  Nashvert  production,  Charenton,  France  ;  http://naturophonia.fr. 
naturophonia.fr
2Depraetere  M,  Pavoine  S,  Jiguet  F,  Gasc  A,  Duvail  S,  Sueur,  J  -  Monitoring  animal 
diversity  using  acoustic  indices:  Implementation  in  a  temperate  woodland.  Ecological 
Indicators, 13: 46-54

The ground truth of each test set will be used to score each system and distributed after the 
deadline for your working notes. * The participants must not try to handlabel the test set for 
tuning  their  models.  Guidelines  on  submitting  results  are  simple.  Please  follow  the 
guidelines on KAGGLE as shown in the links below:

Avian Data
Whale Data

Tasks

As part of the challenge, different thematic approaches can be proposed that will reflect on 
the most commonly encountered problems in the field. In both cases,  avian and marine 
mammal sounds, the major thematic approaches include:

• (i) Species detection
• (ii) Species classification
• (iii) Call extraction
• (iv) Tracking/Localization

In this proposal we recommend a technical challenge in the area of automatic classification 
as it  appears to be a task that  will  immensely benefit  the bioacoustics community.  Our 
proposed challenge is outlined below:

Task 1: Species Recognition/Clustering
The goal of the task is to recognize the avian and marine mammal species in their 
respective recordings. This is a multi-class problem and allows participants to explore 
both  supervised  and  unsupervised  methodologies.  Emphasis  will  be  given  on  the 
recognition rate rather than the computational cost of the methodologies.
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Task 2: Free challenge
Using the bird data set we can offer participants the chance to provide any meaningful 
environmental/ecological  information  using  machine  learning  tools.  The  goal  is  to 
extract possible meaningful ecological correlations between the avian recordings and 
the provided meta-data (phylogenetic  data which could match some acoustic cues, 
meteo (wind, sun...) for each test set.

Challenge descriptions are given below:

3.2. ICML Bird challenge (web link)

 

The data for this challenge are copyright of Fernand Deroussen Jerome Sueur of the Musee 
National d Histoire Naturelle, their usage is restricted to this challenge. The competition test 
data was graciously provided by Jerome Sueur.

 
Train Data extracted from :

Fernand Deroussen naturophonia.fr

Deroussen,  F.,  2001.  Oiseaux  des  jardins  de  France.  Nashvert  Production,  Charenton, 
France
Deroussen,  F.,  Jiguet,  F.,  2006.  La  sonotheque  du  Museum:  Oiseaux  de  France,  les 
passereaux. Nashvert production, Charenton, France

 

Here  is  the  link  to  KAGGLE    WEB  SITE  with  description  and  RUN  SUBMISSION   
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(+SCORING).  
We are pleased to announce that the challenge on bird classification at ICML workshop is 
now  running  on  Kaggle  web  site  [  https://www.kaggle.com/c/the-icml-2013-bird-
challenge  ].  
=> thus each of your run (~not limited number) are automatically scored : this leaderboard 
is calculated on approximately 33% of the test data.

The final rank will be based on the other 67%, so the final standings may be different. 
Kaggle competitors are used to selecting 5 models at the end of the competition (16th of 
june).  

You  find  below the  data  sets,  also  available  at  Kaggle  on  other  format  (CVS).  If  you 
participate to this challenge, please Email to icml4b@gmail.com for free inscription, and to 
get updated news if any on these data during the challenge.

 

Task description : for each test file,  you have to index the 35 bird species given in the  
official training set (below).

 
Runs submission : each run will be submitted into the Kaggle web site according the details  
given  on  the  Kaggle  web  site.  Each  run  gives  the  Pij  (90x35)  probabilities  :  
Pij = P('The species j sings in the test file i') , with j and i in alphabetical order.

 

You can submit up to 5 runs in the official contest, choosen from the ones you submitted to  
Kaggle until the 16th of june. Your run may include if possible at least one using the given 
MFCC features.

 
Evaluations will be computed on ROC.

 
* You are free to use any additional external data or recordings (as wikipedia wav samples 
linked in the list below, or taxonomia for hierarchical classification, ...), but in that case you 
must specify it in you run description (.txt) and this run with modified train set will not 
count for the prize of the challenge.

 

Sorted list of the 35 bird species (= classes) with wikipedia links

link to the TRAIN SET : 35 .WAV files and suggested FEAT  URES (see also Kaggle for   
various format)
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link to the TEST SET : 90 .WAV files  and suggested FEATURES (see also Kaggle for 
various format)

** This TEST SET includes the results for three test files to be used as a small development 
set (please include them at their right place into your run).

The suggested MFCC features were computed according to a minimum error (in average on 
all the species) reconstruction signal of the signal. The scripts are given here : 

MFCC SCRIPTS     

METADATA : you may use some metadata or other training set to enhance your model, 
such as :

 
PHYLOGENETIC  tree  to  reveal  some  acoustic  cues  between  species.  This  tree,  with 
distances,  is  given  there.  The  phylogenetic  tree,  with  distances,  of  the  target  species.  
WEATHER :  The weather, wind speed, humidity, sun conditions... of each test set files. 

SUBMISSION :  The  ground  truth  of  each  test  set  will  be  used  to  score  ROC.  *  The 
participants must not try to hand label the test set for tuning their model: every parameter 
will be automatically set.

 
Guidelines  on  submitting  results  are  simple  as  explained  in  Kaggle.  
You  are  invited  to  send  a  working  note  with  your  partial  results  by  the  30th  of  may 
following the ICML template: it will be published into this ICML workshop Proceedings.
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3.3. The ICML 2013 Whale Challenge (web link)

Challenge to develop recognition solutions to detect and classify right whales for BIG 
data mining and exploration studies

(right whale illustration courtesy of Pieter Folkens, ©2011)

This  competition  complements  the  previously  held Marinexplore  Whale  Detection 
Challenge, in which Cornell University provided data from a ship monitoring application 
termed "Auto Buoy", or AB Monitoring System. In the Marinexplore challenge we received 
solutions  that  exceeded  98%  accuracy  and  will  ultimately  advance  the  process  of 
automatically classifying North Atlantic Right Whales using the AB Monitoring Platform.

Since the results from the previous challenge proved so successful, we decided to extend the 
goals and consider applications that involve running algorithms on archival data recorded 
using  portable  hydrophone  assemblies,  otherwise  referred  to  as  Marine  Autonomous 
Recording Unit (or MARU’s). Since Cornell and its partners have been using the MARU for 
over a decade, a sizable collection of data has been accumulated. This data spans several 
ocean basins and covers a variety of marine mammal species.

Solutions  to  this  challenge  will  be  ported  to  a  High  Performance  Computing  (HPC) 
platform, being developed in part through funding provided by the Office of Naval Research 
(ONR grant N000141210585, Dugan, Clark, LeCun and Van Parijs). Together, Cornell will 
combine algorithms, HPC technologies and its data archives to explore data using highly 
accurate  measuring  tools.  We  encourage  participants  who  developed  prior  solutions 
(through the collaboration with Marinexplore) to test them on this data.

The results  will  be presented at  the Workshop on Machine Learning for  Bioacoustics at 
ICML 2013.
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4. Workshop Schedule

The workshop follows a "mini-conference" format,  and explicitly offer opportunities for 
free discussion between researchers.

• Each talk  may be  followed by a  brainstorming session  whereby participants  and 
speakers  will  explore  possible  solutions.  Their  conclusions  and outcomes will  be 
presented at the end of the workshop.

• The  second  day  includes  sessions  on  the  Technical  Challenge  for  the  avian  and 
marine mammal data sets.

Program (due to last changes, be sure to refresh the upload of this page)

Day 1 : Thursday the 20th of june

08:30
Opening 
Session/Welcome

Why ICML4B? H. Glotin and C. Clark

08:45 Keynote Speaker
C. Clark 'Advanced   High-performance-computing for Mapping   
Marine Mammals overs ecologically meaningful scales'

09:20 Keynote Speaker
O. Tchernichovski "Physiological brain processes that underlie 
song le  arning"   

10:00 Coffee
10:30 Keynote Speaker Y. Bengio 'Deep Learning : Looking Forward' 

11:15 Keynote Speaker
X. Halkias 'Classification of Mysticete : Extracting spectro-
temporal structures using Sparse Architectures' (slides .pdf)

11:55
Memory 
photography

12:00 Lunch

14:00 Keynote Speaker
H. Glotin 'Sparse coding for deformed marine or terrestrian events 
/ Bird or Whale Cocktail Party 3D Tracking'

14:30 Accepted paper
Segretier et al. 'Song-based Classification techniques for 
Endangered Bird Conservation' 

14:55 Keynote Speaker D. Sheldon et al. 'Machine Learning and Ecology' 
15:30 Coffee
16:00 Accepted paper Briggs et al. 'Multi Label Classif Chains for Bird Sound' 

16:30 Keynote Speaker
G. Pavan 'Monitoring bioacoustic diversity for research, 
conservation and education' 1/2

17:10
Poster and short 
papers

Popescu et al. 'Large Scale Classification' 
Dugan et al.   'High Perf Computing for Bioacoustics'   Mishchenko 
et al. 'Target Optimization funct for bird songs' 
Smirnov, 'CNN for whale classification'

Day 2 : Friday the 21th of june
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08:30 Keynote Speaker
P. Dugan 'Pratical considerations for high performance on 
continuous passive acoustic data'

09:05 Accepted paper Pourhomayou et al. 'Human Scoring joint to ANN for classif.' 
09:30 Accepted paper Abousleiman et al. 'Whale Classification' 
10:00 Coffee

10:30 Keynote Speaker
G. Pavan 'Challenges in monitoring / indexing bioacoustic 
diversity' Demo (2/2)

11:30 Accepted paper Pourhomayoun et al. 'Classification on continuous region' 
12:00 Lunch
14:00 Accepted paper Paris et al. 'Sparse Coding for whale localization' 
14:30 Accepted paper Popescu et al. 'Pulse Classification' 
15:00 Accepted paper Ness et al. 'Orca Big Data' 
15:30 Coffee

16:00 Challenge Results 1/2

Bird song classification : Methods and results of the 78 
participants, Prize, and   next..?   
Benetos et al. working note 
Briggs et al. working note 
Turner et al. working note (5th) 
Stowell al. working note

16:30 Challenge Results 2/2
Whale Challenge : Methods, Results (136 participants), Prize  ,   
and next..?

17:00
General discussion 
and closing

Organizers and all Participants
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5.1. Workshop Full papers
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5.2.Workshop Short papers
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5.3. Workshop Bird Challenge 
worknotes
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1.Workshop at a glance 
 

1.1. Contributions 
 
Invited talks 

Prof. Christopher Clark, W - Cornell University, NY, USA 

Prof. D. Sheldon and T. G. Dietterich - Oregon State University, USA 

Prof. Hervé Glotin - USTV, Inst.Univ.de France, CNRS LSIS, FR 

Dr. Xanadu Halkias - CNRS LSIS and USTV, FR 

Prof. Y. Bengio - Department of Computer Science and Operations Research Canada Research Chair in Statistical 

Learning Algorithms 

Prof. Diana Reiss - Hunter College - CUNY, NY USA 

Prof. Gianni Pavan Pavia - Italy 

Prof. Ofer Tchernichovski - Hunter College - CUNY, NY, USA 

Dr. Peter J. Dugan - Cornell University, NY, USA 

 

Full papers 

Rami Abousleiman - Oakland University, Department of Electrical and Computer Engineering, Rochester, MI, USA 

Guangzhi Qu - Oakland University, Department of Computer Science and Engineering, Rochester, MI, USA 

Osamah Rawashdeh - Oakland University, Department of Electrical and Computer Engineering, Rochester, MI, USA 

Steven Ness - Department of Computer Science, University of Victoria, Canada 

Helena Symonds - OrcaLab, P.O. Box 510 Alert Bay, BC, Canada 

Paul Spong - OrcaLab, P.O. Box 510 Alert Bay, BC, Canada 

George Tzanetakis - Department of Computer Science, University of Victoria, Canada 

Sebastien PARIS - DYNI team, LSIS CNRS UMR 7296, Aix-Marseille University 

Yann DOH - DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 

Herve GLOTIN - DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 

Xanadu HALKIAS - DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 

Joseph RAZIK - DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 

Marian Popescu - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Peter J. Dugan - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Mohammad Pourhomayoun - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Denise Risch - Northeast Fisheries Science Center, Woods Hole, MA, USA, 02543 

Harold W. Lewis III - Department of Systems Science and Industrial Engineering, Binghamton University, NY, USA, 

13850 

Christopher W. Clark - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Mohammad Pourhomayoun - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Peter J. Dugan - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Marian Popescu - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Denise Risch - Northeast Fisheries Science Center, Woods Hole, MA, USA, 02543 

Harold W. Lewis III - Department of Systems Science and Industrial Engineering, Binghamton University, NY, USA, 

13850 

Christopher W. Clark - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Mohammad Pourhomayoun - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Peter J. Dugan - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Marian Popescu - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Christopher W. Clark - Bioacoustics Research Program (BRP), Cornell University, Ithaca, NY, USA, 14850 

Erick Stattner - LAMIA Lab. University of the French West Indies and Guiana, France 

Wilfried Segretier - LAMIA Lab. University of the French West Indies and Guiana, France 

Martine Collard - LAMIA Lab. University of the French West Indies and Guiana, France 

Philippe Hunel - LAMIA Lab. University of the French West Indies and Guiana, France 

Nicolas Vidot - LAMIA Lab. University of the French West Indies and Guiana, France 

 

Short papers 

Ales MISHCHENKO - SATT sud-est / DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 

Herve GLOTIN - DYNI team, LSIS CNRS UMR 7296, Universite Sud Toulon-Var 

Evgeny Smirnov - Saint-Petersburg State University, Universitetskii prospekt 35, Petergof, Saint-Petersburg, Russia 

198504 
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Bird Challenge worknotes 

Emmanouil Benetos - Department of Computer Science, City University London, London, UK. 
Forrest Briggs - Oregon State University, Corvallis, OR, 97333, USA 
Olivier Dufour - LSIS, Universite du Sud Toulon Var 
Thierry Artieres - LIP6, Universite Paris 6 
Herve GLOTIN - Universite de Toulon, CNRS, LSIS, UMR 7296, 83957 La Garde, France 
Pascale Giraudet - Universie du Sud Toulon Var 
Dan Stowell and Mark D. Plumbley - Centre for Digital Music, Queen Mary, University of London 
Rafael Hernandez Murcia - Carlos III University of Madrid, Spain 
Victor Suarez Paniagua - Carlos III University of Madrid, Spain 
Jennifer G. Turner, Charles J. Turner - Academic Technology Services, UC Davis, Davis CA 95616 USA 

 

 

1.2. Videos of presentations 
 

06/20/2013 morning: 

1 http://youtu.be/TDnmXgJdbj0 :  C. Clark 'Advanced High-performance-computing for Mapping 

Marine Mammals overs ecologically meaningful scales' 

2 http://youtu.be/Ubce2i1MmZY :  O. Tchernichovski "Physiological brain processes that underlie 

song learning" 

3 http://youtu.be/u4wU0bUbh-w :  Y. Bengio 'Deep Learning : Looking Forward' 

4 http://youtu.be/9Tf4uJu-Jnw :  X. Halkias 'Classification of Mysticete : Extracting 

spectrotemporal structures using Sparse Architectures' 

 

06/20/2013 afternoon: 

1 http://youtu.be/VB_DBWCsfSs :  H. Glotin 'Sparse coding for deformed marine or terrestrian 

events/ Bird or Whale Cocktail Party 3D Tracking' 

2 http://youtu.be/JPXExcR634Q :  Segretier et al. 'Song-based Classification techniques for 

Endangered Bird Conservation' 

3 http://youtu.be/pJmuCNQMMWQ :  D. Sheldon et al. 'Machine Learning and Ecology' 

4 http://youtu.be/PbivO_7aVng :  Briggs et al. 'Multi Label Classif Chains for Bird Sound' 

5 http://youtu.be/_YELQRwHYmo :  G. Pavan 'Monitoring bioacoustic diversity for research, 

conservation and education' 

 

06/21/2013 morning : 
1 http://youtu.be/2-rwaKR3BwQ :  P. Dugan 'Pratical considerations for high performance on 

continuous passive acoustic data' 

2 http://youtu.be/OBUv1Ba0MfU :  Pourhomayoun et al. 'Human Scoring joint to ANN for classif.' 

3 http://youtu.be/XG3Bdxg-nYw :  G. Pavan 'Challenges in monitoring / indexing bioacoustic 

diversity' 

4 http://youtu.be/GWeR-zBWOzw :  Pourhomayoun et al. 'Classification on continuous region' 

5 http://youtu.be/M51T0Iv3o3Q :  Popescu et al. 'Pulse Classification' 

 

06/21/2013 afternoon: 

1 http://youtu.be/RtPNEFi9nIE :  Paris et al. 'Sparse Coding for whale localization' 

2 http://youtu.be/_CzUJC7VpQ0 :  Abousleiman et al. 'Whale Classification' 

3 http://youtu.be/1zTsohmGm-M :  Ness et al. 'Orca Big Data' 

4 http://youtu.be/qO5NEgdf0DI :  Challenge Results, Herve Glotin  

 

Slides of presentations are available at http://sabiod.univ-tln.fr 
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1.2. Workshop Abstract 
 

Biodiversity assessment remains one of the most difficult challenges encountered by 

ecologists and conservation biologists. There is a critical need to describe and quantify the 

spatio-temporal dynamics of biodiversity over ecologically meaningful scales and to 

provide timely syntheses and interpretations so as to enable responsible decisions that 

reduce risks to endangered species, populations and habitats from anthropogenic activities. 

This task has become even more urgent with the current increase of habitat loss and global 

environmental changes as a result of global commercial and industrial activities. The field 

of animal bioacoustics has received increasing attention due to its diverse potential benefits 

to science and society, and is increasingly required by regulatory agencies as a tool for 

timely monitoring and mitigation of environmental impacts from human activities. The 

increased expectations from bioacoustic research have been coincident with a dramatic 

increase in the spatial, temporal and spectral scales of acoustic data collection efforts. The 

bottleneck at this point is not access to raw data. It is the inability to efficiently process, 

visualize and interpret large volumes of data within an advanced, data management system. 

This workshop brings together a cohort of world class scientists with expertise in animal 

bioacoustics, digital signal processing and machine learning to specifically address the 

emerging field of bioacoustic machine learning, from basic to applied research. 

The features and biological significance of animal sounds, while constrained by the physics 

of sound production and propagation, have evolved through the processes of natural 

selection. Additional insights have been gained through analysis and attempts of modeling 

of animal sounds as related to critical life functions (e.g. communicating, mating, migrating, 

navigating, etc.); social context; and individual, species and population identification. Most 

recently, researchers in the field have been exploring and identifying possible links and 

correlations between the dynamics of animal sound development and the evolution of 

human speech. These observations have led to both quantitative and qualitative 

advancements such as using MRIs for monitoring bird song ontogeny and human brain 

activity associated with linguistic metaphors, or the use of genetic algorithms to identify a 

possible common framework in the evolution of human and non-human cultural 

relationships. From an applied perspective, very basic, semi-automated systems for near-

real-time acoustic detection of species of concern are being used by regulatory agencies to 

dynamically monitor and mitigate human activities, and there is increasing demand for such 

near-real-time capabilities. 

Although, the majority of the existing applications lend themselves to widely used, 

advanced acoustic signal processing methodologies, the field has yet to successfully 

integrate robust signal processing and machine learning algorithms due to multiple and 

diverse challenges. Specifically, the dynamic and variable factors in the collection and 

analysis of raw data from both wild and captive environments often require the use of real-

time or near-real-time systems that minimize manual interaction/supervision. This 

requirement can be strongly coupled with the creation and employment of on-line 

algorithms and stochastic optimization techniques allowing field researchers to assess the 

computational and accuracy trade-offs without compromising the data collection process. 

Eventually, results from intelligent, open-access systems could offer significant societal 

benefits by raising public awareness of natural phenomena and exposing possible hazardous 

interactions between wildlife and humans allowing for swift mitigation procedures. 
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An additional, yet critical issue in present bioacoustic analysis strategies is the inability to 

provide comprehensive, accurate species validation across the full suite of signals available 

in very large sets of raw data. The process of extracting ground-truth, typically involves 

manual interaction by experts, which is an intractable task. This inherent bottleneck 

significantly limits our ability to identify a species’ complete signal variability across the 

multiple dimensions of its acoustic signals, which thereby constrains our ability to process 

data at scales commensurate with the spatial-temporal-spectral biodiversity needs. The 

application of advanced, unsupervised learning algorithms offers a possible solution to this 

problem because it would enable rapid computational access into the unique, underlying 

characteristics of the species-specific features, which would accelerate the recognition task. 

Successful completion of this stage could then be combined with supervised methodologies 

to yield a robust, iterative system for automatically processing very large amounts of data 

and visualizing those data products over appropriate ecological scales. 

Moreover, automatic and accurate species recognition remains a top priority in the field. 

This is a highly complex and challenging task. To be effective it needs to mirror the 

complexities of the hierarchical acoustic structures so often found within animal acoustic 

signaling behaviors, which would involve the application of both discriminative and 

generative approaches. Depending on the type of species under study, shallow or deep 

architectures might be favored. However, the diversities of the vocalization repertoires of 

the different species combined with their underlying biological structures indicate that any 

analysis and modeling would greatly benefit by integrating sparse constraints in order to 

increase the discriminative power of the models. 

Finally, the lack of standardization and unified comparative framework, combined with the 

different environments and contexts of large scale data collection creates a unique domain 

adaptation and transfer learning framework whereby the proposed machine learning 

methodologies need to provide an adequate intra- and inter-species generalization. 

In conclusion, the application of machine learning processes to bioacoustic signal 

recognition analysis and modeling of large data sets promises to yield significant theoretical 

and applied advances in present understandings of complex, learned animal vocal behaviors 

and in the quantitative description of biodiversity over ecologically meaningful spatio-

temporal-spectral scales. 
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1.3. Workshop objectives 
 

 

The main objectives of this workshop are two-fold: 

1. Firstly, the workshop aims at bringing together experts from the machine learning 

and computational auditory scene analysis fields with experts in the field of animal 

acoustic communication systems to promote, discuss and explore the use of machine 

learning techniques in bioacoustics. 

2. Secondly, by presenting current approaches, their limitations and open problems in 

bioacoustics to the ICML community, this workshop will encourage interdisciplinary, 

scientific exchanges and foster collaborations among the workshop participants. 

The proposed workshop is organized jointly by experts in the field of animal bioacoustics, 

digital signal processing and machine learning and depending on participation rates, it will 

take place over two days. The target audience covers researchers working in the fields of 

bioacoustics signal analysis and detection-classification, as well as researchers from the 

whole ICML community sharing an interest in real-world applications ranging from natural 

to cultural sounds. Given the combined participation of computer scientists and 

bioacousticians, the invited speakers will be asked to give talks with a tutorial character and 

make the covered material accessible for both communities. 

A special technical challenge on automated computer recognition of bird and marine 

mammal sounds will be organized in order to foster a common, quantitative framework 

bridging the two communities, while creating an initial, open-access and standardized data 

library for the communities. 

The proposal and all future additional information can be found on line at 

http://sabiod.univ-tln.fr. 
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1.4. Invited talks overview 
 

 

• "Application of advanced analytics and high-performance-computing technologies for 

mapping occurrences of acoustically active marine mammals over ecologically meaningful scales" 

C. W. Clark1; P. J. Dugan1; Y. A. LeCun2; S. M. Van Parijs3; D. W. Ponirakis1; A. N. Rice1 

1Bioacoustics Research Program, Cornell University, 159 Sapsucker Woods Road, Ithaca, New 

York 148504, USA 

2The Courant Institute of Mathematical Sciences, New York University, 715 Broadway, New York, 

New York 10003, USA 

3Northeast Fisheries Science Center, Woods Hole Oceanographic Institute, 166 Water Street, 

Woods Hole, Massachusetts 02543, USA 

 

Abstract 

Marine mammals are adapted to produce and perceive a great variety of sounds that collectively 

span 4-6 orders of magnitude along the dimensions of frequency, time and space. Thus, for 

example, blue and fin whales produce intense, long, very-low-frequency songs that can be 

acoustically detected and tracked at ranges of 1500 miles over periods of many weeks. In contrast, 

sperm whales hunting for squid at half-mile depths produce intense, very short, broadband 

echolocation pulses that can be acoustically detected and tracked at ranges of a few miles over 

periods of hours. This perspective leads to two important concepts referred to here as acoustic 

ecology and acoustic habitat; where acoustic ecology is the study of the acoustics involved in the 

interactions of living organisms, while acoustic habitat is the ecological space that is acoustically 

utilized by a particular species. Marine mammals are dependent on access to their normal acoustic 

habitats for basic life functions, including communication, food finding, navigation and predator 

detection. Acoustic masking from anthropogenic sounds (vessel noise, energy exploration, 

commercial activities) can result in measurable losses of marine mammal acoustic habitats. 

Masking leads to a reduction in the space within which an animal effectively operates, which is 

ecologically a reduction in an animal’s acoustic habitat. Traditional mechanisms for detecting, 

classifying and analyzing acoustically active marine mammals are insufficient for mapping the 

ecological scales over which animals normally operate and anthropogenics influence their acoustic 

habitats. Here we process a relatively large acoustic data set (40 months, 6-10 channels) using 

advanced detection-classification analytics combined with a high-performance-computing system to 

explore the spatio-temporal dynamics for a suite of acoustically active marine mammals (fin, 

humpback, minke, and right whales) and a fish species (haddock) whose sounds can be confused 

with whales. The results yield insights into mechanisms for optimizing the analytical system as well 

as dynamic maps and metrics that describe the species-specific, spatio-temporal variability for these 

acoustically active animals as well as the spatio-temporal variability of their background noise 

environments. When considered from the large-scale, ecological perspective, these results point to 

an entirely novel approach for analyzing, visualizing and understanding ocean acoustics at scale. 

 

 

 

• "Machine learning and Ecology" 

 Prof. D. Sheldon and T. G. Dietterich - Oregon State University, USA 

 

Abstract 

This talk will discuss current work and open problems in applying machine learning to conservation 

ecology. It will begin with a broad overview of challenges and opportunities for machine learning in 
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ecology. It will then discuss two example problems: approximate Bayesian inference to infer the 

velocities of migrating birds from weather radar data, and species distribution modeling. Finally, it 

will highlight the important role of latent process models in ecology and discuss some of the 

algorithmic challenges related to these models. 

The work discussed in the talk is joint work between University of Massachusetts Amherst, Oregon 

State University, and the Cornell Lab of Ornithology. 

Short Bio:Daniel Sheldon is an assistant professor in the School of Computer Science at the 

University of Massachusetts Amherst. The primary goal of his research is to develop new 

algorithms to understand and make decisions about the environment using large data sets. He leads 

the UMass portion of the NSF-funded BirdCast project for developing novel machine learning 

algorithms to model and forecast bird migration, in collaboration with Oregon State University and 

the Cornell Lab of Ornithology. 

 

 

 

• "Sparse operators for deformed marine or terrestrian bioacoustic event classification / 

challenges in bird and whale cocktail party labeling" 

Hervé Glotin; Joseph Razik; Sébastien Paris - USTV, Inst.Univ.de France, CNRS LSIS, FR 

 

Abstract 

We first recall the machine learning baseline developped for automatic speech classification. We 

discuss on efficient approaches for classification of animal sound units : sparse coding. We illustrate 

their advantages with various cases of species, from birds to whales. 

For example, since Humpback whale calls present several similarities to speech, including voiced 

and unvoiced type vocalizations, a great variety of methods have been used to analyze them. Most 

of the studies of these songs are based on the classification of sound units, however detailed 

analysis of the vocalizations showed that the features of an unit can change abruptly throughout its 

duration making it difficult to characterize and cluster them systematically. We then show how 

sparse coding can help to determine in a song the stable components versus the evolving ones. This 

results in a separation of the song components, and then highlights song copying between males. 

We finaly discuss how such combined models are relevant for the derivation of statistical 

algorithms for solving ill-posed inverse problems like the source localisation, applied to bird or to 

whales. We'll present a challenge on 3D whale localization using passive acoustics to illustrate this 

perspective. 

 

 

 

• "Classification of Mysticete Sounds: Extracting spectro-temporal structures of calls using 

spare architectures" 

 Dr. Xanadu Halkias - CNRS LSIS and USTV, FR 

 

Abstract 

Classification of mysticete sounds has long been a challenging task in the bioacoustics field. The 

diverse nature of the signals due to the inherent variations as well as the use of different recording 

apparatus and low Signal to Noise Ratio conditions, often lead to systems that are not able to 

generalize across different species and require either manual interaction or hyper-tuning in order to 

fit the underlying distributions. This talk presents a Restricted Boltzmann Machine (RBM) and a 

Sparse Auto-Encoder (SAE) in order to learn discriminative structure tokens for the different calls, 

which can then be used in a classification framework. 
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• "Deep Learning : Looking forward" 

 Prof. Y. Bengio - Department of Computer Science and Operations Research Canada Research 

Chair in Statistical Learning Algorithms 

 

Abstract 

Deep learning research aims at discovering learning algorithms that discover multiple levels of 

distributed representations, with higher levels representing more abstract concepts. Although the 

study of deep learning has already led to impressive theoretical results, learning algorithms and 

breakthrough experiments, several challenges lie ahead. 

This talk proposes to examine some of these challenges, centering on the questions of scaling deep 

learning algorithms to much larger models and datasets, reducing optimization difficulties due to ill-

conditioning or local minima, designing more efficient and powerful inference and sampling 

procedures, and learning to disentangle the factors of variation underlying the observed data. It also 

proposes a few forward-looking research directions aimed at overcoming these challenges for AI 

applications such as those involving images, text or acoustics. 

Accompanying paper: http://arxiv.org/abs/1305.0445 

 

 

 

• "Gaining insights into the structure and use of dolphin whistle repertoires" 

Prof. Diana Reiss - Hunter College - CUNY, NY USA 

 

Abstract 

In sharp contrast with descriptions of contact calls in all other species, the contact or cohesion calls 

used by bottlenose dolphins, Tursiops truncatus, in contexts of social isolation have been 

historically described as individually distinctive and categorically different whistle types, termed 

"signature whistles". These whistle types have been proposed to function as labels or names of 

conspecifics. Other studies have reported an absence of signature whistles and have demonstrated 

that dolphins, like other species, produce a predominant shared whistle type that probably contains 

individual variability in the acoustic parameters of this shared whistle type. To further understand 

the discrepancies between different studies on dolphin whistle communication and the vast 

differences reported between the isolation calls of dolphins and other species, we conducted a study 

replicating the approach and methodologies used in the studies that originally and subsequently 

characterized signature whistles. In contrast to these studies, we present clear evidence that, in 

contexts of isolation, dolphins use a predominant and shared whistle type rather than individually 

distinctive signature whistles. This general class of shared whistles was the predominant call of 10 

of the 12 individuals, the same shared whistle type previously reported as predominant for 

individuals within both socially interactive and separation contexts. Results on the further 

classification of this predominant shared whistle type indicated that 14 subtle variations within this 

one whistle type could be partially attributed to individual identity. 

 

Short Bio: Prof. Reiss earned her Ph.D. in Speech and Communication Science from Temple 

University and is an internationally recognized researcher in animal cognition and communication. 

In 1982, she developed a laboratory at Marine World in California, where she investigated the 

nature of dolphin communication and cognitive abilities. 

Her research focuses on marine mammal cognition and communication, comparative animal 

cognition, and the evolution of intelligence. Her past work includes cognitive studies with 

interactive keyboards with dolphins to investigate their learning and communicative abilities, 

research in mirror self-recognition in marine mammals, marine mammal vocal repertoires and vocal 

and behavioral development in dolphins. Her work also involves the rescue and rehabilitation of 

stranded marine mammals. She was one of the scientists instrumental in the campaign to protect 

dolphins from being killed in tuna nets that resulted in the labeling of "dolphin safe" tuna. 
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Prof. Reiss’s work has been published in numerous international scientific journals and book 

chapters and has been featured in many television science programs, included Nature, National 

Geographic, Wild Kingdom, the Today Show and several BBC nature shows. 

Prof. Reiss au lephant, The fallacy of "signature whistles" in bottlenose dolphins: a comparative 

perspective of "signature information" in animal vocalizations, Mirror self-recognition in the 

bottlenose dolphin: A case of cognitive convergence, and others. 

 

 

 

• Monitoring bioacoustic diversity for research, conservation and education 

Prof. Gianni Pavan Pavia - Italy 

Centro Interdisciplinare di Bioacustica e Ricerche Ambientali, Department of Earth and 

Environment Sciences, University of Pavia, Italy, Gianni.pavan@unipv.it 

 

Abstract 

Bioacoustics is an emerging technology in biodiversity science and conservation: from the 

recognition and monitoring of individual species through to soundscape description in terrestrial 

and aquatic environments, it provides new insights and approaches. 

However, the complexity of the acoustic world is difficult to manage and requires new dedicated 

smart algorithms to process the data and extract useful and easy to handle information. 

Soundscape analysis, or sonic environment analysis, also provides insights into the noise pollution 

problem. Natural soundscapes can be contaminated by the noise produced by human activities; this 

may produce behavioural and physiological changes and interfere with the communicative sounds 

used by animals (masking). Noise may have a severe impact on their life and an impact on natural 

habitats; this is particularly true in the underwater environment where sound propagates well and 

animals use sound as a primary system to communicate, navigate and find food. 

Examples of sound monitoring and sonic environment analysis will be presented in the framework 

of wildlife conservation and acoustic ecology issues. 

 

 

 

• "Physiological brain processes that underlie song learning" 

Prof. Ofer Tchernichovski - Hunter College - CUNY, NY, USA 

 

Abstract 

Sleep affects learning and development in humans and other animals, but the role of sleep in 

developmental learning has never been examined. Here we show the effects of night-sleep on song 

development in the zebra finch by recording and analysing the entire song ontogeny. During periods 

of rapid learning we observed a pronounced deterioration in song structure after night- sleep. The 

song regained structure after intense morning singing. Daily improvement in similarity to the 

tutored song occurred during the late phase of this morning recovery; little further improvement 

occurred thereafter. Furthermore, birds that showed stronger post-sleep deterioration during 

development achieved a better final imitation. The effect diminished with age. Our experiments 

showed that these oscillations were not a result of sleep inertia or lack of practice, indicating the 

possible involvement of an active process, perhaps neural song-replay during sleep. We suggest that 

these oscillations correspond to competing demands of plasticity and consolidation during learning, 

creating repeated opportunities to reshape previously learned motor skills. 

 

Short Bio: Ofer Tchernichovski is a professor at Hunter College - CUNY. His research uses the 

songbird to study mechanisms of vocal learning. Like early speech development in the human 

infant, the songbird learns to imitate complex sounds during a critical period of development. The 

adult bird cannot imitate any more - we do not know why. His lab studies the animal behavior and 
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dynamics of vocal learning and sound production across different brain levels. The lab aims to 

uncover the specific physiological and molecular (gene expression) brain processes that underlie 

song learning. He has extensive publications in Nature and Science as Nature Letter Vol 459, 28 

May 2009, "De novo establishment of wild-type song culture in the zebra finch" 

 

 

 

• "Practical considerations for using high performance computing for applied detection 

classification on continuous-passive-acoustic data" 

Dr. Peter J. Dugan - Cornell University, NY, USA 

P. J. Dugan (1), C. W. Clark (1), Y. A. LeCun (2), S. M. Van Parijs (3), D. W. Ponirakis (1), M. 

Popescu (1), M. Pourhomayoun (1), Y. Shiu1, A. N. Rice (1) 

(1) Bioacoustics Research Program, Cornell University, NY USA 

(2) The Courant Institute of Mathematical Sciences, New York University, USA 

(3) Northeast Fisheries Science Center, Woods Hole Oceanographic Institute, MA USA 

 

Abstract 

From biology to technology, the rate of data collection often far exceeds the ability to process the 

information. Processing large data sets is becoming a major point of interest for every field of 

science. The ease of digital data collection allows for the capture of many terabytes of data, yet this 

often creates major computational bottlenecks when trying to analyze such datasets. This talk 

focuses on a new system developed by Cornell University that uses high performance computing 

(HPC), and combines it with parallel and distributed processing approaches to process large 

amounts of bioacoustic data. 

This work will discuss how the HPC system was developed using commercial off the shelf (COTS) 

tools creating a flexible client-server model that is expandable, flexible and portable. The 

presentation will demonstrate a strategy for providing a flexible software interface for running a 

plurality of data mining algorithms using a dense computer cluster called the Acoustic Data 

Accelerator, or HPC-ADA. In addition, a variety of tools have been developed to complement the 

system, providing efficient methods for data processing. 

The authors will also summarize a specific example for processing multiple months of multi-

channel, continuous data recorded in the Stellwagen Bank National Marine Sanctuary, MA, USA. 

Results show distinct seasonal distribution patterns of species-specific vocalization for right whales 

(Eubalaena glacialis) and minke whales (Balaenoptera acutorostrata). 

These examples will also show other related acoustic activity from a variety of other marine 

animals. Results from these data products illustrate daily and seasonal patterns as shown across 

multiple sensors. As the scale of data collection continues to expand (the bioacoustics community 

will soon be faced with the challenges of processing pedabytes of data), such high-throughput 

computational approaches will be essential in bringing passive acoustic monitoring and analysis 

into the realm of big data science. 
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2. Organisation committee
Workshop Chairs:

•Pr. H. Glotin - Institut Universitaire de France, CNRS LSIS and USTV, FR
Email: glotin@univ-tln.fr

•Pr. Y. LeCun - Computational and Biological Learning Lab at New York University,
USA
Email: yann@cs.nyu.edu

•Pr. C. Clark - Director of Bioacoustics Research Program at Cornell University, NY,
USA
Email: cwc2@cornell.edu

Co-Organizers:
•Dr. X. Halkias - CNRS LSIS and USTV, FR

Email: xanadu.halkias@univ-tln.fr
•J-M. Prévot - USTV, FR

Technical Session Chairs:
•Dr. Peter Dugan - Corne  ll University  , NY, USA

Email: pjd78@cornell.edu
•Associate. Pr. Jérôme Sueur, Habilitated - Muséum National d'Histoire Naturelle,

Paris, FR
Email: sueur@mnhn.fr

Preparation of the Proceedings
•Ales Mishchenko SATT sud-est, CNRS LSIS and USTV, FR
Email: alesmichtchenko@mail.ru

2.1. Organizers short CV
Prof. Hervé Glotin - Institut Universitaire de France, CNRS LSIS and USTV, FR
Hervé Glotin is a Professor at the Insitut Universitaire de France and Univ. of Toulon, in the
Systems & Information Sciences CNRS lab. He is leading the DYNI team on stochastic
multimodal  information  retrieval.  He  received  a  diploma  in  computer  science  from
University  Pierre  et  Marie  Curie-Paris.  During  his  master  thesis  he  proposed  the  first
modelisation of vocalic system evolution, addressing the emergence of a common phonetic
code in a society of communicating speech agents using evolutionary learning, which has
been  extended  in  many other  works.  He  carried  out  his  PhD at  the  Inst.  of  Perceptual
Artificial Intelligence (IDIAP), CH and Inst. of Spoken Communication - Perception Team
Grenoble on "Robust adaptive multi-stream automatic speech recognition using voicing and
localization cues". In 2000 he was involved as an expert at the Johns Hopkins CSLP lab
with the IBM human language team in audiovisual Large Vocabulary Speech Recognition.
After two years as a research engineer at CNRS lab on phonology and Semantic analysis, he
became an assistant professor at the University of Toulon in 2003. His research focuses on



multimodal pattern analysis and retrieval systems, audiovisual indexing, cognitive models 
and bioacoustics. He is the co-author of one hundred of international refereed articles, and 
of an international (US, CANADA...) patent on a real-time bio-acoustic indexing algorithm. 
Herve Glotin is leading the CNRS interdisciplinary project 2012-2016, Scaled Acoustic 
Biodiversity with LIP6 Paris 6, the CNPS, MNHN and LIG. He is invited as a keynote 
speaker at the American Society of Acoustics workshop in June 2013 - Montreal for the 
special session on "Conditioning, Segmentation and Feature Extraction in Bioacoustics". 

 

Prof. Yann LeCun - New York University, USA 

Yann received a Diplôme d'Ingénieur from the Ecole Superieure d'Ingénieur en 
Electrotechnique et Electronique (ESIEE), Paris in 1983, a Diplôme d'Etudes Approfondies 
(DEA) from Université Pierre et Marie Curie, Paris in 1984, and a PhD in Computer 
Science from the same university in 1987. His PhD thesis was entitled "Modèles 
connexionnistes de l'apprentissage" (connexionist learning models) and introduced an early 
version of the back-propagation algorithm for gradient-based machine learning. In 1987, he 
joined Geoff Hinton's group at the University of Toronto as a research associate. He then 
joined the Adaptive Systems Research Department at AT&T Bell Laboratories in Holmdel, 
NJ in 1988. In 1991, he spend six months with the Laboratoire Central de Recherche of 
Thomson-CSF in Orsay, France, after which he returned to Bell Labs. Shortly after AT&T's 
second breakup in 1996, he became head of the Image Processing Research Department, 
part of Larry Rabiner's Speech and Image Processing Research Lab at AT&T Labs-Research 
in Red Bank, NJ. In 2002, he became a Fellow of the NEC Research Institute (now NEC 
Labs America) in Princeton, NJ. He joined the Courant Institute of Mathematical Sciences 
at New York University as a Professor of Computer Science in 2003. He was named Silver 
Professor in 2008. Yann LeCun has been associate editor of PLoS ONE (2008-present), 
IJCV (2003-present), IEEE Trans. PAMI (2003-2005), Pattern Recognition and 
Applications, Machine Learning Journal (1996-1998), IEEE Transactions on Neural 
Networks (1990-1991). Yann LeCun has published over 130 technical papers and book 
chapters on machine learning. He is leading the Computational and and Biological Learning 
Lab at NYU. 

 
Dr. Christopher Clark - Cornell University, NY, USA 

Christopher Clark is currently the Imogene P. Johnson Director for the Bioacoustics 
Research Program at the Cornell Lab of Ornithology, and a senior scientist at the 
Department of Neurobiology and Behavior at Cornell University, NY. He oversees and 
directs a vigorous, multidisciplinary program that is actively engaged in both basic and 
applied research. Dr. Clark is an expert in engineering design and implementation of 
automatic acoustic detection, classification, localization and tracking systems as applied to 
animal acoustic communication, behavioral ecology and quantifying potential risks to 
wildlife from anthropogenic activities. Projects include migratory bird monitoring on DOD 
installations, nicaloise effects on endangered bird species, rare bird monitoring, miniaturized 
radio tracking transmitters and advanced radio tracking receiver networks. His scientific 
conservation research on a variety of large whale species continues throughout the world's 
oceans. 
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Dr. Xanadu Halkias - CNRS LSIS and USTV, FR 

Xanadu Halkias received her PhD from the Electrical Engineering Department of Columbia 
University, NY. Her research focused on advanced signal processing and machine learning 
as it applies to bioacoustics. She is currently a post-doctorate fellow at the Université du 
Sud - Toulon working on machine learning and specifically deep architectures and their 
applications. 

 

Dr. Peter Dugan - Cornell University, NY, USA 

Peter Dugan is currently the PI on the National Oceanic Partnership (NOPP) Grant focusing 
on detection, classification and localization of marine mammals. He received his PhD in 
Electrical Engineering and Combined behavioral biology from Binghamton University in 
NY. Prior to Cornell University he held positions in the industry in companies such as 
Hughes Link Flight Simulation and Lockheed Martin. He also has an extensive publication 
and patent portfolio showcasing advanced methodologies in machine learning for marine 
mammal vocalizations. His interests and motivations include the research and development 
of computationally intelligent systems, by combining traditional "shallow systems" with 
"deep learning systems" for object detection and classification in order to enhance system 
accuracy. The NOPP grant has been awarded 1M$ for the years 2012-2015. As the PI, his 
goal is to investigate new approaches and deliever comparative studies working on 
integrated teams representing Science, Technology, Engineering and Mathematics (STEM). 

 

Associate Prof. Jérôme Sueur - Muséum National d'Histoire Naturelle, Paris, FR 

Jérôme Sueur is currently an habilitated Associate Professor at the museum of natural 
history in Paris, France. With a strong international academic background in biological 
sciences, his interests and expertise can be found in: acoustics ecology i.e biodiversity 
assessment through acoustics; Animal audition, i.e. the nano-mechanics of tympanal 
audition in insects; Animal behavior and animal systematics. He has an extensive list of 
international publications in journals such as Ecological Indicators, Journal of Experimental 
Biology and Plos ONE. 

 
 
Dr. Ales Mishchenko SATT sud-est, CNRS LSIS and USTV, FR 

Ales Mishchenko is currently a post-doctorate fellow at the Université du Sud - Toulon and 
senior researcher of SATT sud-est. His current research focuses on advanced signal 
processing, machine learning and Neural networks with application to bioacoustic data and 
EEG/MEG/fMRI data processing. 
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3. Workshop challenges 
 

3.1. Challenges overview 
 

Data and submission of results through Kaggle.com 
Avian Data 

Whale Data 

The field of bioacoustics faces similar challenges to those defined in the general machine 
learning and advanced signal processing communities. However, in the former case, the 
unknown extent of signal feature variability, unknown informational significance of features 
and limited knowledge of the signal's semantics may hinder the robustness of existing 
machine learning algorithms as a result of highly tuning and adapting these methodologies 
for the different collections of data. 

As previously mentioned, bioacoustics aims at analyzing and modeling animal sounds for 
biodiversity assessment. However, given the large amount of the collected data along with 
the different taxonomies of the different species and their environmental contexts, it would 
be intractable to attempt to analyze each of the different sounds or even to offer general 
solutions that would be applicable across different species. 

The goal of the technical session is to provide possible solutions for targeted applications 
that have been popular in the field, but remain either partially solved or require significant 
manual interaction. Moreover, we hope that by building a representative, standardized 
collection of validated acoustic data we will provide a much needed comparative framework 
within the bioacoustics community. 

In the hopes that the proposed workshop could become a repeated event, the desire would 
be for any subsequent technical challenges to focus on increasingly complex acoustic 
phenomena representative of a particular set of signal types which generally occupy a high-
dimensional, acoustic feature space: for example, short duration, broadband transients; or 
hierarchically organized combinations of stereotypic, frequency-modulated sounds, 
syllables, and phrases repeated in long bouts; or hierarchically organized combinations of 
highly variable, two-voiced, frequency-amplitude-modulated sounds, repeated in long bouts. 
Further complexity could include acoustic scenes with multiple, higher variable sources or 
data from coherent, multi-sensor systems. These would provide a diverse set of algorithms 
to allow parallel or cross-comparison classification schemes and would aid in elucidating 
how different algorithms perform on different levels of acoustic complexity. The expected 
outcome would be the significant advancement of our abilities to explore and understand 
different classes of bioacoustics data within natural context, and across the broad spectrum 
of biodiversity. 

 

Technical Challenge Data 

The automatic analysis of marine mammal sounds has long been an interest in the 
bioacoustics community given the sounds' intrinsic complexities, the underlying concerns 
for these over-exploited species, and the fact that in the U.S. there are explicit statutes 

Proc.of the 1st Workshop on Machine Learning for Bioacoustics, Glotin et al.Ed,2013                    17



protecting marine mammals. The same level of interest easily applies to avian songs and 
calls, which are easily experienced, aesthetically pleasing, and have served as the basis for a 
rich and productive history in fundamental research on vocal ontogeny, memory, and 
computational neuroscience. 

For that reason we propose that the first Technical Challenge is focused on sounds of marine 
mammals and birds. 

A training, development and test set will be provided for each of the data sets. In both the 
avian and marine mammal sets. The development sets will be comprised of artificial 
mixtures offering a controlled environment for system creation. On the other hand, the test 
sets will include real life mixtures, thus exposing the created systems to the variability and 
diversity of bioacoustic recordings. 

Sample examples of the avian data set are shown in the images below. 

 

Figure : Avian data set examples; Left: Aegcau species, Right: Alaarv species 
 

Data Avian (from MNHN Paris) 
Marine mammals (from Cornell 
Univ) 

Description 

TRAIN: Clean recordings from the 

MNHN soud library1 
TEST: Recordings form the 
Regional Park of the Upper 
Chevreuse Valley in France, daily 
for 30min prior to sunrise. 

TRAIN: Recordings of single 
species (one call per hour), Right 
Whale (3 types of calls) 
TEST: Recordings in the wild from 
the Stellwagen Bank National 
Marine Sanctuary 

Duration 

TRAIN: 30 sec x 35 bird recordings 
= 18min 
TEST: 150sec x 3 mics x 90 
recordings = 11.2 hours 

TRAIN: approximately 48 hours x 1 
species 
TEST: approximately 96 hours 

Equipment 

TRAIN: 1 microphone, 16bit, 
44.1kHz 
TEST: 3 microphones on trees in 
the same area, into different forest 
state (mature, young, open), 16bit, 

44.1kHz2 
Audio format: .wav 

Hydrophones, 16 bit, 2-10kHz 
MARU, bit depth = 11, Sensitivity -
167.5 dB re: 1uPa/V 
Audio format: .aif 

SNR 
TRAIN: 20-60 dB 
TEST: 5-9 dB 

TRAIN: 1-20 dB 
TEST: 1-20 dB 

Ground 
truth 

Sample level: Call/no call 
Call level: Species class 

Sample level: Call/no call, 
frequency start/end 
Call level: Species class (by 
spectrogram expert analysis and/or 
by on the field visual identification) 

Features 
Raw audio 
Mel Cepstral coefficients are given 

Raw audio 

Meta-data TRAIN / TEST : The phylogenetic Location (longitude, latitude), Time, 
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tree (usual format, including R 
package to read/manipulate) of the 
target species  
Location, Time, Temperature, 
locationMeteo 

Depth, ambient sound level 

1 The data for this challenge are copyright of Fernand Deroussen Jerome Sueur of the 
Musee National d Histoire Naturelle, their usage is restricted to this challenge. The 
competition test data was graciously provided by Jerome Sueur. More details on the train 
data are given in : Deroussen, F., 2001. Oiseaux des jardins de France. Nashvert Production, 
Charenton, France ; Deroussen, F., Jiguet, F., 2006. La sonotheque du Museum: Oiseaux de 
France, les passereaux. Nashvert production, Charenton, France ; http://naturophonia.fr. 
naturophonia.fr 
2Depraetere M, Pavoine S, Jiguet F, Gasc A, Duvail S, Sueur, J - Monitoring animal 
diversity using acoustic indices: Implementation in a temperate woodland. Ecological 
Indicators, 13: 46-54 

The ground truth of each test set will be used to score each system and distributed after the 
deadline for your working notes. * The participants must not try to handlabel the test set for 
tuning their models. Guidelines on submitting results are simple. Please follow the 
guidelines on KAGGLE as shown in the links below: 

 
Avian Data 
Whale Data 

 

Tasks 

As part of the challenge, different thematic approaches can be proposed that will reflect on 
the most commonly encountered problems in the field. In both cases, avian and marine 
mammal sounds, the major thematic approaches include: 

• (i) Species detection 

• (ii) Species classification 

• (iii) Call extraction 

• (iv) Tracking/Localization 

In this proposal we recommend a technical challenge in the area of automatic classification 
as it appears to be a task that will immensely benefit the bioacoustics community. Our 
proposed challenge is outlined below: 

Task 1: Species Recognition/Clustering 
The goal of the task is to recognize the avian and marine mammal species in their 
respective recordings. This is a multi-class problem and allows participants to explore 
both supervised and unsupervised methodologies. Emphasis will be given on the 
recognition rate rather than the computational cost of the methodologies. 

Task 2: Free challenge 
Using the bird data set we can offer participants the chance to provide any meaningful 
environmental/ecological information using machine learning tools. The goal is to 
extract possible meaningful ecological correlations between the avian recordings and 
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the provided meta-data (phylogenetic data which could match some acoustic cues, 
meteo (wind, sun...) for each test set. 

 

Challenge descriptions are given below: 

 

 

3.2. ICML Bird challenge (web link) 

 
 
The data for this challenge are copyright of Fernand Deroussen Jerome Sueur of the Musee 
National d Histoire Naturelle, their usage is restricted to this challenge. The competition test 
data was graciously provided by Jerome Sueur. 

  
Train Data extracted from : 

 
Fernand Deroussen naturophonia.fr 

 
Deroussen, F., 2001. Oiseaux des jardins de France. Nashvert Production, Charenton, 
France 
Deroussen, F., Jiguet, F., 2006. La sonotheque du Museum: Oiseaux de France, les 
passereaux. Nashvert production, Charenton, France 

  
 
Here is the link to KAGGLE WEB SITE with description and RUN SUBMISSION 
(+SCORING).  
We are pleased to announce that the challenge on bird classification at ICML workshop is 
now running on Kaggle web site [ https://www.kaggle.com/c/the-icml-2013-bird-
challenge ].  
=> thus each of your run (~not limited number) are automatically scored : this leaderboard 
is calculated on approximately 33% of the test data. 
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The final rank will be based on the other 67%, so the final standings may be different. 
Kaggle competitors are used to selecting 5 models at the end of the competition (16th of 
june).  
 
You find below the data sets, also available at Kaggle on other format (CVS). If you 
participate to this challenge, please Email to icml4b@gmail.com for free inscription, and to 
get updated news if any on these data during the challenge. 

  
 
Task description : for each test file, you have to index the 35 bird species given in the 
official training set (below). 

  
Runs submission : each run will be submitted into the Kaggle web site according the details 
given on the Kaggle web site. Each run gives the Pij (90x35) probabilities :  
Pij = P('The species j sings in the test file i') , with j and i in alphabetical order. 

  
 
You can submit up to 5 runs in the official contest, choosen from the ones you submitted to 
Kaggle until the 16th of june. Your run may include if possible at least one using the given 
MFCC features. 

  
Evaluations will be computed on ROC. 

  
* You are free to use any additional external data or recordings (as wikipedia wav samples 
linked in the list below, or taxonomia for hierarchical classification, ...), but in that case you 
must specify it in you run description (.txt) and this run with modified train set will not 
count for the prize of the challenge. 

  
 
Sorted list of the 35 bird species (= classes) with wikipedia links 

 
link to the TRAIN SET : 35 .WAV files and suggested FEATURES (see also Kaggle for 
various format) 

 
 
link to the TEST SET : 90 .WAV files and suggested FEATURES (see also Kaggle for 
various format) 

 
** This TEST SET includes the results for three test files to be used as a small development 
set (please include them at their right place into your run). 

 
The suggested MFCC features were computed according to a minimum error (in average on 
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all the species) reconstruction signal of the signal. The scripts are given here : 

MFCC SCRIPTS  
 
METADATA : you may use some metadata or other training set to enhance your model, 
such as : 

  
PHYLOGENETIC tree to reveal some acoustic cues between species. This tree, with 
distances, is given there. The phylogenetic tree, with distances, of the target species.  
WEATHER : The weather, wind speed, humidity, sun conditions... of each test set files.  
 
SUBMISSION : The ground truth of each test set will be used to score ROC. * The 
participants must not try to hand label the test set for tuning their model: every parameter 
will be automatically set. 

  
Guidelines on submitting results are simple as explained in Kaggle.  
You are invited to send a working note with your partial results by the 30th of may 
following the ICML template: it will be published into this ICML workshop Proceedings. 

 

CHALLENGE RESULTS 
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3.3. The ICML 2013 Whale Challenge (web link) 

 

Challenge to develop recognition solutions to detect and classify right whales for BIG 
data mining and exploration studies 

 

 

(right whale illustration courtesy of Pieter Folkens, ©2011) 

 

This competition complements the previously held Marinexplore Whale Detection 
Challenge, in which Cornell University provided data from a ship monitoring application 
termed "Auto Buoy", or AB Monitoring System. In the Marinexplore challenge we received 
solutions that exceeded 98% accuracy and will ultimately advance the process of 
automatically classifying North Atlantic Right Whales using the AB Monitoring Platform. 

Since the results from the previous challenge proved so successful, we decided to extend the 
goals and consider applications that involve running algorithms on archival data recorded 
using portable hydrophone assemblies, otherwise referred to as Marine Autonomous 
Recording Unit (or MARU’s). Since Cornell and its partners have been using the MARU for 
over a decade, a sizable collection of data has been accumulated. This data spans several 
ocean basins and covers a variety of marine mammal species. 

Solutions to this challenge will be ported to a High Performance Computing (HPC) 
platform, being developed in part through funding provided by the Office of Naval Research 
(ONR grant N000141210585, Dugan, Clark, LeCun and Van Parijs). Together, Cornell will 
combine algorithms, HPC technologies and its data archives to explore data using highly 
accurate measuring tools. We encourage participants who developed prior solutions 
(through the collaboration with Marinexplore) to test them on this data. 

The results will be presented at the Workshop on Machine Learning for Bioacoustics at 
ICML 2013. 

 

CHALLENGE RESULTS 
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4. Workshop Schedule 
 
 
The workshop follows a "mini-conference" format, and explicitly offer opportunities for 
free discussion between researchers. 

• Each talk may be followed by a brainstorming session whereby participants and 
speakers will explore possible solutions. Their conclusions and outcomes will be 
presented at the end of the workshop. 

• The second day includes sessions on the Technical Challenge for the avian and 
marine mammal data sets. 

Program (due to last changes, be sure to refresh the upload of this page) 

Day 1 : Thursday the 20th of june 

08:30 
Opening 
Session/Welcome 

Why ICML4B? H. Glotin and C. Clark 

08:45 Keynote Speaker 
C. Clark 'Advanced High-performance-computing for Mapping 
Marine Mammals overs ecologically meaningful scales' 

09:20 Keynote Speaker 
O. Tchernichovski "Physiological brain processes that underlie 
song learning"  

10:00 Coffee  

10:30 Keynote Speaker Y. Bengio 'Deep Learning : Looking Forward'  

11:15 Keynote Speaker 
X. Halkias 'Classification of Mysticete : Extracting spectro-
temporal structures using Sparse Architectures' (slides .pdf) 

11:55 
Memory 
photography 

 

12:00 Lunch  

14:00 Keynote Speaker 
H. Glotin 'Sparse coding for deformed marine or terrestrian events 
/ Bird or Whale Cocktail Party 3D Tracking' 

14:30 Accepted paper 
Segretier et al. 'Song-based Classification techniques for 
Endangered Bird Conservation'  

14:55 Keynote Speaker D. Sheldon et al. 'Machine Learning and Ecology'  

15:30 Coffee  

16:00 Accepted paper Briggs et al. 'Multi Label Classif Chains for Bird Sound'  

16:30 Keynote Speaker 
G. Pavan 'Monitoring bioacoustic diversity for research, 
conservation and education' 1/2 

17:10 
Poster and short 
papers 

Popescu et al. 'Large Scale Classification'  
Dugan et al. 'High Perf Computing for Bioacoustics' Mishchenko 
et al. 'Target Optimization funct for bird songs'  
Smirnov, 'CNN for whale classification' 

 

Day 2 : Friday the 21th of june 

08:30 Keynote Speaker P. Dugan 'Pratical considerations for high performance on 
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continuous passive acoustic data' 

09:05 Accepted paper 
Pourhomayoun et al. 'Human Scoring joint to ANN for 
classif.'  

09:30 Accepted paper Abousleiman et al. 'Whale Classification'  

10:00 Coffee  

10:30 Keynote Speaker 
G. Pavan 'Challenges in monitoring / indexing bioacoustic 
diversity' Demo (2/2) 

11:30 Accepted paper Pourhomayoun et al. 'Classification on continuous region'  

12:00 Lunch  

14:00 Accepted paper Paris et al. 'Sparse Coding for whale localization'  

14:30 Accepted paper Popescu et al. 'Pulse Classification'  

15:00 Accepted paper Ness et al. 'Orca Big Data'  

15:30 Coffee  

16:00 Challenge Results 1/2 

Bird song classification : Methods and results of the 78 
participants, Prize, and next..?  
Benetos et al. working note  
Briggs et al. working note  
Turner et al. working note (5th)  
Stowell al. working note 

16:30 Challenge Results 2/2 
Whale Challenge : Methods, Results (136 participants), Prize, 
and next..? 

17:00 
General discussion 
and closing 

Organizers and all Participants 
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5.1. Workshop Full papers 
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Abstract

The Orchive is a large collection of over
20,000 hours of audio recordings from the Or-
caLab research facility located off the north-
ern tip of Vancouver Island. It contains
recorded orca vocalizations from the 1980 to
the present time and is one of the largest re-
sources of bioacoustic data in the world. We
have developed a web-based interface that al-
lows researchers to listen to these recordings,
view waveform and spectral representations
of the audio, label clips with annotations, and
view the results of machine learning classi-
fiers based on automatic audio features ex-
traction. In this paper we describe such clas-
sifiers that discriminate between background
noise, orca calls, and the voice notes that are
present in most of the tapes. Furthermore
we show classification results for individual
calls based on a previously existing orca call
catalog. We have also experimentally inves-
tigated the scalability of classifiers over the
entire Orchive.

1. Introduction

The Orchive is a large archive containing over 20,000
hours of recordings from the Orcalab research sta-
tion. These recordings were made using a network of
hydrophones and originally stored on analog cassette

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

Figure 1. Annotated audio from from the Orchive

tapes. OrcaLab is a research station on Hanson Is-
land which is located at the north part of Vancouver
Island on the west coast of Canada. It has been in
continuous operation since 1980. It was designed as a
land based station in order to reduce the impact on the
orcas under study, as the noise and disturbance from
boats affects the orcas in observable but currently un-
quantified ways. In collaboration with OrcaLab, we
have digitized the tapes and have made these record-
ings available to the scientific community through the
Orchive website (http://orchive.cs.uvic.ca).

Over the past 5 years, a number of orca researchers
using our website have added over 18,000 clip anno-
tations to our database. A small section of annotated
audio from the Orchive is shown in Figure 1. These
clip annotation are of two main types: The first is clips
that differentiate background noise from orca calls and
from the voice notes of the researchers that collected
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the data. The second type of clip annotations clas-
sify orca vocalizations into different calls. Orcas make
three types of vocalizations, echolocation clicks, whis-
tles and pulsed calls. The pulsed calls are highly con-
served stereotyped vocalizations which have been clas-
sified into a catalog of over 52 different calls by John
Ford (Ford, 1987). Of the 18,000 annotations currently
in the Orchive, 3000 are of these individually classified
calls. In addition, we have a curated call catalog con-
taining 384 different recordings of different calls vocal-
ized by a variety of different pods and matrilines. This
catalog is used for training the annotators.

Many parts of the recordings contain boat noise which
makes identifying orca calls both difficult and tiring.
In addition, the size of the Orchive makes full human
annotation practically impossible. Therefore we have
explored machine learning approaches to the task. One
data mining task is to segment and label the recordings
with the labels background, orca, voice. Another is
to subsequently classify the orca calls into the classes
specified in the call catalog.

2. Related Work

Audio feature extraction is the first step in clas-
sifying audio using machine learning algorithms.
Mel-Frequency Cepstral Coefficients (Logan, 2000)
(MFCC) have been widely used for this purpose.
MFCCs have also been used in bioacoustics, and have
been used to classify bird songs (Lee et al., 2006) and
orca calls (Ness et al., 2008). In this work we also use
MFCCs, but supplement them with other audio fea-
tures including Centroid frequency, Rolloff frequency,
Flux, and Zero Crossings.

Our system uses two types of web based interfaces.
The first are tools aimed at expert users, and the sec-
ond are simpler interfaces designed for crowdsourcing
the annotation. There are a number of tools that ex-
perts use to segment and analyze audio and specifically
bioacoustic data. One of the most popular is Raven
(http://www.birds.cornell.edu/raven), a toolkit devel-
oped at the Cornell Lab of Ornithology. The biggest
difference our system compared to systems such as
Raven is that our system web-based, can more easily
view and analyze large amounts of data.

3. System Overview

We have developed a collaborative web interface that
allows expert researchers to listen to, view and anno-
tate large collections of audio data. The system also
supports a variety of audio feature extraction and ma-
chine learning algorithms, and enables users to view

Figure 2. System Diagram

the results of these algorithms. A diagram of this sys-
tem is shown in Figure 2.

For audio features we use the Marsyas(Tzanetakis,
2008) Music Information Retrieval system. Marsyas
allows us to perform both audio feature extraction and
machine learning on audio data directly.

In order to efficiently analyze large audio archives we
utilize distributed computing. There are many sys-
tems for distributing computation. We currently use
the Portable Batch System (PBS) (Henderson, 1995),
a grid-computing system where similar data can be
processed in parallel by a large number of computers.

4. Experimental Results

4.1. Audio Feature Extraction Parameters

The first set of parameters that needed to be optimized
were the Window Size and Hop Size of the Digital Sig-
nal Processing (DSP) algorithms that take the input
audio and calculate spectral information from them,
the fundamental basis for which is the Fast Fourier
Transform (FFT) algorithm. The length of time over
which to calculate the statistical properties of the fea-
tures, this is known in bextract as the “memory” and
corresponds to the number of frames of features that
are accumulated. We ran this on a 600 second audio
dataset labeled as orca, background and voice with
equal lengths of each label. In this dataset, the voice
was trimmed by hand, the orca consisted of the middle
0.023 seconds of approximately 10,000 clips, and the
background consisted of 0.15 seconds of approximately
1300 clips. The results for this are shown in Table 1.
From this we can see that as we go to longer window
sizes, the classification performance increases, and as
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winsize hopsize memory # correct
20 512 256 70.16
20 1024 512 71.88
20 2048 1024 74.17
20 4096 2048 73.38
40 512 256 72.94
40 1024 512 75.67
40 2048 1024 78.29
40 4096 2048 80.58
80 512 256 76.53
80 1024 512 78.39
80 2048 1024 81.88
80 4096 2048 85.72

Table 1. In this table results of a systematic parameter
search through different DSP parameters is shown. win-
size is the window size of the FFT in samples, and hop size
is the number of samples skipped between each successive
application of the FFT. memsize refers to the number of
FFT frames on which the mean and standard deviation are
determined.

we go to longer accumulation window sizes, the perfor-
mance also increases. For the remaining experiments
we use these optimal settings.

4.2. Orca/Background/Voice Classification

The first task we investigate is the classification of au-
dio into three classes: orca, background, and human
voice. In order to test the different distributed audio
classification systems we first generated a set of train-
ing and testing data, one of these was a set of calls from
the curated call catalog with silence removed, and the
other was an entire 45 minute recording from the Or-
chive which had been annotated by an orca researcher.
In a previous paper (Ness et al., 2008), we were able to
obtain a classification performance of 82% when using
a SVM classifier on hand labeled data. We looked in
more detail at the training data, and found that there
was a small amount of silence before and after the vo-
calization. The results can be found in the first line of
table 2 and had 93.5% of the instances classified cor-
rectly. This large jump in performance was unexpected
but easily understood, because if feature vectors of si-
lence are labeled as orca, this will cause issues for the
classifier. We then took a 4 minute region of orca calls
and voice notes and removed all the silences from both
of them, for this we obtained a classification accuracy
of 96.1% when looking at the call catalog dataset, and
95.0% when looking at the annotated recording.

However, this process of hand trimming recordings
would be unfeasible to do on the entire 18,000 current
annotations. For this, we instead tested a procedure

Training length % corr. % corr. % corr.
dataset (sec) 10-fold (calls) (442A)
hand-10sec 30 99.4 93.5 93.1
hand-4min 720 99.9 96.1 95.0
ms 100 300 99.9 96.5 93.4

Table 2. Classification results with hand trimmed orca vo-
calizations using bextract using an SMO SVM classifier.

where we extracted a small section of audio from the
middle of each clip where it was most probable that
the orca call would be found.

We then extracted audio features from these sections
of audio using Marsyas. Marsyas has a wide vari-
ety of audio features that it can calculate, including
MFCCs, number of zero crossings per window and var-
ious high level descriptions of the spectrum including
the centroid (center of mass of the spectrum), rolloff
(the frequency for which the sum of magnitudes of its
lower frequencies are equal to percentage of the sum of
magnitudes of its higher frequencies) and the flux (the
norm of the difference vector between two successive
magnitue/power spectra). We tried different combina-
tions of these, and found that using all of these features
gave the best performance. All subsequent results in
this paper use all of these features.

To classify these features, we used a Sequential Mini-
mal Optimization implementation of a Support Vector
Machine classifier (Platt, 1998), an algorithm which
had shown its effectiveness in our previous work (Ness
et al., 2008) in this problem domain.

The results for this procedure for a clip of 0.023 sec-
onds from the middle of each orca call was 96.5% and
for the recording from the Orchive, the accuracy was
93.4%.

4.3. Call classification

Using the Orchive interface we created a collection of
197 calls of 6 classes, these included the common calls
“N1”, “N3”, “N4”, “N7”, “N9” and “N47”. Audio
features for each 20ms audio frame of these files were
generated, these included the MFCC coefficients, Cen-
troid, Rolloff, Flux and Zero crossings as described and
justified in the previous section. The mean and stan-
dard deviation for each of these features were then
calculated and were output as a .arff file. The SMO
SVM classifier produced gave an accuracy of 98.5% ac-
curacy on this set of calls, and the confusion matrix
for this is shown in Table 3.
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N1 N4 N7 N9
N1 1726 0 0 0
N4 12 2858 0 0
N7 0 2 1297 59
N9 0 0 70 3231

Table 3. Confusion matrix for 10-fold crossvalidation with
SVM classifier on labelled calls from Orchive.

Training data % of Orchive Run time
(sec) (d:h:m:s)
30 1 00:00:05:18
30 5 00:00:25:20
30 10 00:00:50:58
30 100 00:09:01:05
240 1 00:06:16
240 5 00:00:31:21
240 10 00:04:47:12
240 100 02:04:18:32

Table 4. Performance results of timing on subsets of the
entire Orchive dataset.

4.4. Performance

In order to investigate the performance of the classifi-
cation of recordings into Orca, Background and Voice,
we trained a SVM with a section of 30 and 240 sec-
onds of hand trimmed data using the bextract pro-
gram in Marsyas. We then used the sfplugin program
in Marsyas to classify all the recordings in the Orchive
on the Hermes/Nestor cluster, part of the Westgrid
computational resource. For this we divided the data
into sets of 1%, 5%, 10% and 100% of the Orchive.
The timing results of these datasets run on 10 com-
puters are shown in Table 4. From this we can see
that the classifier that had more data took longer to
classify, and that the speedup from taking samples of
the data was almost linear.

5. Conclusion

In this paper we described a system that allows orca
researchers to listen to, view and annotate the large
amount of audio data in the Orchive. The system also
allows researchers to run and view the results of audio
feature extraction and machine learning algorithms on
this data.

We investigated the performance of different param-
eters for the audio feature extraction process and
showed that in general, large window sizes were benefi-
cial, and that increasing the length of time that statis-
tics were taken over the data was also beneficial. We
showed that by carefully hand editing clips to remove

silence was very useful, and boosted performance from
around 90% to 96% on actual recordings. We then
used these classifiers on a cluster to classify all the
recordings in the Orchive into the classes, Orca, Back-
ground and Voice. The performance of call classifica-
tion was also good, with a classification accuracy of
98.5% using a collection of 197 calls culled from the
Orchive. The calls most often misclassified were the
N7 and N9 calls, and these are also difficult for non-
experts in orca vocalizations to differentiate.

References

Ford, J.K.B. A catalogue of underwater calls produced
by killer whales (orcinus orca) in british columbia.
Technical Report 633, Canadian Data Report of
Fisheries and Aquatic Science, 1987.

Henderson, R. Job scheduling under the portable
batch system. In Feitelson, Dror and Rudolph, Larry
(eds.), Job Scheduling Strategies for Parallel Pro-
cessing, volume 949 of Lecture Notes in Computer
Science, pp. 279–294. Springer, 1995.

Lee, C.H., Lien, C.C., and Huang, R.Z. Auto-
matic recognition of birdsongs using mel-frequency
cepstral coefficients and vector quantization. In
IMECS, pp. 331–335, 2006.

Logan, B. Mel frequency cepstral coefficients for music
modeling. In ISMIR, 2000.

Ness, S.R., Wright, M, Martins, L.G., and Tzanetakis,
G. Chants and orcas: semi-automatic tools for audio
annotation and analysis in niche domains. In Proc.
of the 2nd ACM workshop on Multimedia semantics,
pp. 9–16, 2008.

Platt, John C. Sequential minimal optimization: A
fast algorithm for training support vector machines.
Technical report, Advances In Kernel Methods -
Support Vector Learning, 1998.

Tzanetakis, G. Marsyas-0.2: A case study in imple-
menting music information retrieval systems, chap-
ter 2, pp. 31–49. Intelligent Music Information Sys-
tems: Tools and Methodologies. Information Science
Reference, 2008. Shen, Shepherd, Cui, Liu (eds).

Proc.of the 1st Workshop on Machine Learning for Bioacoustics, Glotin et al.Ed,2013                    42



Physeter catodon localization by sparse coding
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Abstract

This paper presents a spermwhale’ local-
ization architecture using jointly a bag-of-
features (BoF) approach and machine learn-
ing framework. BoF methods are known, es-
pecially in computer vision, to produce from
a collection of local features a global repre-
sentation invariant to principal signal trans-
formations. Our idea is to regress super-
visely from these local features two rough es-
timates of the distance and azimuth thanks
to some datasets where both acoustic events
and ground-truth position are now avail-
able. Furthermore, these estimates can feed
a particle filter system in order to obtain a
precise spermwhale’ position even in mono-
hydrophone configuration. Anti-collision sys-
tem and whale watching are considered appli-
cations of this work.

1. Introduction

Most of efficient cetacean localisation systems are
based on the Time Delay Of Arrival (TDOA) esti-
mation from detected1 animal’s click/whistles signals

1As click/whistles detector, matching filter is often pre-
ferred

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

(Nosal & Frazer, 2006; Bénard & Glotin, 2009). Long-
base hydrophones’array is involving several fixed, effi-
cient but expensive hydrophones (Giraudet & Glotin,
2006) while short-base version is requiring a precise ar-
ray’s self-localization to deliver accurate results. Re-
cently (see (Glotin et al., 2011)), based on Leroy’s at-
tenuation model versus frequencies (Leroy, 1965), a
range estimator have been proposed. This approach
is working on the detected most powerful pulse in-
side the click signal and is delivering a rough range’
estimate robust to head orientation variation of the
animal. Our purpose is to use i) these hydrophone’
array measurements recorded in diversified sea condi-
tions and ii) the associated ground-truth trajectories of
spermwhale (obtained by precise TDAO and/or Dtag
systems) to regress both position and azimuth of the
animal from a third-party hydrophone2 (typically on-
board, standalone and cheap model).

We claim, as in computer-vision field, that BoF ap-
proach can be successfully applied to extract a global
and invariant representation of click’s signals. Basi-
cally, the pipeline of BoF approach is composed of
three parts: i) a local features extractor, ii) a lo-
cal feature encoder (given a dictionary pre-trained on
data) and iii) a pooler aggregating local representa-
tions into a more robust global one. Several choice for
encoding local patches have been developed in recent
years: from hard-assignment to the closest dictionary
basis (trained for example by Kmeans algorithm) to

2We assume that the velocity vector is collinear with
the head’s angle.
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a sparse local patch reconstruction (involving for ex-
ample Orthogonal Maching Pursuit (OMP) or LASSO
algorithms).

2. Global feature extraction by spare
coding

2.1. Local patch extraction

Let’s denote by C � {Cj}, j = 1, . . . ,H the collection
of detected clicks associated with the jth hydrophone
of the array composed by H hydrophones. Each ma-
trix Cj is defined by Cj � {cji }, i = 1, . . . , Nj where

cji ∈ Rn is the ith click of the jth hydrophone. For
our Bahamas2 dataset (Giraudet & Glotin, 2006), we
choose typically n = 2000 samples surrounding the
detected click. The total number of available clicks is

equal to N =
H�

i=1

Nj.

As local features, we extract simply some local sig-
nal patches of p ≤ n samples (typically p = 128) and
denoted by zji,l ∈ Rp. Furthermore all zji,l are �2

normalized. For each cji , a total of L local patches

Zj
i � {zji,l}, l = 1, . . . , L equally spaced of � nL�

samples are retrieved (see Fig. 1). All local patches
associated with the jth hydrophone are denoted by
Zj � {Zj

i }, i = 1, . . . , Nj while Z � {Zj} is denot-
ing all the local patches matrix for all hydrophones. A
final post-processing consists in uncorrelate local fea-
tures by PCA training and projection with p� ≤ p di-
mensions.

2.2. Local feature encoding by sparse coding

In order to obtain a global robust representation of
c ⊂ C, each associated local patch z ⊂ Z are first
linearly encoded via the vector α ∈ Rk such as z ≈
Dα where D � [d1, . . . , dk] ∈ Rp×k is a pre-trained
dictionary matrix whose column vectors respect the
constraint dT

j dj = 1. In a first attempt to solve this
linear problem, α can be the solution of the Ordinary
Least Square (OLS) problem:

lOLS(α|z;D) � min
α∈Rk

�
1

2
�z −Dα�22

�

. (1)

OLS formulation can be extended to include regular-
ization term avoiding overfitting. We obtain the ridge
regression (RID) formulation:

lRID(α|z;D) � min
α∈Rk

�
1

2
�z −Dα�22 + β�α�22

�

. (2)

This problem have an analytic solution α = (DTD +
βIk)

−1DTz. Thanks to semi-positivity of DTD +

βIk, we can use a cholesky factor on this matrix to
solve efficiently this linear system. In order to decrease
reconstruction error and to have a sparse solution, this
problem can be reformuled as a constrained Quadratic
Problem (QP):

lSC(α|z;D) � min
α∈Rk

1

2
�z−Dα�22 s.t. �α�1 = 1. (3)

To solve this problem, we can use a QP solver involving
high combinatorial computation to find the solution.
Under RIP assumptions (Tibshirani, 1994), a greedy
approach can be used efficiently to solve and eq. 3 and
this latter can be rewritten as:

lSC(α|z;D) � min
α∈Rk

1

2
�z −Dα�22 + λ�α�1, (4)

where λ is a regularization parameter which controls
the level of sparsity. This problem is also known as
basis pursuit (Chen et al., 1998) or the Lasso (Tib-
shirani, 1994). To solve this problem, we can use the
popular Least angle regression (LARS) algorithm.

2.3. Pooling local codes

The objective of pooling (Boureau et al.; Feng et al.)
is to transform the joint feature representation into
a new, more usable one that preserves important in-
formation while discarding irrelevant detail. For each
click signal, we usually compute L codes denoted V �
{αi}, i = 1, . . . , L. Let define vj ∈ RL, j = 1, . . . , k as
the jth row vector of V . It is essential to use feature
pooling to map the response vector vj into a statis-
tic value f(vj) from some spatial pooling operation f.
We use vj, the response vector, to summarize the joint
distribution of the jth compounds of local features over
the region of interest (ROI). We will consider the �µ-
norm pooling and defined by:

fn(v; µ) =

�
L�

m=1

|vm|µ

� 1
µ

s.t. µ �= 0. (5)

The parameter µ determines the selection policy for
locations. When µ = 1, �µ-norm pooling is equiva-
lent to sum-pooling and aggregates the responses over
the entire region uniformly. When µ increases, �µ-
norm pooling approaches max-pooling. We can note
the value of µ tunes the pooling operation to transit
from sum-pooling to max-pooling.

2.4. Pooling codes over a temporal pyramid

In computer vision, Spatial Pyramid Matching (SPM)
is a technic (introduced by (Lazebnik et al.)) which
improves classification accuracy by performing a more

Proc.of the 1st Workshop on Machine Learning for Bioacoustics, Glotin et al.Ed,2013                    44



Physeter catodon localization by sparse coding

0 500 1000 1500 2000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

100 200 300 400 500 600 700 800 900 1000

20

40

60

80

100

120

Figure 1. Left: Example of detected click with n = 2000. Right: extracted local features with p = 128, L = 1000 (one
local feature per column).

robust local analysis. We will adopt the same strategy
in order to pool sparse codes over a temporal pyramid
(TP) dividing each click signal into ROI of different
sizes and locations. Our TP is defined by the matrix
Λ of size (P × 3) (Paris et al.):

Λ = [a, b,Ω], (6)

where a, b, Ω are 3 (P × 1) vectors representing sub-
division ratio, overlapping ratio and weights respec-
tively. P designs the number of layers in the pyramid.
Each row of Λ represents a temporal layer of the pyra-
mid, i.e. indicates how do divide the entire signal into
sub-regions possibly overlapping. For the ith layer, the
click signal is divided into Di = �1−ai

bi
+1� ROIs where

ai, bi are the ith elements of vector a, b respectively.

For the entire TP, we obtain a total of D =
P�

i=1

Di

ROIs. Each click signal c (n × 1) is divided into tem-
poral ROI Ri,j, i = 1, . . . , P , j = 1, . . . , Di of size
(�ai.n� × 1). All ROIs of the ith layer have the same
weight Ωi. For the i

th layer, ROIs are shifted by �bi.n�

samples. A TP with Λ =

�
1 1 1
1
2

1
4 1

�

is designing a

2-layers pyramid with D = 1 + 4 ROIs, the entire sig-
nal for the first layer and 4 half-windows of n

2 samples
with 25% of overlapping for the second layer. At the
end of pooling stage over Λ, the global feature x ∈ Rd,
d = D.k is defined by the weighted concatenation (by
factor Ωi) of L pooled codes associated with c.

2.5. Dictionary learning

To encode each local features by sparse coding (see
eq. 4), a dictionary D is trained offline with an im-
portant collection of M ≤ N.L local features as in-
put. One would minimize the regularized empirical

risk RM:

RM(V ,D) �
1

M

M�

i=1

1

2
�zi −Dαi�

2
2 + λ�αi�1

s.t. dT
j dj = 1.

(7)

Unfortunately, this problem is not jointly convex but
can be optimized by alternating method:

RM(V |D̂) �
1

M

M�

i=1

1

2
�zi − D̂αi�

2
2 + λ�αi�1, (8)

which can be solved in parallel by LASSO/LARS and
then:

RM(D|V̂ ) �
1

M

M�

i=1

1

2
�zi −Dα̂i�

2
2 s.t. dT

j dj = 1.

(9)
Eq. 9 have an analytic solution involving a large ma-
trix (k × k) inversion and a large memory occupation
for storing the matrix V (k ×M). Since M is poten-
tially very large (up to 1 million), an online method to
update dictionary learning is preferred (Mairal et al.).
Figure 2 depicts 3 dictionary basis vectors learned via
sparse coding. As depicted, some elements represents
more impulsive responses while some more harmonic
responses.

3. Range and azimuth logistic
regression from global features

After the pooling stage, we extracted unsupervisly N
global features X � {xi} ∈ Rd×N. We propose to
regress via logistic regression both range r and az-
imuth az (in x − y plan, when animal reach surface
to breath) from the animal trajectory groundtruth de-
noted y. For the current train/test splitsets of the
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Figure 2. Example of trained dictionary basis with sparse
coding.

data, such as X = Xtrain

�
Xtest, y = ytrain

�
ytest

and N = Ntrain + Ntest, ∀ {xi, yi} ∈ Xtrain × ytrain,
we minimize:

�wθ = argmin
wθ

�
1

2
wT

θ wθ + C

Ntrain�

i=1

log(1 + e−yiwT
θ xi)

�

,

(10)
where yi denotes ri and azi for θ = r and θ = az re-
spectively. Eq. 10 can be efficiently solved for example
with Liblinear software (Fan et al., 2008). In the test
part, range and azimuth for any xi ∈ Xtest are recon-
structed linearly by �ri = �wT

r xi and by �azi = �wT
azxi

respectively.

4. Experimental results

4.1. bahamas2 dataset

This dataset (Giraudet & Glotin, 2006) contains a to-
tal of N = 6134 detected clicks for H = 5 different
hydrophones (named H7, H8, H9, H10 and H11 and
with N7 = 1205, N8 = 1238, N9 = 1241, N10 = 1261
and N11 = 1189 respectively).

To extract local features, we chose n = 2000, p = 128
and L = 1000 (tuned by model selection). For both
the dictionary learning and the local features encod-
ing, we chose λ = 0.2 and fixed 15 iterations to train
dictionary on a subset of M = 400.000 local fea-
tures drawn uniformly. We performed K = 10 cross-
validation where training sets represented 70% of the
total of extracted global features, the rest for the test-
ing sets. Logistic regression parameter C is tuned by
model selection. We compute the average root mean
square error (ARMSE) of range/azimuth estimates per

hydrophone: ARMSE(l) = 1
K

K�

i=1

�
Nl

test�

j=1

(yli,j − �yli,j)
2
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Figure 3. The 2D trajectory (in xy plan) of the single
sperm whale observed during 25 min and corresponding
hydrophones positions.

where yli,j , �y
l
i,j and Nl

test represent the ground truth,

the estimate and the number of test samples for the lth

hydrophone respectively. The global ARMSE is then

calculated by ARMSE = 1
H

H�

l=1

ARMSE(l).

4.2. �µ-norm pooling case study

For preliminary results, we investigate the influence
of the µ parameter during the pooling stage. We fix
the number of dictionary basis to k = 128 and the
temporal pyramid equal to Λ1 = [1, 1, 1], i.e. we pool
sparse codes on whole the temporal click signal. A
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Figure 4. ARMSE vs. µ for range estimation.

value of µ = {3, 4} seems to be a good choice for this
pooling procedure. For µ ≥ 20, results are similar
to those obtained by max-pooling. For azimuth, we
observe also the same range of µ values.
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4.3. Range and azimuth regression results

Here, we fixed the value of µ = 3 and we varied the
number of dictionary basis k from 128 to 4096 ele-
ments. We also investigated the influence of the tem-
poral pyramid and we give results for two particu-

lary choices: Λ1 = [1, 1, 1] and Λ2 =

�
1 1 1
1
3

1
3

1

�

.

For Λ2, the sparse are first pooled over all the signal
then pooled over 3 non-overlapping windows for a to-
tal of 1 + 3 = 4 ROIs. In order to compare results
of our presented method, we also give results for an
hand-craft feature (Glotin et al., 2011) specialized for
spermwhales and based on the spectrum of the most
energetic pulse detected inside the click. This special-
ized feature, denoted Spectrum feature, is a 128 points
vector.
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Figure 5. ARMSE vs. k for range estimation with µ = 3.
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Figure 6. ARMSE vs. k for azimuth estimation with µ =
3.

For both range and azimuth estimate, from k = 2048,
our method outperforms results of the Spectrum fea-
ture and particulary for azimuth estimate. Using a

temporal pyramid for pooling permits also to improve
slightly results.

5. Conclusions and perspectives

We introduced in the paper, for spermwhale local-
ization, a BoF approach via sparse coding delivering
rough estimates of range and azimuth of the animal,
specifically towarded for mono-hydrophone configura-
tion. Our proposed method works directly on the
click signal without any prior pulses detection/analysis
while being robust to signal transformation issue by
the propagation. Coupled with non-linear filtering
such as particle filtering (Arulampalam et al., 2002),
accurate animal position estimation could be perform
even in mono-hydrophone configuration. Applications
for anti-collision system and whale watching are tar-
geted with this work.

As perspective, we plan to investigate other local fea-
tures such as spectral features, MFCC (Davis & Mer-
melstein, 1980; Rabiner & Juang, 1993), Scattering
transform features (Andén & Mallat). These latter
can be considered as a hand-craft first layer of a deep
learning architecture with 2 layers.
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Abstract� 

The following work outlines an approach for 
automatic detection and recognition of periodic 
pulse train signals using a multi-stage process 
based on spectrogram edge detection, energy 
projection and classification.  The method has 
been implemented to automatically detect and 
recognize pulse train songs of minke whales. 
While the long term goal of this work is to 
properly identify and detect minke songs from 
large multi-year datasets, this effort was 
developed using sounds off the coast of 
Massachusetts, in the Stellwagen Bank National 
Marine Sanctuary.  The detection methodology 
is presented and evaluated on 232 continuous 
hours of acoustic recordings and a qualitative 
analysis of machine learning classifiers and their 
performance is described.  The trained automatic 
detection and classification system is applied to 
120 continuous hours, comprised of various 
challenges such as broadband and narrowband 
noises, low SNR, and other pulse train 
signatures. This automatic system achieves a 
TPR of 63% for FPR of 0.6% (or 2.2 FP/h), at a 
Precision (PPV) of 84% and an F1 score of 71%.    

————— 
Work made possible by National Oceanic Partnership Program (NOPP), 

Office of Naval Research (ONR) - N000141210585, National Fish and 

Wildlife Foundation (NFWF) -0309.07.28515. 

1. Introduction 

Passive acoustic monitoring allows the exploration of 
marine mammal acoustic ecology at diverse temporal and 
spatial scales. While this technique is effective in 
understanding and characterizing habitats (Clark et al., 
1996), it can often generate large acoustical data volumes. 
Furthermore, the acoustical signal domain presents 
various challenges such as: non-stationary and non-
Gaussian noise, low signal to noise ratio (SNR), self-
induced broadband and narrowband sensor noise, abiotic, 
environmental noise such a rain fall, ice and wind (Martin 
et al., 2012), and anthropogenic noise caused by vessels 
(Parks et al., 2009) or seismic airgun exploration activities 
(Guerra et al., 2011). Therefore, the current research is 
focused on creating efficient, robust automatic algorithms 
that can mine, identify, and classify marine mammal 
sounds across highly variable, large data sets.  

Machine learning is an important step in the development 
of automatic acoustic species detection. Early automatic 
detection techniques used matched filters, hidden Markov 
model, and spectrogram cross-correlation (Clark et al. 
1987). These methods were later improved through the 
use of machine learning approaches such as a feed-
forward neural network classifier (Mellinger and Clark, 
1993; Potter et al., 1994; Deecke et al., 1999; Mellinger, 
2004; Mazhar et al., 2007; Pourhomayoun et al., 2013). 
Other machine learning algorithms, such as classification 
and regression tree classifiers (CART), have also been 
implemented in recognizing contact calls made from the 
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North Atlantic Right Whale (Dugan et al., 2010). 
Improvements over single recognition methods have been 
shown by using an advanced technique, which combines 
several recognition methods running in parallel (Dugan et 
al., 2010; Pourhomayoun et al., 2013). 

In this paper we discuss an automated approach, for 
detecting and classifying periodic, broadband, pulsed 
signals using machine learning techniques. In particular, 
we will focus on the detection and classification of minke 
whale (Balaenoptera acutorostrata) songs, and the 
development of a system that can be applied to other 
datasets without re-training.  

1.1  Minke whale (Balaenoptera acutorostrata)  

The minke whale is a marine mammal species within the 
suborder of baleen whales and is found throughout the 
North Atlantic Ocean. Like all whales, minkes use sound 
to feed, breed, navigate and communicate (Richardson et 
al., 1995). Recent studies have shown that their 
perception of sound (Brkic et al., 2004) can be influenced 
by various environmental conditions such as wind and 
ice, but also anthropogenic noises (Martin et al., 2012). 
Therefore, quantifying large-scale biological phenomena 
such as seasonal occurrence and season distribution is 
critical for understanding the potential influences of 
natural and manmade factors on population dynamics.  
While various minke whale studies have been conducted 
(Schweder et al., 1997; Oswald et al., 2011), little 
information is available regarding the North Atlantic 
minke whale’s seasonal distribution and occurrence off 
the U.S. East Coast. The methodology described here was 
developed to analyze large data sets collected by Cornell 
University using Marine Autonomous Recording Units 
(MARUs) during 2006-2010 (Calupca et al., 2000).  The 
multi-channel data, continuously recorded at 2 kHz, was 
captured off the coast of Massachusetts, in the Stellwagen 
Bank National Marine Sanctuary (SBNMS).  The 
algorithm was applied to 895 continuous days in order to 
analyze the seasonal distribution and occurrence of minke 
whales (Risch Calupca et al., 2000) in the SBNMS. 

1.2  Signal characteristics and challenges 

The minke whale vocalizations are characterized as pulse 
trains that can last somewhere between 40-60 sec, 
typically within the 100-1400 Hz frequency band. The 
pulse trains are comprised of individual pulses lasting 40-
60 msec, and can exhibit variable pulse rates ranging from 
2.8 pulses/sec to 4.5 pulses/sec (Mellinger et al., 2000). 
While our proposed methodology can be used for any 
pulse train series, here we focused on pulse trains 
contained within the 75-350 Hz frequency band, with 
variable length Inner Pulse Interval (IPI) described above. 
Figure 1 depicts the spectrogram of a minke whale pulse 
train song, as well as additional sources of noise and 
energy. The challenge is to detect and classify these pulse 

train signatures as they occur within a continuous stream 
of acoustic data.  
 
 

 

1.3 Train and Test Datasets 

Since the signal of interest contains such broad 
variability, a training dataset was created in order to 
capture the parameter space. The dataset contains 2429 
minke pulse trains from each of the 10 sensors. The 
minke pulse trains were identified, by an expert human 
biologist, by manually hand browsing randomly chosen 
subsets of the recordings. Additionally, a total of 2788 
noise events that ranged from ambient noise, to shipping 
vessel noise, sensor hard-drive noise, and other cross 
species, was added. Overall, the train dataset consists of 
112 continuous hours recording and is used in designing 
the detector and qualitatively analyzing the performance 
of various classifiers. 
 

Furthermore, in order to analyze the performance of the 
trained system, a test dataset was created. The test dataset 
consists of 120 continuous hours, containing 729 total 
minke vocalizations. The dataset is constructed by using 3 
days from Stellwagen Bank National Marine Sanctuary 
recording and 2 days from other external sensors from the 
Long Island, New York area. This will allow us to 
measure how well the methodology can be generalized 
using the trained model. The test dataset also contains 
various challenges, including very low SNR vocalizations 
and as well as additional species know has haddock which 
also has broadband pulse signals. Figure 2 presents some 
of the challenges in the test dataset. 
 

 

Figure 1. The spectrogram of a minke whale vocalization 
lasting ≈ 17 secs. The yellow box indicates the minke pulse 
train signature with the variable IPI.  The noise generated by 
hard disk drive (red dotted ellipse) can be seen clearly within 
the minke pulse train. The spectrogram also reveals energy 
from an additional species known as Haddock (blue box), 
constant narrowband noises between 70-200 Hz, other sources 
of short impulse broadband and low-frequency noises. These 
noise characteristics change from sensor to sensor and 
sometimes on a minute by minute basis. 
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(a) 

(b) 

Figure 2. The spectrogram of  minke whale vocalizations in the 
test dataset: (a) low SNR minke vocalization in the left green 
box, and minke vocalization influenced by other species and 
broadband pulses in the right box. Other sources noise can be 
also observed. (b) minke vocalizations superimposed by pulse 
train signatures created by the haddock species. 

2.  Methods  

Previous methods for detecting pulse type vocalizations 
are based on: (1) cross-correlation with a pre-designed 
kernel, or (2) auto-correlation of a given signal block 
(Mellinger and Clark, 1993). However, their performance 
is highly depended on choice of kernel and threshold. The 
implementation can also suffer from high computational 
complexity. The proposed methodology for automatic 
detecting and classifying of minke pulse trains in a 
continuous dataset consists of a two-stage approach. In 
the first stage, we try to identify the pulse train signatures 
based on a set of rules that match a description of the 
minke whale signal.  In the second stage, we extract a set 
of features from the detected events, which will be later 
used to recognize the events using a previously trained 
classifier.  

2.1  Stage I – Detecting pulse train signatures 

The proposed detection stage consists of several steps. 
First, since the acoustical data are continuous, a sliding 

window of duration equal to 30 sec was applied to create 
the time–domain signal slices s(t). Secondly, since the 
signals of interest are located within the 75-300 Hz 
frequency band, s(t) is conditioned using a type II, 
Chebyshev bandpass FIR filter; with -30 dB attenuation, 
40 Hz  roll-off,  and 0.1 dB of ripple in the passband. The 
filter is implemented in order to reduce the energy outside 
the desired frequency bands and to improve the intensity-
based spectrogram binarization step. Next, a spectrogram 
is computed for the filtered s(t) signal using a Blackman 
window, 8% overlap, 512 point FFT, to yield 20.5 ms 
time and 3.89 Hz frequency bins. The spectrogram is then 
cropped to match the frequency band bounds of the 
bandpass filter.  Once the spectrogram is obtained, a 
binarization based on image intensity is applied in order 
to denoise the signal and remove the ambient noise, and 
place the signal in the same basis across all the sensors. 
First, we convert the spectrogram matrix to a gray-scaled 
intensity image.  

We then compute an intensity mask using: 

 

1.75 s s� � �� � �  (1) 

where μs is the mean intensity of the image and σs is the 
standard deviation of the zero-mean intensity image. The 
level was derived based on the idea that the signal is not 
wide-sense stationary, which implies a different mean for 
each signal slice s(t), and that any acoustical signatures 
above the mean ambient noise level is captured within the 
standard deviation.  Applying the level masking produces 
a binarized image, in which all pixels of the gray-scaled 
image with luminance greater than the level� have a 
value of 1 (white), and replaces all other pixels with the 
value 0 (black).  Using the NxM binarized image matrix, 
an image energy project function, P(n) is created as: 

� �
1

( ) n,m
M

m

P n BW
�

��     for   n = 1, 2, … , N   (2) 

This process will place emphasis on broadband 
signatures, since pulse spectrogram time slices will 
contain a large number of vertical pixels (i.e. energy). 
Next, we find the local maxima of the energy projection 
function and apply the following set of rules, which have 
been designed for the minke vocalization pulse train, but 
can be generalized to any other pulse train signature:      
(1) local maxima above a threshold; (2) minimum and 
maximum number of local maxima above the threshold; 
(3) a range for the local maxima spacing (based on IPI). 
Any events that meet these criteria are then identified as 
minke pulse trains and sent to the next stage for feature 
extraction and classification. Figure 3 illustrates the 
detection process. 
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2.2  Feature extraction 

A set of 18 features is extracted for each detected event. 
The features are designed and chosen with the intent to 
distinguish the detected minke pulse trains from the 
ambient noise events (detector errors). A summary of the 
selected features is shown in Table 1. 

Table 1. Features used to train and evaluated the classifiers. 

FEATURE 

NUMBER 
FEATURE  NAME 

DESCRIPTION  
(OF PULSE TRAIN) 

F1 delta time Duration of pulse train 

F2-F3 
frequency pair 

min-max 
Frequency bounds 

F4 number of clicks Number of pulses 

F5 
average 

bandwidth 
Average bandwidth of 

pulse train 

F6 center frequency 
Center bandwidth of the 

pulse train 
F7 average sharpness F4 / F1 

F8 CEC for signal 
LEQ of the detected 

pulses within the pulse 
train 

F9 Mean Leq 
Mean LEQ of the detected 

pulses 

F10 DeltaT- mean 
The mean of the  IPI of 

detected clicks 

F11 DeltaT- mode 
The mode of IPI of 

detected clicks 

F12 DeltaT- max 
The max IPI of detected 

clicks 

F13 DeltaT- min 
The min IPI of detected 

clicks 
 

F14 
SNR 

Signal to Noise Ratio of 
the detected pulse train 

 
F15 -18 

SNR: xth 
percentile 

SNR of pulse train using 
the 5th , 10th , 20th and 25th 
percentile of slice as noise 

 

2.3  Classification 

The detection method, discussed above, identifies areas of 
energy that meet the criterion presented in figure 3; we 
will refer to these as regions of interest (ROI’s).  Many of 
the ROI’s which are recognized by the detection stage 
result from various noise conditions such as vessel noise, 
or additional marine mammal vocalizations, and thus a 
classification stage is implemented to increase the overall 
performance of the system. This stage is designed to 
reduce the false positive rate of the detector, since in bio-
acoustical applications, the analysts have to manually 
verify the output results. In order to analyze the 
performance of various classifiers, a feature vector is 
extracted after applying the detection stage on the train 
data. Our analysis investigates the performance of the 
following classifiers: (1) grafted C4 tree with a 
confidence factor of 0.25 (Webb, 1999), (2) a Random 
Forest with 10 random trees in the forest and 5 features 
used in random selection (Breiman, 2001), (3) a Bayesian 
network via a Simple Estimator with alpha equal to 0.5 
and K2 search algorithm (Cooper and Herskovits, 1992), 
a ripple-down rule learner with 3 fold used for pruning 
and 2 minimum weights of the instances in a rule (Gaines 
and Compton ,1992) and a functional tree that did not use 
binary split and used 15 instances for node splitting 
(Gama, 2004; . The methods are evaluated using at a 
66%, 33% split on the training data. The performance of 
the classifiers is shown in Figure 4.  It can be seen that the 
random forest classifier has the best area under the curve 
(AUC).  

   
(a) (c) (e) 

  
 

(b) (d) (f) 
Figure 3. The detection process for a minke pulse train (top) and noise event (bottom),respectively; (a) and (b), spectrogram after 
bandpass filtering and cropping, respectively; (c), (d) the intensity-based binarization of the spectrograms, respectively. (e), (f) the 
energy projection function ( )P n  with the same applied threshold. 
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3.  Results and Conclusion 

The proposed technique was applied on a test dataset 
using an energy projection function with threshold equal 
to 6. A total number of 28820 signal slices, of which 3158 
were minke vocalizations, were analyzed by the detector. 
The detection stage produces a True Positive Rate (TPR) 
of 79%, a False Positive Rate (FPR) of 11% or 15.48 
False Positives per hour (FP/h), at a Precision (PPV) of 
40% and an F1 score of 53%.  In order to reduce the 
number of false positives generated by the detector, a 
random forest classifier is applied on the testing dataset. 
The performance of the proposed classifier on the testing 
dataset is shown below in Table 2.  

Table 2. The performance of the trained classifier on the 
challenge test data without further training. 

TPR FPR Precision F1  AUC Class 

94% 36% 84% 0.89 85% 
Non-

Minke 
79% 6% 84% 0.72 85% Minke 

 

It can be seen that the performance of the classifier 
diminished when applied to the new testing dataset. This 
was due to the low SNR conditions, and other interfering 
broadband signatures that were being detected. If 
increased performance in true positive is required, the 
signal should either be further de-noised, additional 
features should be added to the training data, or the 
training vector size should be increased to include 
detection events from the test data. When the detector and 
trained classifier system is applied to the test data, it 
produced a TPR of 63% for FPR of 0.6% (2.2 FP/h), at a 

PPV of 84% and an F1 score of 72%.  It should be noted 
that while the TRP went from 79% to 63%, the FPR went 
from 11% to 0.6%.  

In this paper we have shown the design and 
implementation of an automatic detection and 
classification system, used to mine and identify minke 
whale pulse trains within a continuous stream of acoustic 
data. The results show that the proposed method can 
achieve high performance even in the presence of high 
noise conditions. 
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  Abstract� 

In this paper, we propose a method to improve 
sound classification performance by combining 
signal features, derived from the time-frequency 
spectrogram, with human perception. The method 
presented herein exploits an artificial neural network 
(ANN) and learns the signal features based on the 
human perception knowledge. The proposed method 
is applied to a large acoustic dataset containing 24 
months of nearly continuous recordings. The results 
show a significant improvement in performance of 
the detection-classification system; yielding as much 
as 20% improvement in true positive rate for a given 
false positive rate.  

1.  Introduction and Background 

Passive acoustic monitoring is one of the primary and popular 
methods used to help scientists investigate and understand 
animal behavioral patterns (Potter, Mellinger, & Clark, 
1994). The acoustic modality is particularly appropriate for 
marine mammals, because all of those studied are known to 
produce sounds for foraging, navigation or communication. 
Furthermore, acoustic monitoring methods are not subject to 
visual sighting limitations imposed by weather, daylight and 
ocean environmental conditions (Norris, Oswald, & Sousa-
Lima, 2010). In passive acoustic monitoring, fixed acoustic 
sensor systems record the underwater sounds. These systems 

                                                 
Work made possible by National Oceanic Partnership Program (NOPP), 
Office of Naval Research (ONR) - N000141210585, National Fish and 
Wildlife Foundation (NFWF) -0309.07.28515. 

collect huge amounts of acoustic data.  Exploring the data can 
be done by the human.  The inspection however, is inefficient 
and slow.  Instead, advanced computer algorithms have been 
designed to identify various animal sounds which tend to 
augment the humans ability, making this process more 
efficient for data analysis.   

For decades, scientists have been actively recording and 
archiving marine bioacoustic data, and have devoted 
significant effort at designing automated algorithms for 
processing these data for sounds of interest. Processing the 
data poses many challenges including highly variable ambient 
noise conditions and a host of biological and anthropogenic 
sound sources.  

The process of bioacoustic signal identification usually 
includes three main stages; signal detection, feature 
extraction, and classification. One of the most widely used 
detectors for acoustic signals is the Energy Detector 
(Ichikawa et al., 2006; Jarvis, DiMarzio, Morrissey, & 
Morretti, 2006; Ura et al., 2004). However, it suffers greatly 
when the signal to noise ratio (SNR) is low. One solution to 
address this problem is to denoise the incoming data before 
the detection step (Datta & Sturtivant, 2002; Gillespie et al., 
2008; Ichikawa et al., 2006; Niezrecki, Phillips, Meyer, & 
Beusse, 2003; Popescu et al. 2013). Adjusting thresholds 
remains a common issue when balancing between false 
positive (false alarm) and false negative (missed detection) 
errors. For example, with endangered animals, populations 
are typically very low and the detection requirement aims to 
minimize the false negative rate. For animals that are 
relatively abundant, reducing the false positive rate may be a 
more optimal detection requirement (Dugan, Rice, 
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Urazghildiiev, & Clark, 2010). The detection threshold offers 
the ability to vary these conditions.    

The second stage in the process of bioacoustic signal 
identification is feature extraction from the detected sound 
events. These features can then be used as input for the 
classifier.  Classification is typically the final stage for a 
typical computer algorithm.  Since classification is highly 
dependent on prior information, provided by detection and 
feature extraction, it is often the most critical step for marine 
mammal identification.  Similar sounds produced by various 
species, overlapping vocalization and interfering noise are 
common reasons that make marine mammal acoustic 
classification difficult. However, several effective and 
promising methods are being developed and used by 
researcher in addressing this issue (Afifi & Clark, 1996; L. A. 
Clark & Pregibon, 1991; Deecke, Ford, & Spong, 1999; 
Mazhar, Ura, & Bahl, 2007; Mellinger, 2004, Mellinger, 
D.K; Murray, Mercado, & Roitblat, 1997; Norris et al., 2010; 
Dugan, Rice, Urazghildiiev, & Clark, 2010). Fig. 1 shows a 
sample time-frequency spectrogram including four different 
types of acoustic events (i.e. objects) overlapping with each 
other in a short period of time. 

Experiments show that for small datasets, researchers have 
been successful at finding combinations of detector-classifier 
pairs that produce satisfactory results. However, when 
acoustically sampling over long time periods (months to 
years) and geographical areas (105 km2), artifacts in the sound 
environment tend to color the spectrum and make automatic 
recognition less successful (especially increases in rates of 
false positive errors) (Clark et al., 2010; Dugan et al., 2010).   

  

 

 

Figure 1.  Example spectrogram including a minke whale pulse 
train song (red), fin whale song notes (green), a right whale up-call 
(blue) and hard disk drive noise (pink). 

 

In this paper, we propose a technique for improving the 
algorithm recognition results for use with large datasets.   The 
technique herein is particularly useful when human operators 
want to visualize seasonal activity or diel patterns over long 
time periods.  This approach uses human knowledge along 
with information from the recognition system, such as signal 
features or recognition parameters, to improve the overall 
performance of the detection-classification system. The 
proposed method is used as a post-processing stage for 
existing algorithms, and works by classifying based on human 

knowledge along with recognition parameters.  For this work, 
classification is done through the use of the Artificial Neural 
Network (ANN). Combining human perception along with 
recognition parameters improves the performance for 
seasonal activity of a marine mammal species commonly 
known as the minke whale (Balaenoptera Acutorostrata). We 
refer to our algorithm as the human knowledge-ANN, or HK-
ANN.  Since minke whale populations are broadly distributed 
throughout an ocean basin, for this work we are not interested 
in finding every call. Instead, producing a quantitatively 
based, geographic map of seasonal occurrence and 
distribution with minimal human involvement is the primary 
biological goal. For this work, we will show how the HK-
ANN is first trained and tested on a smaller dataset using 
labeled events and quality scores. By allowing the neural net 
to utilize the human knowledge during the training, the HK-
ANN is then applied to 24 months of nearly continuous 
sounds (from 2008 to 2010) recorded in the Stellwagen Bank 
National Marine Sanctuary (SBNMS), Massachusetts Bay, 
United States (Morano et al., 2010). The results show a 
significant improvement in performance of the detection-
classification system in identifying minke whale sounds. The 
outcome also shows a remarkable improvement in eliminating 
the false alarm errors during the 24-month period by using the 
proposed method. Results are described by comparing the 
diel activity pattern for the 24-month case. We will show that 
the HK-ANN achieves a true temporal/seasonal minke whale 
song distribution pattern, with minimal false positive errors. 

 

2.  Bioacoustic Signal Processing and Classification  

2.1  ANN Classifier for Bioacoustic Signals 

The Artificial Neural Network (ANN) is an effective method 
for acoustic signal classification (Mellinger, 2004; Murray et 
al., 1997; Potter et al., 1994) (Deecke et al., 1999; Dugan et 
al., 2010). There are several reasons that make ANN a 
promising method. First, ANN is a non-linear estimator. 
Thus, it can be well-suited for noisy inputs with arbitrary 
distributions, especially when the interfering noise is not 
statistically independent of the desired signal (Potter et al., 
1994). Second, ANN is an adaptive classifier. Feed-forward 
ANN can be trained by interactive methods that adjust the 
weighing matrix to minimize the cost function and to 
guarantee achieving an (at least a local) optimal weighing 
network model (Potter et al., 1994). Moreover, ANN can take 
metrics from a wide range of acoustic representations (e.g. 
spectrogram, waveform, frequency contour) as input. This 
flexibility helps in a variety of applications and supports 
designing different classifier topologies for several different 
signal types. For example, Deecke et al. (1999) used a 
standard back-propagation trained ANN to classify killer 
whale dialects to nine different categories by using the 
extracted pulse-rate contours of killer whale signals as input 
to an ANN. Potter et al. (1994) used a feed-forward ANN to 
distinguish bowhead whale song endnotes from interfering 
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noises, and they used the signal spectrogram as the input of 
an ANN. 

There are several types of ANNs that can be applied for the 
purpose of bioacoustic signal classification. Feed-forward 
networks are more preferred for our purpose because they 
have less complexity and a relatively lower number of 
neurons and connections when compared to other networks 
(Potter et al., 1994). However, feed-forward networks usually 
need a larger training set for the learning phase (Potter et al., 
1994). In our case, this is not a problem because we have a 
large amount of data available for training. Thus, we 
preferred to choose a standard feed-forward, back-
propagation trained network for our marine mammal sound 
post-classification task. A feed-forward neural network 
usually includes at least one hidden layer. The output of each 
hidden layer is the non-linear function of the linear 
combination of its input data coming from the previous layer. 
The coefficients in each combination (called weights) are 
adaptive parameters adjusted during the training step. The ith 
output of the first hidden layer is calculated as the sum of 
weights and a bias term,  

(1) (1) (1)

1

( )
N

i in n i
n

y f w x b
�

� ��  (1) 

where f(.) is the non-linear function, xn is the nth input 
element, win

(1) is the weight element of the first layer weight 
matrix and bi

(1) is the bias. Similarly, for the second layer we 
have,  

(2) (2) (1) (1) (2)
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� �
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where g(.) is the nonlinear function again, and win
(2) is the 

weight element of the second layer. The network may be 
trained in a variety of ways including simple gradient descent, 
where we represent the collection of synaptic weights as the 
vector w

�
, the gradient of the error function as g

� , and a 

learning rate � , iteratively calculating gww
��� ��� �  

until an 

appropriate level of convergence is attained. 

 

2.2  ANN Post Classification Based On Human Scoring 

Minke whales are known to sing, and singing occurs 
seasonally in different regions of an ocean. Minke songs 
consist of 40-60 sec sequences of short duration (40-60 
msec), broadband (ca. 100-1400 Hz) pulses, referred to as a 
pulse train (as shown in Figure 2-(a)). To achieve a higher 
performance in identifying the minke whale calls in a large 
dataset, we designed and implemented a post-classifier 
process based on human expertise, and applied it on the 
output of an existing detection-classification system. Note 
that the goal of this paper is not to compare the performance 
of ANN-based classification to other types of classifiers. 
Instead, we consider the existing detection-classification 
system as a black box, and we aim to improve its overall 

performance using human-knowledge post-processing 
approach.  

In the detection stage, we used a simple energy approach 
(Datta & Sturtivant, 2002; Gillespie et al., 2008; Ichikawa et 
al., 2006; Jarvis et al., 2006; Niezrecki et al., 2003; Ura et al., 
2004) in addition to color compression and image processing 
methods (Witten, 2011) to detect acoustic events in the time-
frequency domain. Each event can be either a minke pulse 
train or other sounds, which include ambient noise, 
anthropogenic noise, or the acoustics of other marine 
mammals. 

Afterwards, a feature set (feature vector) for each event was 
extracted from the original time-domain signal as well as the 
signal spectrogram. We used the signal feature vector as the 
ANN’s input and consider a score assigned to each event as 
the ANN’s expected output. The input feature vector includes 
18 features such as event duration, event minimum and 
maximum frequencies, number of pulses in the pulse train, 
average bandwidth, center frequency, equivalent continuous 
sound pressure level (Leq), mean, mode, maximum and 
minimum of the pulse duration and pulse intervals, as well as 
SNR with respect to 5th, 10th, 20th and 25th percentile of the 
signal.  

For this work, we used a heuristic approach to derive the 
training parameters. We used a training dataset containing 
2625 events. Note that all of these events have been already 
identified as minke pulse trains (i.e. songs) by the existing 
detection-classification system; however, they include a large 
amount of false positive errors. The main goal of using the 
post-classifier is to improve the performance by eliminating 
these false positives by exploiting a combination of human 
expertise and machine-learning techniques.  

After selecting the training set, expert biologists assigned a 
score to each one of the 2625 events. Scores were assigned by 
evaluating the spectrogram of the sound signal. The scores 
varied from 0 to 4 and were defined as following; 0: Not 
target species, 1: Unsure of target species, 2: Faint target 
species, 3: Mediocre target species, 4: Strong target species. 
According to the scores assigned by the human expert, only 
981 of the events were likely to be minke pulse trains with 
scores of greater than or equal to 3. Figure 2 shows the 
spectrogram of four sample events scored from 1 to 4 by an 
expert biologist. Quality scores based on human intuition 
were added to the standard training set as shown in (3),  
 

, , 1 18 [0,4],
i j

HK
i j kTV FV S� ��  (3) 

 

where FVi,j  is the jth feature, ranging from 1 to 18 for the ith 
object in the training set.  The output class is given by scores 

[0,4]kS �  as mentioned above. 

It was discovered that an acceptable convergence was 
obtained by using three hidden layers. Hidden layers used a 
sigmoid activation function, and the output layer applied 
softmax activation normalized to the interval shown in 
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equation (3). The ANN was initialized with random weights, 
and training was accomplished by correcting the weights 
iteratively using backpropagation rule of steepest descents 
and minimizing the mean squared error. After around two 
hundred training iterations, the mean square error stabilized 
to less than 0.01, which was acceptable for our purpose. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Figure 2. Spectrogram of the 4 sample events scored by human 
expert. (a) score = 4, (b) score = 3, (c) score = 2, (d) score = 1. 

 
 
 

3.  Results 

The designed HK-ANN was tested on a big dataset including 
24 months of nearly continuous data recorded in the 
Stellwagen Bank National Marine Sanctuary (SBNMS), 
Massachusetts Bay, United States. The testing dataset 
contains 41560 sound events detected as minke pulse trains 
by the primary detector. To evaluate the performance of the 
proposed method, we asked the human expert to mark the 
minke pulse trains in the entire dataset. We then compared 

this marked dataset against HK-ANN classifier output using a 
temporal/seasonal pattern (diel pattern). 

The diel pattern shows the distribution of the bioacoustic 
events in a date-time plane, as shown in Figure 3. The shaded 
area represents nighttime, while the white area shows day 
time (the length of day time changes along the calendar). 
Horizontal greyish strips illustrate periods when the recording 
sensors were being recovered and redeployed ,  so no data 
were available for those time periods. Figure 3-(a) shows the 
classification results of the primary decision tree classifier 
using the same 18-feature set. However, given our prior 
knowledge on minke whale seasonal distribution in the 
sampling area, we expected a large portion of these primary 
detections to be false alarms. Figure 3-(b) demonstrates the 
true results identified by the human expert. Comparing 
figures (a) and (b), we can observe a significant rate of false 
positives in the classification stage. Figure 4-(c) shows the 
proposed HK-ANN classification results when we consider 
the output events, with a score equal to 4, as minke 
vocalization. Comparing this figure to traditional decision 
tree classifier (figure (a)) and the truth set (figure (b)) shows a 
big improvement in the identification of minke vocalization 
and a reduction in false positives. Figure 4-(d) represents the 
proposed HK-ANN classification results when we consider 
the output events, with a minke vocalization score greater 
than or equal to 3. 

Biologists are usually interested in investigating the behavior 
of the animals during a specific time period. Marine 
mammals typically exhibit a seasonal pattern, and thus one of 
the most important parameter showing the performance of a 
marine mammal detection/classification method is to achieve 
the correct temporal/seasonal animal distribution. As we see 
in figure 3, the proposed method is able to eliminate a big 
portion of the false alarms and achieve a fairly accurate 
animal temporal/seasonal distribution pattern. 

Figure 4 shows the Receiver Operating Curve (ROC) 
performance of the various common classifiers including 
Bayesian Network Classifier (Duda, Hart, & Stork, 2001; 
Witten, 2011), Grafted Decision Tree Classifier (Webb, 
1999), and Classification/Regression Tree Classifier 
(Breiman, Friedman, Olshen, & Stone, 1984), on a dataset 
containing 4474 highly noisy sound samples. The blue curve 
shows the performance of the system after applying the 
proposed post-classifier HK-ANN on the output of above 
classifiers for the same dataset. We can see a significant 
improvement in overall performance (especially at low False 
Positive Rates), by using the proposed method. For example, 
at a FPR of 6% we have an improvement in TPR of 
approximately 20%. This improvement can help biologists 
make better informed and more accurate decisions about 
marine mammal seasonal occurrences and distributions. 
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      (a) 

 
      (b) 

 
     (c) 

 
      (d) 

Figure 3. Date versus time diel patterns for test dataset. (a): Original 
detection/classification by existing decision tree classifier. (b): True 
detections by human expert. (c): Detection by ANN with score=4. 
(d): Detection by ANN with score > 3. 
 
 

 
Figure 4. ROC of various common bioacoustic signal classifiers, 
and the effect of applying HK-ANN (the ANN Post-Classifier). 

 

4.  Discussion and Conclusion 

The work herein considered a novel method, combining 
human intuition with an ANN classification stage for 
processing large amounts of passive acoustic data.   

Since marine mammals typically exhibit seasonal patterns of 
occurrence and distribution, the automated algorithms are 
also expected to provide trends, as shown by a diel plot 
graphic. However, errors due to ambient noise and other 
conflicting acoustics events can pose significant challenges 
for automated algorithms, especially with larger datasets.  
Often times, developers do not have access to large amounts 
of data when developing recognition tools.  Furthermore, 
background noise and other conditions can color recordings, 
offering bias and making pre-trained recognition algorithms 
prone to high error rates when running on large scale datasets.  
Results show that in highly noisy environments, training a 
basic classifier using a fixed feature set was not sufficient for 
building an effective automated classification stage for 
studying seasonal patterns for minke song activity.  For this 
situation, excessive numbers of false positives destroys the 
basic seasonal migration pattern in the diel graph.   

The proposed approach, referred to as the HK-ANN, was 
used to augment an ANN with a post-classifier stage by 
incorporating human knowledge. Using human scoring 
measure, along with the same feature set, provided a 
significant improvement in the automatic detection and 
classification of the signals of interest. Based on the results 
for the seasonal patterns, the post processing stage properly 
recognized minke whale songs and provided a seasonal 
pattern as shown in the diel plots. 
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Abstract� 

In this paper, we develop a novel method based 
on machine-learning and image processing to 
identify North Atlantic right whale (NARW) up-
calls in the presence of high levels of ambient 
and interfering noise. We apply a continuous 
region algorithm on the spectrogram to extract 
the regions of interest, and then use grid masking 
techniques to generate a small feature set that is 
then used in an artificial neural network classifier 
to identify the NARW up-calls. It is shown that 
the proposed technique is effective in detecting 
and capturing even very faint up-calls, in the 
presence of ambient and interfering noises. The 
method is evaluated on a dataset recorded in 
Massachusetts Bay, United States. The dataset 
includes 20000 sound clips for training, and 
10000 sound clips for testing. The results show 
that the proposed technique can achieve an error 
rate of less than FPR = 4.5% for a 90% true 
positive rate. 

1.  Introduction and Background 

Bioacoustic signal detection and classification is one of 
the most common and effective techniques used by 
scientists to explore marine bioacoustics and understand 
marine mammal behavioral patterns. For passive marine 
acoustic research, hydrophone sensor systems collect 
huge amounts of underwater sound data, thereby placing a 
premium on automated computer algorithms, including 
machine-learning methods, for detecting and classifying 
sounds of interest in the data (Sousa-Lima et al. 2013).   

Right whales produce frequency-modulated upsweeps, 
referred to as up-calls, for long-range communication in 
the 50-250Hz frequency band (Clark 1982), and detection 

————— 
Work made possible by National Oceanic Partnership Program (NOPP), 

Office of Naval Research (ONR) - N000141210585, National Fish and 

Wildlife Foundation (NFWF) -0309.07.28515. 

of up-calls has been shown to be the most effective 
mechanisms for determining whale presence in critical 
habitats (Clark et al. 2010). In this paper, we develop 
novel methods based on image processing and machine-
learning to detect North Atlantic Right Whales (NARW) 
up-calls in the presence of high environmental noise, 
using a fairly small feature set (5, 15 or 20 features). The 
NARW is one of the world's most highly endangered 
whales (Clapham et al. 1999). Therefore, there is an 
urgent need to develop efficient techniques to detect the 
presence of NARWs so as to determine their seasonal 
occurrences and protect them from possible harm (Kraus 
et al. 2005). 

For decades, researchers have been working to design 
effective automated algorithms for identifying marine 
mammal vocalizations including NARW up-calls 
(Mellinger 2004; Mohammad et al. 2011). Mellinger 
compared different methods for up-call detection, 
including spectrogram correlation and an artificial neural 
network. He evaluated the spectrogram correlation 
method for two different cases; manually selected 
parameters, and parameters selected based on an 
optimization procedure. In another approach, he used 
spectrogram frames, consisting of 252 cells, as inputs to a 
feed-forward neural network with 10 hidden layers. He 
used standard gradient-descent back-propagation with 
5000 epochs to train the neural network (Mellinger 2004). 
However, the size of the selected neural network and the 
large number of inputs lead to extremely high 
computational complexity and a long training time. 
Dugan et al. also developed two new approaches for 
NARW sound identification based on artificial neural 
networks and decision tree classifiers, and compared their 
performance to a multi-stage feature vector testing (FVT) 
method (Dugan et al. 2010).  

Gillespie applied an edge detection algorithm on the 
smoothed spectrogram to determine the boundary of the 
sound. He then extracted features, including duration, 
bandwidth and details of the frequency contour, which 
were used in an up-call classification stage (Gillespie 
2004). Sánchez-García et al. also used a spectrogram 
region-based segmentation technique to identify the sound 
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signal, and then extracted the mean values of a fixed 
number of radial basis function (RBF) coefficients. These 
coefficients were later used to classify the sound signals 
(Sánchez-García et al. 2009). Mohammad et al. (2011) 
developed a region-based active contour model and 
support vector machine classifier to identify the NARW 
up-call in shallow water.  

It is important to note that in environments with high 
ambient noise levels and various amounts of acoustic 
clutter, including sounds from other species, NARW up-
calls can be extremely difficult to detect. Thus, regular 
region growing techniques, or methods based on using the 
maximum spectrogram value as the initial point of 
contour segmentation usually fail to find the up-call in 
cases of low SNR or high clutter. 

In this paper, we develop a new method, based on 
continuous region processing and grid masking methods, 
to detect NARW up-calls in the presence of ambient 
noise, interfering noise or other non-NARW sounds. We 
apply a continuous region algorithm on the de-noised and 
normalized spectrogram to extract continuous regions of 
interest that might represent portions of an up-call. Then, 
we use grid masking techniques to generate two sets of 
features that are used as inputs to an artificial neural 
network classifier to identify the NARW up-calls.  

2.  Methods 

In this section, we describe the details of the proposed 
method for up-call identification. Figure 1 shows the 
block diagram and different steps of the proposed 
approach. 

 

 

 

 

 

 

 

Figure 1. Block diagram of the proposed method. 

 

2.1  Spectrogram Normalization and Equalization 

The sound signals, sampled at 2 kHz, are clipped into 2 
sec slices, which are used to generate time-frequency 
spectrograms. To produce the spectrograms, we apply a 
STFT with window size of 128 ms (Hann window, 256 
samples, 50% overlap). 

After producing a spectrogram, we apply a two-
dimensional wiener filter in order to denoise and smooth 
the spectrogram, using a 5x5 window around each pixel to 
estimate the local variance (Lim 1990). For each 

frequency band, we zero-mean the denoised spectrogram 
to remove the effects of constant narrowband noise, such 
as ship tonals, wind noise or electrical device noise, and 
to emphasize short-duration FM sounds such as NARW 
up-calls (Mellinger 2004). 

The next step is hard-limiting the upper and lower bounds 
of spectrogram amplitudes to remove the influence of 
extreme values (Mellinger 2004): 

 

ˆ( , ) max( ,min( , ( , )))floor ceiling N floorS t f S S S t f S� �  (1) 

   

where SN (t,f) is the normalized spectrogram, and Sfloor and 
Sceiling are the desired lower and upper bounds on 
spectrogram values. Figure 2 shows the effect of 
denoising, normalization and equalization on a sample 
spectrogram. 

 

 
(a) 

 
(b) 

Figure 2. Spectrogram examples with and without denoising, 
normalization and equalization: (a) original spectrogram. (b) 
denoised, normalized and equalized spectrogram. 

 

2.2  Continuous Region Processing 

After the denoising, normalization and equalization steps, 
we convert the spectrogram into a binary image for the 
purpose of continuous region processing. Note that this 
binary image will only be used to find regions in the 
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spectrogram that are considered part of an up-call; 
however, the output of the algorithm will be a non-binary 
spectrogram including the regions of interest. Since some 
of the up-calls are extremely faint, we set the threshold 
value very low (e.g 10% of the image mean) to reduce the 
chances that we would miss an object of interest. 

We use the Moore-Neighbor tracing algorithm modified 
by Jacob's stopping criteria (Gonzalez, 2004) to determine 
objects (i.e. continuous regions) in the image. After that, 
we extract the properties of each object and compare them 
to a set of thresholds to find an up-call. As mentioned 
before, under conditions of low SNR, NARW up-calls can 
be completely buried in noise, and typical region-growing 
techniques fail to find the up-call. Furthermore, as shown 
in Figure 5, sometimes up-calls are extremely faint 
compared to other objects in the spectrogram (e.g. 
interfering noise or sounds of other species). In such 
situations, methods that use the maximum spectrogram 
value to identify an initial point contour segmentation are 
not able to detect and classify the up-call.   

Table 1 shows the continuous region parameters and 
thresholds used for detecting up-call segments in 
spectrograms given the specifications mentioned in 2.1. 
Figures 3 and 4 illustrate the continuous region algorithm 
process, and the elimination of noise and other possible 
sound objects in the frame that do not meet the NARW 
up-call criteria. The spectrogram in Figure 3 (top panel) 
includes high ambient noise, while the spectrogram in 
Figure 4 (top panel) contains other sound objects in the 
same frequency band.  

Figure 5 demonstrates how the proposed technique 
performs under very challenging conditions when the 
NARW up-call is very faint and SNR is very poor. 

 
 
Table1. The continuous region parameters and the thresholds 
used for detecting and north right whale up-call piece. 

 
Parameter Threshold 
Minimum Perimeter 15 pixel 
Minimum Area 15 pixel 
Minimum Height (frequency band) 14 Hz 
Maximum Height (frequency band) 250 Hz 
Minimum Width (duration) 0.1 sec 
Maximum Width (duration) 2 sec 
Minimum orientation of the surrounding Ellipse  1° 
Maximum orientation of the surrounding Ellipse 88° 
Minimum Height/Width ratio 0.05 
Maximum Height/Width ratio 3 
Minimum Frequency 50 Hz 
Maximum Frequency 400 Hz 
Maximum surrounding Ellipse axes ratio 3.5 
 
 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3. Continuous Region Processing: (a) original 
Spectrogram; (b) spectrogram after denoising, normalization, 
equalization and binarization; (c) continuous region detection; 
(d) detected region of interest; and (e) the algorithm’s output. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4. Continuous Region Processing: (a) original 
Spectrogram; (b) Spectrogram after denoising, normalization, 
equalization and binarization; (c) continuous region detection, 
(d) detected region of interest; and (e) the algorithm output. 
 

 
 

 

 
 

 

 
 

 

  
Figure 5. Four examples of faint NARW up-calls and outputs from 
the continuous region algorithm process. Left: Original 
spectrogram. Right: Proposed continuous region algorithm output.   
 
   

2.3  Grid Masking and Feature Extraction 

After continuous region processing and generation of the 
new spectrogram including the regions of interest, we 
divide the new spectrogram into equally spaced grids. As 
shown in Figure 6-(a), we used a 6x6 grid for the 
spectrogram with the specifications mentioned in 2.1.  

The first set of features includes the means of 
spectrogram values over minor diagonals of the grid 
plane. Figure 6-(b) shows the grid pattern used to extract 
the diagonal features. In this figure, the diagonal grid cells 
are distinguished using colors and numbers. For example, 
in Figure 6-(a), the grid cells over diagonal #3 have a 
significant mean value compared to other diagonals.  

Proc.of the 1st Workshop on Machine Learning for Bioacoustics, Glotin et al.Ed,2013                    64



 

 

 
(a) 

 

 
(b) 

 
Figure 6. Spectrogram gridding: (a) sample spectrogram 
gridding, (b) the grid pattern used to extract the diagonal 
features. In this case (6x6 gridding), the diagonal feature set 
includes 9 features corresponding to the means of spectrogram 
values over the diagonal grid cells shown above. 
 
The second set of features is generated using the sliding 
masks shown in Figure 7. These are binary masks having 
the value of one for black cells and zero for white cells. 
Each mask slides over the grid plane and calculates the 
averages of the spectrogram mean values located in black 
cells. The feature for each grid cell is determined as the 
maximum value of the three masking results as following, 

� �1 2 3( , ) max ( , ), ( , ), ( , )f x y M x y M x y M x y�  (2) 

 

1

2

3

( , ) ( ( 1, ) ( , 1) ( 1, 1)) / 3

( , ) ( ( 1, ) ( , 1)) / 2

( , ) ( ( , ) ( , 1)) / 2

M x y mean x y mean x y mean x y

M x y mean x y mean x y

M x y mean x y mean x y

� � � � � � �
� � � �
� � �

 (3) 

 
where f(x,y) is the feature allocated to the each grid cell 
(x,y); M1(x,y), M2(x,y), and M3(x,y) are the masking results 
for grid cell (x,y) corresponding to the three masks shown 
in Figure 7; and mean(x,y) is the mean value of 
spectrogram points located inside the grid cell (x,y). 
         

 
(a) 

 
(b) 

 
(c) 

Figure 7. The three masks used to extract the grid features 

2.4 Artificial Neural Network  

The Artificial Neural Network (ANN) is a popular and 
effective technique for bioacoustic signal classification 
(Potter et al. 1994; Mellinger 2004). ANNs can accept a 
wide range of feature variables as input, such as those 
from a spectrogram, frequency contour, or waveform. 
This flexibility allows the application of ANNs to 
different detection conditions and various types of signals. 
For example, Potter et al. used a feed-forward ANN to 
distinguish bowhead whale endnotes from interfering 
noises. They used the signal spectrogram as the input to 
the ANN (Potter et al. 1994). In another example, Deecke 
et al. used a standard back-propagation trained ANN to 
classify killer whale dialects to nine different categories 
(Deecke et al. 1999). They used the extracted pulse-rate 
contours as the input to the ANN.  

There are several types of ANNs that can be applied for 
the purpose of classification. Feed-forward networks are 
more preferred for our purpose because they have less 
complexity, and relatively fewer numbers of neurons and 
connections compared to feedback networks (Potter, et al. 
1994). However, feed-forward networks usually need a 
larger training dataset for backpropagation training 
(Potter, et al. 1994). In our case, this is not a problem 
because we have a large enough dataset available for 
training purpose. Therefore, we chose a standard, feed-
forward, back-propagation trained network for 
classification. In this problem, we use a network with two 
hidden layers that receives the feature vectors extracted 
from the spectrograms (as described in 2.1, 2.2 and 2.3) as 
input. 

3.  Results and Conclusion 

The proposed method was evaluated on a dataset recorded 
in Massachusetts Bay, United States. The dataset includes 
20000 sound clips for training (containing 4473 NARW 
up-calls, and 15527 non-up-calls), and 10000 sound clips 
for testing (containing 2554 NARW up-calls, and 7446 
non-up-calls). After spectrogram denoising, 
normalization, and equalization, we applied the proposed 
continuous region processing to detect the regions of 
interest, and extract the features as presented in 2.3. In 
this case, we extracted and used only 20 features 
including the 5 diagonal features corresponding to 
diagonals 1-5 in Figure 6-b, and 15 masking features 
generated by sliding the masks shown in Figure 7 over the 
spectrogram except for the first and last columns. We 
used an ANN classifier with only 2 hidden layers, with 
sizes of 32 and 16 neurons, trained using standard 
gradient-descent back-propagation with 100 epochs. The 
proposed method was evaluated for three different cases: 
with only 5 diagonal features as the feature set, with only 
15 masking features as the feature set, and with the total 
20 features as the feature set for ANN training, testing 
and classification. Figure 8 demonstrates the Receiver 
Operating Curve (ROC) of the proposed method 
evaluated on the testing dataset for the three different 
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cases. Table 2 also shows the error rate (False Positive) 
for a fixed 90% True Positive Rate (e.g FPR=4.5% for 
TPR=90% using all 20 features). As we see in Figure 8 
and Table 2, the proposed method can achieve high 
performance even using fewer numbers of features (5 
features). This can be very beneficial when we aim to 
reduce the computational complexity of the classification 
stage. 

 
Figure 8. Receiver Operating Curve (ROC) of proposed method 

for the testing dataset 
 

Table 2. The performance of the proposed method for fixed 90% 
True Positive Rate using diagonal and masking features. 
 
Features  FPR% TPR% 

Using total 20 features 4.5 90 
Using only 5 diagonal features 7.0 90 
Using only 15 masking features 8.1 90 

 

As shown in Figures 3 and 4, the proposed technique is 
effective for detecting up-calls under conditions of high 
ambient noise and/or interfering sounds. Figure 5 also 
illustrates that this method is also capable of capturing 
even very faint up-calls (i.e. low SNRs). Furthermore, this 
approach performs very well despite the relatively low 
number of features (Table 2).  Future directions for this 
work include applying this algorithm to large continuous 
archival sounds streams and investigating the 
performance for recognizing NARW calls within context 
of accurate seasonal information. 
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Abstract

The work presented in this paper is part of
a global framework which long term goal is
to design a wireless sensor network able to
support the observation of a population of en-
dangered birds. We present the first stage for
which we have conducted a knowledge discov-
ery approach on a sample of acoustical data.
We use MFCC features extracted from bird
songs and we exploit two knowledge discovery
techniques. One relies on clustering-based
approaches and highlights the homogeneity
in the songs of the species. The other one
is based on predictive modeling and demon-
strates the good performances of various ma-
chine learning techniques for the identifica-
tion process. The knowledge elicited provides
promising results to consider a widespread
study and to elicit guidelines for designing
a first version of the automatic approach for
data collection based on acoustic sensors.

1. Introduction

In last decades, due to the exponential growth of global
commercial and industrial activities, numerous scien-

ICML 2013 Workshop on Machine Learning for Bioacous-
tics, Atlanta, Georgia, USA, 2013. Copyright 2013 by the
author(s).

tists have focused on environmental and social trou-
bles that are becoming increasingly worrying: global
warming, pollution, disease spreading, exhaustion of
energy resources or biodiversity assessment.

This last phenomenon is one of the most challenging
problem for geologists, ecologists, biologists and ethol-
ogists. Indeed, it is now apparent that changes occur-
ring on an environment, as small as they are, can have
significant impacts on the equilibrium of an ecosystem,
and especially on the survival of animal species that
depend on it.

New information and communication technologies and
devices provide powerful tools for collecting useful and
wide scale information on a variety of factors poten-
tially involved in biodiversity loss. For example, GPS
devices have been used for tracking individual move-
ments in situations in which a human presence is not
possible (Rumble et al., 2001; Ryan et al., 2004). Fixed
devices such as sensors are considered for detecting the
presence of individuals (Fagerlund, 2007; Cai et al.,
2007) and studying their behavior (Stattner et al.,
2010; 2011).

In this paper, a case study is presented on an endan-
gered bird species endemic to the site of La Caravelle
on the Martinique Island, French West Indies, called
the Moqueur Gorge Blanche (MGB), for which local
scientists have initiated a work of both study and pro-
tection (see Figure 1). Since it is quite tedious and
unproductive to manually collect data by visual ob-
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Figure 1. An individual of Moqueur Gorge Blanche in its
habitat ( c�Vincent Lemoine)

servation during programs conducted on the natural
area of the species, the final goal is to design an effi-
cient methodology to automate the collection. Indeed
although the manual technique has helped to obtain a
first view of the species behavior, it also raises many
questions about the reliability of the data collected,
since (i) data are collected only during short periods,
(ii) the human presence may, itself, affect the bird be-
havior.

Our long-term objective is to design an automatic so-
lution for data collection, based on a wireless acoustic
sensor network, able to capture widespread informa-
tion about the bird population. Each sensor of the
network should be fitted with a microphone and be
able to detect the presence of the species by analysing
the songs.

In this paper, we address the latter issue to evaluate
how song analysis is relevant for predicting the pres-
ence of the species with a good precision on the basis of
their songs. In this preliminary step, we have consid-
ered a set of pre-recorded songs of the Moqueur Gorge
Blanche (Roché et al., 2009). We have trained different
knowledge discovery techniques on the corresponding
signals and we have obtained encouraging results to
consider an efficient knowledge extraction from acous-
tical data and an optimal design of the sensor network.

The papers is organized as follows. Section 2 presents
standard recognition processes on audio signals. Sec-
tion 3 is devoted to the description of our case study
data and to their pre-processing. In Section 4 we dis-
cuss the knowledge discovery approach conducted on
pre-processed data. In Section 5 after a short synthe-
sis, we present further works to lead on the project.

2. Related works

Last years, the analysis of acoustic signals has been a
very active research area that have found applications

in various domain such as speech recognition (Sakoe &
Chiba, 1978), speaker identification (Reynolds, 1995),
source localization (Valin et al., 2003). Globally, the
recognition process performs in two key steps.

(i) A parametrization process, that summarizes
the recorded audio signal through a characteristic fin-
gerprint. This fingerprint is designed so that if two
records are similar, their associated fingerprints should
also be very close. More specifically, the parametriza-
tion process allows representing the audio signals by
a series of coefficients that describe it (Eisele et al.,
1996). Several parametrization techniques have been
proposed such as LPCC (Linear Prediction Cepstral
Coefficients) or MFCC (Mel-Frequency Cepstral Co-
efficients). As our final objective is to implement our
recognition process on sensors of a network, we use in
this work the MFCC (Mel Frequency Cepstral Coef-
ficient) technique, since it has been shown that this
technique has good performances on this kink of de-
vices (Levy et al., 2003).

(ii) A classification process, that aims to deter-
mine if the generated fingerprint belongs to a known
class (Rabiner & Wilpon, 1979). For instance, in the
particular case of the recognition of bird songs, Fager-
lund (Fagerlund, 2007) uses a support vector machine
to identify songs of a given bird species, while Cai et
al. (Cai et al., 2007) suggest the use of a neural net-
work.
As our objective is to perform the recognition on sen-
sors, that are known to have limited capacities in terms
of calculation and memory, we use in this work stan-
dard classification algorithm with the objective to ob-
tain a predictive model easy to implements on the
motes of the network.

3. Acoustical data

In this section, we explain how original audio raw data
have been preprocessed to produce acoustical datasets
on which knowledge discovery techniques have been
applied.

The initial audio data or raw data are songs of Mo-
queur Gorge Blanche collected in 2009 on the site of
La Caravelle (Roché et al., 2009). We have extracted
seven song examples. Each song is sampled at 44.1 kHz
and stored as 16-bit signed mono .wav format files.

For each song example, MFCC features have been
computed with the Java framework CoMIRVA (Schedl
et al., 2007) developed and maintained by Markus
Schedl (see Figure 2(a)). In order to simplify the
computation phase, we have generated a mean finger-
print for each song, by averaging the different MFCC
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values provided for each coefficient (see Figure 2(b)).
Thus we have a mean fingerprint vector of 20 averaged
MFCC coefficients for each of the 7 songs. Each of the
20 averaged MFCC coefficients corresponds to a time
window of an original song.
In this way, the problem is to determine, for such a
fingerprint, whether it belongs to the species or not.
In other words, we would like to predict with a good
accuracy that a new occurring song belongs to the Mo-
queur Gorge Blanche.

(a)

(b)

Figure 2. Example of (a) MFCC and (b) average finger-
print, obtained from a song of the Moqueur Gorge Blanche

In order to conduct classification tasks, we have com-
plemented these examples with counter-examples to
obtain a training dataset of mean fingerprints obtained
on other bird species. Thus, 17 new examples have
been added for species such as Common blackbird, Ac-
centor, Heron, Woodcock, etc.

Traditionally the data mining preprocessing step is
very important since choices have to be done for
preparing, cleaning and transforming the raw data
that may be often noisy, imbalanced and not in the
adequate format that learning algorithms requires as
input. In the current study, as described just above,
the original audio data are transformed to produce the
dataset composed of 24 averaged MFCC fingerprints.
For predictive modelling, it is necessary to label each

data sample with a corresponding class name. In this
work we address a typical binary classification problem
to predict if a data sample is an actual Moqueur Gorge
Blanche song (”MGB” class) or another bird species
song (”Other” class). In the following, the ”MGB”
class will be considered as the positive class while the
”Other” class will be considered as negative. As said
before, the ”MGB” class contains 7 examples while the
”Other” contains 17 examples. Our dataset is thus
clearly imbalanced since there are more than twice as
much ”Other” examples than ”MGB”. In order to
overcome the imbalance between classes in datasets,
two strategies are commonly used:

1. assign distinct costs to class examples (usually
higher costs for the minority class) (Pazzani et al.,
1994)

2. re-sample the source dataset, either by over-
sampling the minority class and/or under-
sampling the majority class (Kubat & Matwin,
1997)

Since the dataset is rather short, we have followed
the second approach to create balanced training sets.
We have thus over-sampled the ”MGB” class us-
ing the Synthetic Minority Over-sampling Technique
(SMOTE) algorithm (Chawla et al., 2002) which con-
sists in generating synthetic examples by randomly
selecting points along the lines that join a minority
class original sample and some of its nearest neigh-
bors. Since this over-sampling technique is based on
random properties, we have generated 100 extended
balanced datasets (with 16 ”MGB” and 17 ”Other”)
and we have averaged the performances obtained on
each of them in order to have statistically significant
results.

In the following, we have conducted experiments on
both datasets without and with over-sampling. In the
following, we refer to them as Simple MFCC and Ex-
tended MFCC dataset respectively.

4. Classification-based automatic
detection

We describe in this section the knowledge discovery
method applied that covers both descriptive and pre-
dictive approaches. On the descriptive axis, we have
conducted a clustering based on dynamic time warping
(DTW), a time series alignment algorithm developed
originally for the purpose of speech recognition (Sakoe
& Chiba, 1978), and on the predictive axis, we have
trained classical algorithms. On the one hand, the
clusters extracted that have a very good matching with
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the classes ”MGB” and ”Other”, tend to show the ho-
mogeneity of MGB song signals. On the other hand,
predictions obtained by training on the Simple MFCC
and Extended MFCC datasets provide good perfor-
mances that allow us to consider further wide scale
training and testing experiments.

4.1. Clustering

In the area of the analysis of acoustic signals, the un-
derlying assumption is that it exists a high degree of
similarity between the elements of a same class. In
other words, we can expect that the examples of a
same class also belong to a same cluster.

Thus, in a first approach, we have studied the match-
ing between the clusters and the classes. The matching
is based on the notion of distance between the exam-
ples. For evaluating the distance between two exam-
ples, we use the classical DTW algorithm commonly
use in the area of signal processing.
More precisely, let s1 and s2 be two sequences, the
objective of DTW is to align these sequences by warp-
ing the time axis iteratively until an optimal match is
found. The originality of this algorithm is its capacity
to evaluate the similarity between two sequences that
may vary in size, time or speed.

Our approach was as follows:
(i) A reference fingerprint has been created by aver-
aging all fingerprints of examples of Moqueur Gorge
Blanche.
(ii) For a given song fingerprint, we measure, by us-
ing the DTW algorithm, the distance to the reference
fingerprint that characterizes the species. When this
distance is under a given threshold β, the fingerprint
is closed to the reference and we suppose that the as-
sociated song belongs to the species. Otherwise, the
song is identified as different from that species.

By using both datasets (simple and extended), we have
measured the performances of the identification when
using the distance with DTW. Figure 3 shows these
results according to the threshold β. In this cluster-
ing context, for a given cluster, we call TP, or True
Positive rate, the fraction of ”MGB” class examples
into this cluster for which the DTW distance is under
the β threshold. Similarly, we call TN, or True Nega-
tive rate, the fraction of ”Other” class examples into
the cluster for which the DTW distance is above the
β threshold. W. Avg gives information about the per-
formances of the detection by measuring the following

ratio |MGB|×TP+|Other|×TN
|MGB|+|Other| .

When the DTW distance threshold β is very low, all
examples are detected as belonging to the “Other”

(a)

(b)

Figure 3. Performances on the identification process based
on DTW distance with (a) simple (b) extended datasets
(TP: True positive, TN: True negative, W. Avg perfor-
mances)

cluster. This explains why TN is very high and TP
very low. Inversely, when β is high, a lot of examples
are detected as belonging to the MGB cluster, which
explains the high degree of TP and the low degree of
TN.
However, we can observe that it exists a DTW dis-
tance threshold for which the detection is maximal.
Indeed, when β ∈ [95..110], we observe that TP , TN
and W. Avg are all equal to 1. These results suggest
that the MGB songs tend to be very homogeneous,
since we can find some distance thresholds for which
all examples of a same class belong to the same cluster.

4.2. Predictive modelling

In this section we present the results that we ob-
tained in the area of supervised machine learning with
the following commonly used machine learning tech-
niques: C4.5 (Quinlan, 1993) and Random Forest (RF)
(Breiman, 2001) decision tree approaches, Naive Bayes
(NB) (Rish, 2001) and Multi-layer Perceptron (MLP)
Artificial Neural Network (ANN). Since the total num-
ber of examples was quite low in order to generate
typical 66%/33% train and test datasets, we used a
leave-one-out cross validation (loocv) scheme (i.e. k-
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Table 1. Performances of standard machine learning algorithms averaged on 100 leave one out cross validation experiments

Technique Simple MFCC Extented MFCC
TN TP W.Avg TN TP W.Avg

C4.5
Avg 88.20 71.40 83.33 91.66 88.2 89.88

Std Dev - - - 2.98 0.00 1.42

RF
Avg 86.99 90.33 89.58 98.32 90.22 94.14

Std Dev 9.29 5.06 4.23 2.89 5.39 2.99

NB
Avg 88.20 85.7 87.5 96.21 100.00 98.17

Std Dev - - - 3.02 0.00 1.46

MLP
Avg 82.51 100 87.58 100 83.84 91.65

Std Dev 0.00 0.81 0.59 0.00 3.12 1.61

fold cross validation with k set as the total number of
available examples minus one) to estimate the perfor-
mances of each experiment conducted in this section.

Table 1 presents the performances obtained by each
technique with and without the synthetic examples
generated by the SMOTE algorithm. First column
refers to the technique used, while columns TN, TP
and W.Avg stands for True Negative, True Positive

and Weighted Average ( |MGB|×TP+|Other|×TN
|MGB|+|Other| ) rates.

In this context of supervised classification, true posi-
tive rates correspond, as usually, to the percentages
of ”MGB” examples correctly classified as ”MGB”
while true negative rates stand for the percentages
of ”Other” examples correctly classified as ”Other”.
Since each algorithm has been launched 100 times to
overcome either its own random side and/or the ran-
domness introduced by SMOTE, we give averaged per-
formances rates and their associated standard devia-
tion as a confidence1.
We can see that for the Simple MFCC dataset, the
best weighed average performances are obtained with
Random Forest (89.8%) while for the extented datasets
best results are given by Naive Bayes (98.52%). Even
if no clear tendency can be observed concerning the
repartition of TP and TN rates in both types of
datasets, the overall performances obtained on ex-
tented data seem to be significantly better. Figure
4 shows an example of decision tree learned with the
C4.5 algorithm. The leaves show the final classifica-
tion decisions taken according to the values observed
on selected attributes (represented by the nodes). For
instance, in this case, if the value observed on the at-
tribute ”C02” is lower or equal than -52.33 and the
value observed on ”C06” is greater than 5.69, the
”Other” class is predicted.

1Only deterministic techniques C4.5 and Naive Bayes
have been ran (with loocv) once on the original data and
thus do not have std dev values.

Figure 4. Example of decision tree obtained with C4.5.

5. Conclusion and future directions

Our overall project is to design a wireless sensor net-
work able to support the observation of an endangered
birds species endemic to the Martinique island, called
the Moqueur Gorge Blanche.
This paper has focused on the first stage of the work,
by evaluating how song analysis is relevant for predict-
ing the presence the species with a good precision.

For this purpose, we have shown how knowledge dis-
covery techniques can be used for recognize the songs
of the species. The results obtained, that highlight the
good performances of these techniques for the recog-
nition of the Moqueur Gorge Blanche songs, allow to
consider a real deployment on the ground

In our future works, our objective is to implement the
recognition process on a wireless sensor network, in
which sensors are fitted with microphone. In a first
step, we plan to use the data collected on given periods
for optimizing the network configuration.

A first track should be to use the sensor to identify
the regions in which the population density is high.
More sensors could thus be positioned in such regions,
while less sensors would be allocated to the regions less
frequented by the species.
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At long terms, the data collected on the presence of
the species could be used to search for correlations
between the features of the habitat and the presence of
individuals. Such a knowledge could have very relevant
applications for the preservation of the species. For
instance, it could be used for recreating a favorable
habitat for the species.
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Abstract

The automatic classification of sounds, pro-
duced by different biological species, is be-
coming more and more important task with
a growing number of recordings. Among the
most challenging problems is the birds calls
recognition in the nature. The paper analyses
the difficulties of bird calls recognition and
its differences in comparison with automatic
speech recognition (ASR). The particular fo-
cus in this analysis is made on a neural net-
works (NN) approach, some conclusions on
preferable optimization methods (NN learn-
ing) are made.

1. Introduction

The importance of ecological monitoring along with
availability of in-field recording systems resulted in in-
creasing interest in automatic detection and classifi-
cation of biological sounds, such as bird calls. The
choosing and adaptation of methods from vast variety
of automatic speech recognition (ASR) approaches is
an important question. This paper analyses applica-
bility of different ASR methods to the birds calls clas-
sification. Modern ASR systems are usually designed
to recognize speech in the range from the isolated
words recognition (e.g. command recognition used by
call-center systems) to continuous speech recognition
(e.g. computer dictation). The recognition of sponta-
neous speech in an audiostream (e.g. audiosurveliance
systems) is a more difficult task, not yet matured to
the robust commercialtype applications. The biolog-
ical sounds recognition is close to the latter problem

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

with the following additional difficulties: high signal-
to-noise ratio (SNR problem) and high spectral vari-
ety along with poor repetitions variety (referred be-
low as spectral-variety-to-temporal-variety, or SVTV
problem). The SNR problem referres to the fact that
the SNR for bioacoustics field recordings is usually
below 5 dB (such as for ICML bird-recognition chal-
lenge), whereas the requirement to signal quality for
ASR systems (callcenter or computer dictation) have
a possibility to impose the SNR requirements higher
than 20 dB. In addition, ASR systems usually rely
on a single-type, or even single-known-type of noise,
such as telephone line noise for call-center command
recognition systems. In biological environment, on the
contrary, there exist many different unknown noise
sources. The problem of subtraction of different types
of noise in bioacoustics recordings is not well-studied
yet. However, some studies show that type of noise
recognition is a separate difficult task than in ASR
(X.Haitian, 2005).

1.1. The SVTV problem

The typical ASR systems require recognition of ap-
proximately 50 phonemes (for English language),
whereas animal calls in a given location exhibit much
more variability. The important feature of this is high
variability in spectrum and in frequency of call rep-
etitions along with a low temporal variability of call
patterns. In addition to spectrum variability, the vari-
ance of biological calls depends on the distance to
the microphone, which is also assumed to be a con-
stant for the ASR applications. The evolutionary rea-
son for the SVTV problem is that the human speech
developed differently from the most of other animal
calls evolution, including birds calls. The goal of the
human speech evolution was to produce as many as
possible different sequences of sound patterns, using
the same articulation apparatus. Therefore, different
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words share the same spectral characteristics and same
frequencies of ”soundchanging”. Birds calls, on con-
trary, evolved with the goal to change the articula-
tion apparatus in order to change spectral character-
istics of emitted sound and increase the frequency of
”sound-changing” in the song. The result of this evo-
lution is observable in human words and birds calls
spectrograms. The latter frequently displays similar
temporal patterns using different spectral characteris-
tics and different frequency of ”sound-changing”. In
some training examples from ICML bird call recogni-
tion challenge, the spectrogram of one bird-call can be
approximately transformed to the spectrogram of an-
other bird-call using scaling along time and frequency
axes. Whereas the speech recognition is invariant to
corresponding operations (that is the reason we rec-
ognize the same words pronounced at different pitch
and speed). The following chapter discusses the appli-
cability of ASR technologies to the biological sounds
recognition.

2. Applicability of ASR methods to the
birds calls classification.

The SNR and SVTV problems make it difficult to
apply many popular ASR algorithms to biological
sounds recognition. The obvious consequence of the
SVTV problem is inapplicability of one of the ear-
liest approach to ASR (acoustic-phonetic approach)
(S.King, 2007), (A.). For the similar reasons, the Pat-
tern Recognition and Statistical based approaches per-
form worse on bioacoustics data, as , in most cases,
they rely on pattern comparison by statistical tran-
sition model such as HMM. Moreover, HMM require
a lot of training samples, usually unavailable for bi-
ological sounds. Note, that some Pattern Recogni-
tion approaches were applied to birds, producing poor
spectral-variety, but rich pattern-variety of calls (sim-
ilar as humans do). The examples are Ground Parrot
calls detection by event pattern recognition (Kirschel
A. N. G, 2009), (M. Towsey, 2012) and event pattern
recognition (Towsey M) applied to 2-pattern sequences
of Eastern Whipbird call, emitting a call consisting
from a whistle followed by a whip. Some other ASR
approaches turn also to be less successful in biologi-
cal sounds recognition. The example is the Dynamic
time warping, which aims to measure similarity be-
tween two temporally different sequences and therefore
successfully deals with temporal variation in human
speech. The template-based approaches are among
those that can be applied both to ASR and biologi-
cal sounds recognition. Similarly to speech, biological
sounds can be compared against a set of pre-recorded
templates (usually local averages) in order to find the

best match, followed by using some form of dynamic
programming to temporarily align patterns. The bi-
nary template matching is used in (M. Towsey, 2012)
to recognize the Currawong and Curlew calls. Another
approach, equally applicable to ASR as to biologi-
cal sounds recognition is neural networks (NN), which
usually outperforms the template-based approaches,
especially on a complicated and/or multispecies recog-
nition tasks. This approach is analysed below.

3. Characteristics of a Bird call
recognition with a Neural network

The typical stages of NN-based recognition are trans-
forming parts of spectrogram into more abstract and
more compact form (e.g. using one or more convolu-
tional layers as first layers of NN), followed by one or
more recognition layers (in a simplest case, one fully-
connected layer). It also possible to use recurrent NN
(RNN) to recognize temporal sequences. The impor-
tant direction of theoretical investigation of NN-based
biological sounds recognition is estimation the prop-
erties of the target optimization function (TOF) for a
particular NN architectures. The SVTV problem leads
to intuitive conclusion that higher statistical variation
in bird calls spectrograms entails more complicated
form for the TOF and, therefore, necessity of more
elaborate optimization (learning) procedures. Let us
illustrate this with a simple, but easy generalizable
example. Below we are using simple architecture for
the recognition part of NN (M input, N hidden and
1 output neuron) to show that with the same number
of training inputs and outputs the weights of NN as
well as the TOF may exhibit more variance near the
optimum point (near the correctly learned weights).
The output O(xj) for each training sample xj of the
recognition part of NN may be written as

O(xj) =

N�

i=1

g(wjxj + bj)uj (1)

where w = (w1w2...wN) and u are the weight-matrix
and a weight-vector of, correspondingly, the N hidden
neurons and one output neuron, b is a bias vector and
g(.) is an activation function. The sum of the squared
difference between the NN output O(xj) and the tar-
get values tj represent the TOF to be minimized over
weights wj and uj. Supposing the recognition MLP is
big enough to potentially learn all training samples, we
write the zero of the TOF in the matrix form Hu = t,

where H =




g(w1x1 + b1) ... g(wNx1 + bN)

... ... ...
g(w1xN + b1) ... g(wNxN + bN)




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The linear approximation of perturbation of this equa-
tion with respect to weights wj and uj, resulting in
the same classification results tj, leads to the δHu +
Hδu = 0 matrix equation or, in more detail,

N�

i=1

g�(wixj + bi)δwixjui = −

N�

i=1

g(wixj + bi)δui

(2)

leading to the
�N

i=1 g�(wixj+bi)δwiui
�N

i=1 g(wixj+bi)δui
xj = 1

Or, in a more compact form,

F(w, u, b, xj, δw, δu)xj = 1

The input xj and a function F(.) are not independent
as random variables and, therefore, it is impossible to
connect their standard deviations with a simple for-
mula, applicable in such a general case. Nevertheless,
it is clear that the variance in distribution of training
samples xj should be compensated by the complex-
ity of a function F(.) , reflecting, among others, the
complexity of a TOF in the vicinity (δw, δu) of an
optimal point. Therefore, increased variation in sub-
spectrograms of a bird calls (as compared with human
speech) entails increased variation in the function F(.)
and, probably, in the TOF.

Figure 1. Examples of natural(upper row) and artificial
(lower row) spectrograms of bird calls.

The theoretical analysis on connection between vari-
ability of spectrograms and neural network weights
was verified in Torch machine learning environment.
The MLP with a single hidden layer was trained to
recognize 12x12, 24x24, 48x48 and 72x72 images of
typical elements of bird calls. These elements were
chosen as whistle (single tone, close to one or several
horizontal segments in the spectrogram), chirps(slowly
modulated tone), whips (rapidly modulated tone) and
clicks (one or more vertical segments in a spectro-
gram). The training dataset was manually extracted
from spectrograms of natural bird calls (ICML bird
recognition challenge), as well as generated (artificial
spectrograms) with different call duration, different as-
cending/descending slope (for chirps or whips), as well
as different SNR with artificially added noise. The re-
sulting dataset consisted from 1000 images of one bird

call element, sometimes together with neighboring el-
ements. Typical examples are shown in a Figure 1).

Training MLP on 90% of dataset with SGD resulted
in 79% recognition rate on the remaining 10% of sam-
ples. As it may be expected intuitively, in the case of
processing only artificial spectrograms, the robustness
of recognition with respect to small random changes
in the weights of a trained MLP was higher than in
the case of both artificial and natural spectrograms.
This may be understood as increasing the complex-
ity of TOF function with complexity of input spectro-
gram. Therefore, having a more complicated shapes
of a TOF for bird calls classification (as compared
with ASR classification) may require more robust op-
timization methods. The 1st order methods, such as
SGD perform poorly with complicated TOFs, having
twists and pathological curvatures. Therefore, 2nd or-
der methods, such as Quasi-Newton methods are, most
probably, even more advantageous for bird call classi-
fication as they are for the ASR. This is a consequence
of high variety in spectral characteristics as well as in
frequencies of bird-calls repetitions (SVTV problem).
Another side of the SVTV problem is low temporal
variety of bird calls. This makes the simple RNN
networks advantageous in bird call recognition. Un-
like human speech, bird calls rarely consist from long,
temporally-varying sequences. In most cases the call is
a repetition of one sound pattern or alternation of two
different sound patterns (such as whistle followed by
a whip, mentioned earlier). As a general conclusion,
RNN networks capable of recognizing short sequences
together with Quasi- Newton optimization methods,
may be advised for a bird call recognition.

4. Future work

One direction of future work is a theoretical study of
application of different quasi-Newton methods for op-
timization of different neural architectures with the
goal of adaptation to a particular cases of bioacous-
tics data. Another direction is using theoretical and
experimental study of these methods to find an opti-
mal set of parameters (such as damping, learning rate,
stopcondition, etc) for a particular tasks of training
the birds call recognition.
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Abstract

Convolutional Neural Networks (CNN) have
shown success in many image processing and
speech recognition tasks. In this paper we
propose to apply Convolutional Neural Net-
work to the bioacoustic task of whale call de-
tection. We trained a CNN to detect whale
calls in 2-second audio clips in the Marinex-
plore and Cornell University Whale Detec-
tion Challenge. On the test data we achieved
2.4% error rate. Our best neural network
consists of three convolutional layers followed
by max-pooling layers, one fully-connected
layer and final 2-way softmax layer. We used
maxout hidden units with dropout to im-
prove accuracy and reduce overfitting.

1. Introduction

The North Atlantic right whale, Eubalaena glacialis, is
in danger of extinction (Kraus et al., 2005). One of the
main threats to whale survival is high human activity
in the areas of their migration. One third of all right
whale mortalities are caused by collisions with ships
and entanglement in fishing gear.

One way to reduce whale mortality is monitoring for
the occurrences of whales by detecting their sounds on
data recordings (Spaulding et al., 2009). Right whale
species produce many different sounds, but most fre-
quent and distinct one is a contact call (“up-call”).
Automatic detection of such calls became a popular
method of detecting right whales, and now there is a
need for good algorithms of call detection in raw audio
data.

There are already several different approaches to
this task (Mellinger & Clark, 2000), (Urazghildi-
iev & Clark, 2006), (Urazghildiiev & Clark, 2007),

ICML 2013 Workshop on Machine Learning for Bioacous-
tics, Atlanta, Georgia, USA, 2013. Copyright 2013 by the
author(s).

(Urazghildiiev et al., 2009), (Dugan et al., 2010a). One
of them is neural network approach (Dugan et al.,
2010b). In this paper we try to improve it by us-
ing state-of-the-art type of neural networks (Convolu-
tional Neural Networks with maxout hidden units) in
the Marinexplore and Cornell University Whale De-
tection Challenge 1.

2. Dataset

The Marinexplore and Cornell University Whale De-
tection Challenge team provided us with a dataset of
30,000 training samples and 54,503 testing samples.
Each sample is a 2-second .aiff sound clip with a sample
rate of 2 kHz. Dataset contains mixture of right whale
calls, non-biological noise and other sounds. The task
was to create an algorithm for detecting right whale
calls and to beat the existing whale detection algo-
rithm of Cornell University.

For our experiments we compute Mel-frequency cep-
stral coefficients (MFCCs) along with their first and
second temporal derivatives, and Fourier-transform-
based filter-banks for all sound clips.

Figure 1. Example of filter-bank representation of a sound
clip, containing right whale call

1http://www.kaggle.com/c/whale-detection-challenge

Proc.of the 1st Workshop on Machine Learning for Bioacoustics, Glotin et al.Ed,2013                    78



North Atlantic Right Whale Call Detection with Convolutional Neural Networks

MFCCs were calculated with Hamming window, frame
length of 25 ms and frame shift of 10 ms, for whole
2-second sound clip, so there were 2010 total input
values (MFCCs with first and second derivatives) for
each example. Filter-banks were calculated in range
of 50 - 650 Hz, and include 72 coefficients, distributed
on mel scale, for each of the 97 time steps.

3. Model

We used two different types of neural networks in our
experiments: fully-connected Neural Network (NN)
with sigmoid hidden units (Rumelhart et al., 1986),
and Convolutional Neural Network (CNN) (LeCun
et al., 1998) with maxout hidden units (Goodfellow
et al., 2013).

3.1. Fully-connected Neural Network

This kind of neural networks was already used for
whale call detection (Dugan et al., 2010b). We
tried to improve its performance by using larger neu-
ral network and new regularization technique called
“dropout” (Hinton et al., 2012). We tried several ar-
chitectures with different parameters, and our best one
consisted of 2010 units in input layer, 2000 sigmoid
units in first and second hidden layers, and 2-way soft-
max layer. We used MFCC-based vector as input, and
trained neural network for 500 epochs with backprop-
agation with batch size of 100, starting learning rate
of 1 (reduced linearly for 300 epochs to the final value
of 0.01) and dropout fraction of 0.5 for both hidden
layers.

3.2. Convolutional Neural Network

After using fully-connected neural networks, we de-
cided to try Convolutional Neural Network (CNN),
other type of neural network, which uses some ex-
tra concepts like local filters, max-pooling and weight
sharing (LeCun & Bengio, 1995). Convolutional Neu-
ral Networks already demonstrated good performance
in several speech- and music-related tasks (Dieleman
et al., 2011) (Abdel-Hamid et al., 2012), so they seem
to perform well with sound and can be useful in bioa-
coustic tasks too.

Main difference between CNN and fully-connected NN
is that CNN is aware of 2D structure of the input data.
It can be very helpful if there are some local correla-
tions between spatially adjacent input values. In im-
age recognition tasks CNN uses local receptive fields
to extract local features like oriented edges and cor-
ners, and then combine them in higher layers to get
more complex features. Since in our whale detection

task we have 2D filter-bank input data, which contains
local correlations between energy values both in time
and frequency domain, we can use CNN in image-like
manner.

For preventing overfitting and for using highly-
optimized implementation of 2D-convolution (cuda-
convnet2, made by Alex Krizhevsky), we cropped out
three overlapping square patches of size 72 x 72 from
our 72 x 97 filter-bank input data. Due to the lack
of time, memory and fast GPU, we rescaled 72 x 72
patches to the size of 36 x 36.

Figure 2. Examples of filter-bank-based patches (a) with
right whale call, (b) without right whale call

We used recently proposed maxout units (Goodfellow
et al., 2013) as hidden units. Given an input x ∈ Rd,
a maxout hidden layer implements the function

hi(x) = max
j∈[1,k]

zij

where

zij = xTW...ij + bij

for learned parameters W ∈ Rd×m×k and b ∈ Rm×k.
In the context of convolutional networks, a maxout
feature map can be constructed by taking the maxi-
mum across k affine feature maps. A single maxout
unit can be interpreted as making a piecewise linear
approximation to an arbitrary convex function. So,
training algorithm learns not just the relationship be-
tween hidden units, but also the activation function of
each hidden unit.

Due to the lack of time, we didn’t perform proper
hyper-parameter search, and just used the same pa-
rameters, as in (Goodfellow et al., 2013) for MNIST
and CIFAR-10 datasets. Our first CNN architecture
consisted of 36 x 36 input layer, three convolutional
layers, followed by max-pooling layers, and final 2-way
softmax layer. First and second convolutional layers
had 48 kernels of size 8 x 8, followed by max-pooling
with pool size of 4 x 4. Third layer had 24 kernels

2https://code.google.com/p/cuda-convnet/
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of size 5 x 5 and followed by max-pooling with pool
size of 2 x 2. Learning rate at the start was 0.05,
and then decreased by dividing by 1.00004 after each
epoch. Dropout was used on the first convolutional
layer, with dropout rate of 0.8. At the testing time,
when all of the 36 x 36 patches were already classified,
we averaged the results for each three patches, cropped
from single testing 2-second sample.

Our second CNN architecture consisted of three con-
volutional layers, followed by max-pooling layers, one
fully-connected layer with maxout hidden units and
final 2-way softmax layer. First convolutional layer
had 48 kernels of size 8 x 8 followed by max-pooling
with pool size of 4 x 4. Second convolutional layer had
128 kernels of size 8 x 8 followed by max-pooling with
pool size of 4 x 4. Third layer had 128 kernels of size
5 x 5 followed by max-pooling with pool size of 2 x
2. Fourth layer was fully-connected and had 240 max-
out hidden units. Learning rate at the start was 0.1,
and then decreased by dividing by 1.00004 after each
epoch. Dropout was used on the first convolutional
layer, with dropout rate of 0.8.

4. Results

Table 1. Test set AUC performance of different whale call
detection methods

Method AUC

NN with sigmoid units (this paper) 0.954
First CNN with maxout units (this paper) 0.971
Second CNN with maxout units (this paper) 0.976
Gradient Boosting Classifier 0.984
Cornell University Benchmark 0.721

Our best fully-connected neural network got Area un-
der the ROC curve (AUC) performance of 0.954, our
best CNN with maxout units got AUC performance of
0.976. Cornell University algorithm before the chal-
lenge got AUC performance of 0.721. Winner team of
the Marinexplore and Cornell University Whale De-
tection Challenge used two averaged gradient boost-
ing classifiers with complex feature engineering, and
got AUC performance of 0.984.

5. Discussion

Our results show that fully-connected and convolu-
tional neural networks are capable of achieving good
performance in whale call detection task. We also used
new type of hidden units - maxout units - and show
that they can perform well in audio processing tasks.

Our results can be easily improved with more careful
parameter tuning, using better GPU and training for
longer time. Also it must be useful to pre-train neu-
ral network on unlabeled data with some unsupervised
feature learning model like CDBN (Lee et al., 2009).
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Benjamin. Audio-based music classification with a
pretrained convolutional network. In Proceedings of
the 12th international society for music information
retrieval conference : Proc. ISMIR 2011, pp. 669–
674. University of Miami, 2011.

Dugan, Peter J., Rice, Aaron N., Urazghildiiev, Il-
dar R., and Clark, Christopher W. North Atlantic
right whale acoustic signal processing: Part II. im-
proved decision architecture for auto-detection us-
ing multi-classifier combination methodology. In
Systems, Applications and Technology Conference
IEEE Long Island, 2010a.

Dugan, P.J., Rice, A.N., Urazghildiiev, I.R., and
Clark, C.W. North atlantic right whale acoustic
signal processing: Part i. comparison of machine
learning recognition algorithms. In Applications and
Technology Conference (LISAT), 2010 Long Island
Systems, pp. 1–6, 2010b.

Goodfellow, Ian J, Warde-Farley, David, Mirza,
Mehdi, Courville, Aaron, and Bengio, Yoshua. Max-
out networks. arXiv preprint arXiv:1302.4389, 2013.

Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky,
Alex, Sutskever, Ilya, and Salakhutdinov, Rus-
lan. Improving neural networks by prevent-
ing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012.

Kraus, Scott D., Brown, Moira W., Caswell, Hal,
Clark, Christopher W., Fujiwara, Masami, Hamil-
ton, Philip K., Kenney, Robert D., Knowlton,
Amy R., Landry, Scott, Mayo, Charles A., McLel-
lan, William A., Moore, Michael J., Nowacek, Dou-
glas P., Pabst, D. Ann, Read, Andrew J., and Rol-
land, Rosalind M. North atlantic right whales in
crisis. Science, 309(5734):561–562, 2005.

Proc.of the 1st Workshop on Machine Learning for Bioacoustics, Glotin et al.Ed,2013                    80



North Atlantic Right Whale Call Detection with Convolutional Neural Networks

LeCun, Yann and Bengio, Yoshua. Convolutional net-
works for images, speech, and time series. The
handbook of brain theory and neural networks, 3361,
1995.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and
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Abstract

This submission for the ICML 2013 Bird
Challenge uses the Probabilistic Latent Com-
ponent Analysis (PLCA) method for identi-
fying bird species in continuous audio record-
ings. A birdsong dictionary is created using
pre-extracted spectral templates from pro-
vided training set. Sparsity constraints are
also enforced in the symmetric PLCA model
in order to lead to more meaningful solutions.

1. Introduction

These working notes for the ICML 2013 Bird Chal-
lenge1 present a submitted system for identifying bird
species in continuous audio recordings using Proba-
bilistic Latent Component Analysis (PLCA). Section
2 presents the PLCA method while section 3 presents
the proposed bird identification system. Finally, pos-
sible model extensions are discussed in section 4.

2. PLCA

Probabilistic latent component analysis (PLCA) is a
spectrogram factorization technique that was first pro-
posed in (Smaragdis et al., 2006). It approximates an
input spectrogram Vω,t as a bivariate probability dis-
tribution P (ω, t), where ω is the frequency index and
t the time index, and attempts to factorize P (ω, t) as
a series of spectral components and component activa-
tions. It is closely related to non-negative matrix fac-
torization (NMF) (Lee & Seung, 1999), where PLCA
can be viewed as a special case of NMF using the
Kullback-Leibler cost function. However, contrary to
NMF, PLCA provides a probabilistic framework that
is extensible as well as easy to interpret. PLCA and re-

1http://sabiod.univ-tln.fr/icml2013/

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

lated spectrogram factorization techniques have been
used extensively in audio and image signal processing
research, namely for source separation, multi-pitch de-
tection, acoustic event detection, and action recogni-
tion.

The symmetric PLCA model can be formulated as:

Vω,t ≈ P (ω, t) =
�

z

P (z)P (ω|z)P (t|z) (1)

where P (ω|z) are the spectral templates corresponding
to component z, P (t|z) are the time-varying compo-
nent activations, and P (z) is the prior probability for
the components. For estimating P (z), P (ω|z), and
P (t|z), iterative update rules are employed, which are
derived from the Expectation-Maximization (EM) al-
gorithm (Dempster et al., 1977).

3. Proposed Method

3.1. Time-frequency Representation

As a time-frequency representation, the constant-Q
transform (CQT) with a spectral resolution of 60
bins/octave is used (Schörkhuber & Klapuri, 2010).
The lowest frequency bin is at 330Hz and the highest
bin is at 12.5kHz, while the time step is 10ms. After-
wards, a simple noise suppression procedure is applied
to the log-frequency spectrogram Vω,t using a 1

3
-octave

span median filter.

3.2. Extracting Spectral Templates

For each species recording in the training set, a dic-
tionary of 20 atoms is extracted using PLCA (z =
1, · · · , 20). The resulting spectral templates P (ω|z) are
stacked together for all species, resulting in a matrix
of dimensions Ω×700 (where Ω = 295 is the number of
log-frequency bins and 700 = 20 ·35, with 35 being the
number of bird species in the challenge). An example
of extracted templates is given in Fig. 1.
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Figure 1. Pre-extracted spectral templates for the Branta

canadensis species.

3.3. Bird Species Identification

For each recording from the test set, its normalized
log-frequency spectrogram Vω,t is fed into the model
of (1). This time, the number of components Z = 700
and the update rules are only applied to P (z) (which
represents the mixture probability of the spectral com-
ponents) and P (t|z) (which represents the activation
of each component over time), while P (ω|z) are the
pre-extracted templates, which remain fixed. 70 iter-
ations are used per test recording for estimating the
unknown parameters.

Since the proposed model is overcomplete (it contains
more information than in the input), it can converge to
non-meaningful solutions. To that end, sparsity is en-
forced using the entropic prior proposed in (Smaragdis,
2009). In specific, sparsity constraints are applied to
P (t|z) (implying that only few dictionary components
are active at a given time frame) and to P (z) (imply-
ing that only few components should be present in the
whole recording). The sparsity constraint in P (z) also
implies that only few bird species should be present in
the recording.

Finally, the output of the PLCA model is P (z), which
is used to compute the probability of a bird species
being present in a test recording:

P (birdC) =
�

j∈C

P (zj) (2)

where birdC denotes a bird class and C the set of com-
ponents that belong to that class.

4. Model Extensions

The proposed model is fairly simple yet so far has
reached solid results (with AUC=0.625), surpass-

ing the baseline system by more than 9%. Its
biggest drawback is the lack of any temporal mod-
eling, which however can be supported by PLCA-
based methods. One such example is Shift-invariant
PLCA (Smaragdis & Raj, 2007) which supports time-
frequency patches instead of spectral templates. An-
other option would be to add temporal constraints
to the one-dimensional spectral templates, using the
Non-negative Hidden Markov Model (Mysore, 2010),
which combines PLCA with Hidden Markov Models.
Finally, the constant number of basis can become vari-
able, e.g. by performing segmentation on the training
data and extracting one basis per segment.
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Abstract

This technical report details our entry into
the ICML 2013 Bird Challenge, in which the
goal is to predict which birds are singing in a
given audio recording. Our approach is based
on 2D-supervised time-frequency segmenta-
tion, a histogram-of-segments representation,
and binary relevance with a Random Forest.

1. Summary of Methods

The method we used for the challenge is very similar
to our approach in (Briggs et al., 2013), which was also
applied to multi-bird recordings collected with Song-
meters (at a different location). The main steps in this
system are:

1. Split into Chunks – Longer audio files are split
into 10-second chunks.

2. Spectrograms – A spectrogram is computed for
each chunk.

3. Noise-Filtering – A noise-filter reduces stationary
noise in the spectrograms.

4. Segmentation – We manually annotate a collec-
tion of spectrograms with examples of correct seg-
mentation (as a 2D mask of bird-sound regions).
These annotations are used to train a Random
Forest which classifies individual pixels of a spec-
trogram as bird-sound or background noise. The
segmentation classifier is used to find 2D segments
in the spectrograms of recordings in the test set.

5. Segment Features – Each 2D segment of the spec-
trogram is described by a 38D feature vector (see
(Briggs et al., 2012) for a description of this fea-
ture vector).

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

6. Histogram-of-Segment Features – Segment fea-
tures from the entire dataset are clustered to form
a codebook. Then each 10-second chunk is de-
scribed by a histogram of segments based on this
codebook. This gives a representation of each 10-
second chunk as a fixed-length feature vector (re-
gardless of the number of segments it contains).

7. Multi-Label Classification – Each chunk is associ-
ated with a feature vector, and paired with a set
of species. From here, we treat the problem us-
ing the multi-label classification framework, and
apply binary relevance (with a Random Forest as
the base classifier).

2. Isolating Bird Calls in Rain

Many of the recordings from the challenge have birds
singing amidst background noise from rain. On in-
teresting differences in the methods we used for this
challenge compared to (Briggs et al., 2013) is that
the segmentation algorithm is modified to better han-
dle rain. In the original implementation from (Briggs
et al., 2013), the segmentation algorithm associates
each pixel the spectrogram with a feature vector con-
sisting of the pixel intensities in a box around it, the
average intensity in the box, the y-coordinate of the
center of the box. Recall that this supervised segmen-
tation approach requires manually annotated spectro-
grams to train. Rain drops are easily recognized by a
human eye as vertical lines in the spectrogram. How-
ever, even though we provided examples with rain
drops marked as negative, the segmentation algorithm
could not differentiate between these regions and bird
sound (both look like bright lines in the spectrogram).
Therefore, we modify the feature vector to addition-
ally include the intensities of all pixels in the same
column. This allows the segmentation algorithm to
“see” enough of the spectrogram to differentiate be-
tween rain and bird sound. Figure 1 shows an exam-
ple result from the segmentation algorithm– it avoids
rain drops (top of the spectrogram), but isolates bird
sounds (bottom).

To form the training set for segmentation (pairs of
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pixel feature vectors with bird/no-bird label), we sam-
ple pixels from the manually annotated training spec-
trograms. For this challenge, we annotated 9 ten-
second chunks of audio from the validation set (Fig. 2),
with red=bird sound and blue=rain drop. There are
hundreds of thousands of pixels in each spectrogram,
so it is expensive to use every pixel. Therefore, we
sample 30% of red pixels as positive examples, 30% of
blue pixels as negative examples, and 4% of uncolored
pixels as negative examples.

3. Aggregating Predictions on Chunks

The recordings in the test set that we are asked to
make predictions about are 2 minutes and 30 sec-
onds. However, our system views each of these as a
collection of 10-second chunks. Multi-label classifica-
tion predictions are made based on the histogram-of-
segments feature for each chunk, then predictions are
aggregated.

Let each recording Ri be represented as ni 10-second
chunks, each described by a feature vector xi,j for j =
1, . . . , ni. The classifier score for each class c on chunk
xi,j is fc(xi,j). We compute the score for class c on
recording Ri as max{fc(xi,1), . . . , fc(xi,ni

)}.

4. Training and Val Sets

The data provided consists of a collection of train-
ing recordings, which are made with directional mi-
crophones of a single bird. The test data is instead
collected with omnidirectional microphones, and con-
tains multiple simultaneous birds, echoes, and rain.
Additionally, 3 recordings are provided as a “valida-
tion” set, which are from the same collection as the
test set; these val recordings are labeled with a set of
species present.

We originally tried two methods using the training set
(and not the val set), based on the MFCC features pro-
vided by the competition organizers, and also based
on our own segmentation and features. However, both
of these approaches achieved an AUC lower than 0.5.
Based on these results, and inspection of the data, we
suspect that the mismatch between training and test
data is a major problem for our basic supervised clas-
sifiers. The proposed method in this document does
not use the test set at all for training. Instead, it only
uses the 3 labeled examples in the validation to train
(which are split into 45 ten-second chunks with 3 dis-
tinct label sets). Surprisingly, the proposed method
achieves much better AUC using only this training set
than using the full training set. We suggest that this
outcome is because the validation set comes from the

same distribution as the test set.

5. Parameters

Table 1 states each of the parameters used in our pro-
posed method.

6. Discussion

The most interesting part of our proposed method is
the modification of the segmentation algorithm to bet-
ter handle rain. Qualitatively, it appears to work much
better than the original segmentation for recordings
with light rain, and somewhat better with strong rain.
However, in some cases it can introduce a new kind
of segmentation error where a bird syllable is split in
half by a rain drop (whereas the original segmentation
would make a single segment encompassing both the
rain drop and syllable). Further work is needed to ex-
plore methods for segmentation of bird sound in audio
with rain.
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Table 1. Parameters used in our bird species classification system.
Parameter Value Explanation
frame-size 512 The number of samples in one frame of the spectrogram
frame-overlap 75% Amount of overlap between successive frames of the spectrogram.
seg-num-trees 21 Number of trees in the RF used for segmentation
seg-feature-box 11 Width and height of the box of pixels used for features in segmentation
probmap-blur-radius 2 Radius of Gaussian blur applied to segmentation probabilities
seg-prob-threshold 0.5 Threshold applied to probabilities for segmentation
codebook-k 100 Number of clusters for k-means codebook / histogram dimension
BR-num-trees 100 Number of trees in the RFs for each class in Binary Relevance

Figure 1. Example of automatic segmentation from our supervised segmentation algorithm. Note bird sound is isolated
(bottom) and rain drops are ignored (top).
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Figure 2. Our manual annotation spectrograms for 9 ten-second chunks from the validation set (for training supervised
segmentation). Red = bird, blue = rain.
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Hervé GLOTIN glotin@univ-tln.fr
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1. Introduction

We present here our contribution to the “Machine
Learning for Bioacoustics” workshop technical chal-
lenge of 30th International Conference on Machine
Learning (ICML 2013). The aim is to build a clas-
sifier able to recognize bird species one can hear from
a recording in the wild. The method we present here is
a rather simple strategy for bird songs and calls classi-
fication. It builds on known and efficient technologies
and ideas and must be considered as a baseline on this
challenge1. The method we present is dedicated to the
particular setting of the challenge. It relies in particu-
lar on the fact that training signals are monolabel, i.e.
only one species may be heard, while test signals are
multilabel.

2. Description of the method

We present now the main steps of our approach. Fig-
ure 1 illustrates the main steps of the preprocessing
and of feature extraction. We consider we want to
learn a multilabel classifier from a set of N monola-
beled training samples

�
(xi, yi)|i = 1..N

�
where each

input xi is a audio recording and each yi is a bird

1As we are also co-organizing this challenge, our partic-
ipation aimed at defining a baseline system, with raw fea-
tures, that all other participants could compare too. We
did not look for optimizing each parameter of our system,
and as any other participant, we conducted all the model-
ing and experimentation applying strictly the rules of the
challenge.

species ∀i, yi ∈ {bu|u = 1..K} (in our case there are
35 species, K = 35). The system should be able to
infer the eventually multiple classes (presence of bird
species) in a test recording x.

2.1. Preprocessing

Our preprocessing is based on mfcc cepstral coeffi-
cients which have been proved useful for speech recog-
nition (Chang-Hsing et al., 2006; Michael Noll, 1964).
A signal is first transformed into a series of frames
where each frame consists in 17 mfcc (mel cepstra
feature coefficients) feature vectors, including energy.
Each frame represents a short duration (e.g. 512 sam-
ples of a signal sampled at 44kHz).

2.2. Windowing, silence removal and feature

extraction

Windowing. We use windowing, i.e. computing a
new feature vector on a window of n frames, to get
new feature vectors that are representative of longer
segments. The idea is close to the standard syllabe
extraction step that is used in most of methods for bird
identification (Neal et al., 2011; Briggs et al., 2012;
2009) but is much simpler to implement. In our case
we considered segments of about 0.5 second duration
(i.e. n ≈ few hundreds of frames) and used a sliding
window with overlap (about 80%).

Silence removal. We first want to remove segments
(windows) corresponding to silence since these would
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Figure 1. Main steps of the preprocesing and of feature ex-

traction.

perturbate the training and test steps. This is per-
formed with a clustering step (learnt on training sig-
nals) that only considers the average energy of the
frames in a window. Ideally this cluster makes that
the windows are clustered into silence segments on the
one hand, and calls and song segments on the other
hand. Each window with low average energy is con-
sidered a silence window and removed from considera-
tion. Our best results were achived when performing a
clustering in three clusters and removing all windows
in the lowest energy cluster.

Feature extraction. The final step of the prepro-
cessing consists in computing a reduced set of features
for any remaining segment / window. Recall that each
segment consists in a series of n 17-dimensional feature
vectors (with n in the order of hundreds). Our feature
extraction consists in computing 6 values for repre-
senting the series of n values for each of the 17 mfcc
features. Let consider a particular mfcc feature v, let

note (vi)i=1..n the n values taken by this feature in the
n frames of a window and let note v̄i the mean value
of vi. Moreover let note d and D the velocity and the
acceleration of v, which are approximated all along the
sequences with di = vi+1−vi, and Di = di+1−di. The
6 values we compute are defined as:

f1 =

�n

i=1
(|vi|)

n
(1)

f2 =

�
�
�
� 1

n− 1

n�

i=1

(vi − v̄i)2 (2)

f3 =

�
�
�
� 1

n− 2

n�

i=1

(di − d̄i)2 (3)

f4 =

�
�
�
� 1

n− 3

n�

i=1

(Di − D̄i)2 (4)

f5 =

�n−1

i=1
|di|

n− 1
(5)

f6 =

�n−2

i=1
|Di|

n− 2
(6)

At the end a segment in a window is represented as
the concatenation of the 6 above features for the 17
cepstral coefficients. It is then a new feature vector st
(with t the number of the window) of dimension 102.

Each signal is finally represented as a sequence of fea-
ture vectors st, each representing a duration of about
0.5 second with 80% overlap.

2.3. Training

Based on the feature extraction step we described
above the simplest strategy is to train a classifier (e.g.
we used Support Vector Machines) on the feature vec-
tors st which are long enough to include a syllabe or a
call, with the idea of agregating all the results found
on the windows of a test signal to decide which species
are present (see section Inference below).

Yet we found that a better strategy was to first per-
form a clustering in order to split all samples (i.e. st)
corresponding to a species into two different classes.
The rationale behind this process is that call and song
of a particular species are complety different sounds
(Fagerlund, 2004) so that corresponding feature vec-
tors st probably lie in different areas in the feature
space. It is then probably worth using this prior to
design classifiers (hopefully linear) with two times the
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number of species rather than using non linear classi-
fiers with as many classes as there are species.

We implemented this idea by clustering all the frames
st for a given species into two or more clusters. The
two clusters are now considered as two classes that
correspond to a single species. At the end, a problem
of recognizing K species in a signal turns into a clas-
sification problem with 2 ×K classes. Note also that
since the setting of the challenge is such that there is
only one species per training signal, all feature vectors
st of all signal of a given bird species bu that fall into
cluster one are labeled as belonging to class b1u and all
that fall into cluster 2 are labeled as belonging to class
b2u.

The final step is to learn a multiclass classifier (SVM)
in a one-versus-all fashion, i.e. learning one SVM
to classify between the samples from one class and
the samples from all other classes. This is a stan-
dard approach (named Binary Relevance) for dealing
with multilabel classification problem where one sam-
ple may belong to multiple classes. It is the optimal
method with respect to the Hamming Loss, i.e. the
number of class prediction errors (either false positive
and false negative).

2.4. Inference

At test time an incoming signal is first preprocessed as
explained before in section 2.1, silence windows are re-
moved (using clusters found on the train dataset), and
feature extraction is performed for all remaining seg-
ments. This yields that an input signal is represented
as a series of m feature vectors st.

All these feature vectors are processed by all 2K bi-
nary SVMs which provide scores that are interpreted
as class posterior probabilities (we use a probabilistic
version of SVM), we then get a matrixm×2K of scores
P (c|st) with c ∈

�
bju|u = 1..K, j = 1, 2

�
and t = 1..m.

We experimented few ways to agregate all these scores
into a set of K scores, one for each species, enabling
ranking the species by decreasing probability of oc-
curence. Indeed this is the expected format of a chal-
lenge submission, from which a AUC score is computed
(Area Under the Curve). First we compute 2K scores,
one for each class, then we agregate the scores of the
two classes of a given species.

Our best results were obtained by computing mean
probabilities of all scores {P (c|st)|t = 1..m} for each
class c, using harmonic mean or trimmed harmonic
mean (where a percentage of the lowest scores are
discarded before computing the mean). This yields
scores that we consider as class posterior probabilities

of classes given the input signal x, P (c|x).

The utimate step consists in computing a score for each
species bu given the scores of the the two corresponding
classes b1u and b2u. We used the following agregation
formulae:

P (bu|x) = 1− (1− P (b1u|x))× (1− P (b2u|x)) (7)

3. Experiments

3.1. Dataset

We describe now the data used for the “Machine
Learning for Bioacoustics” technical challenge. Note
that the training dataset (signals with corresponding
ground truth) was available for learning systems all
along the challenge together with the test set, without
ground truth. Participants were able to design their
methods and select their best models by submitting
predictions on the test set which were scores on a sub-
set only of the test set (33%). The final evaluation
and the ranking of participants was performed on the
full test set once all participants have selected 5 of all
their systems submitted.

Training data consisted in thirty five 30-seconds audio
recordings labeled with a single species, there was one
recording per species (35 species overall). Yet, some
train recording can include low signal-to-noise ratio
(S.N.R) signals of a second bird species of bird. More-
over, according to circadian rythm of each species,
other acoustically actives species of animals can be
present such as nocturnal and diurnal insects.

Test data consisted in ninety 150-seconds audio record-
ings with possibly none or multiple species occuring in
each signal.

The training and test data recordings have been per-
formed with various devices in various geographical
and climatological settings. In particular background
and S.N.R are very different between training and test.
All wav audio recordings have been sampled at 44 100
Hz with a 16-bits quantification resolution. Recordings
were performed with 3 Song Meter SM2+ (Wildlife
Acoutic recording device). Each SM2+ has been in-
stalled in a different sector (A,B and C) of a Regional
Park of the Upper Chevreuse Valley. Every SM2+
recorded, at the same dates and hours (between 24 03
2009 and 22 05 2009), one 150-seconds recording per
day between 04h48m00s a.m. and 06h31m00s a.m.,
which correspond to the acoustical maximum bird-
activity period.
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3.2. Implementation details

Frames and overlapping sizes. We computed
Mel-frequency cepstral coefficients (MFCC) with the
melfcc.m Matlab function from ROSA laboratory
of Columbia university. This function propose 17
different input parameters. We tested numerous
possible configurations and measured for each one the
difference of energy contained in a given TRAIN file
and a reconstructed signal of this recording based on
cepstral coefficients. The difference was minimal with
following parameters values:

window=512, fbtype=mel, broaden=0, maxfreq=sr/2,
minfreq=0, wintime=window/sr, hoptime= win-
time/3, numcep=16, usecmp=0, dcttype=3,
nbands=32, dither=0, lifterexp=0, sumpower=1,
preemph=0, modelorder=0, bwidth=1, useenergy=1

This process transformes a 30-seconds train au-
dio recording (at 44 kHz sampling rate) into about
7 700 frames of 16 cepstral coefficients which we
augmented with the energy computed by setting
useenergy=0.

Next we computed feature vector st on 0.5 second win-
dows with 80% overlap, which yields about n = 300
feature vectors per training signal (hence per species
since there is only one training recording per species)
and about m = feature vectors per test signal.

LIBSVM settings. We used a multiclass S.V.M al-
gorithm based on LIBSVM (Chang, 2008). We se-
lected model parameters (kernel type etc) through two
fold cross validation. Best scores have been obtained
with C-SVC SVM type and linear kernel function.

3.3. Results

We report only our best results that correspond to the
method presented in this paper for various computa-
tion for the class score at inference time. Table 1 shows
how the way the mean score of a class is computed on
the test set (see section 2.4) influences the final result.
The table compares arithmetic mean, harmonic mean,
and trimmed arithmetic mean (at 10, 20 et 30%). A
trimmed mean at p% is the arithmetic mean computed
after discarding p% extreme values, i.e. the p/2% low-
est values and the p/2% largest values.

Although our method is simple it reached the fourth
rank over more than 77 participating teams at the
Kaggle ICML Bird challenge with a score of 0.64639
while the best score was 0.69454. It is also worth not-
ing that our system ranked about fifteen only on the

Table 1. Score Kaggle icml according to the way scores are

aggregated.

mean aggregation Kaggle score (AUC)
arithmetic mean 0.61362
harmonic mean 0.64234

trimmed mean 10% 0.64158
trimmed mean 20% 0.64639
trimmed mean 24% 0.64699
trimmed mean 30% 0.64614

validation set (one third of the total test set). This
probably shows that our system being maybe simpler
than other methods exhibits at the end a more robust
behaviour and improved generalization ability.

4. Conclusion and perspectives

Although the method that we presented is simple
it was to perform well on the challenge and to be
much robust between validation step and test set. We
believe this robustness comes from the simplicity of
the method that do not rely on complex processing
steps (like identifying syllables) that other participants
could have used (Glotin & Sueur, 2013).

Possible improvements would consist in the integration
in the model of additional information such as weather
condition, or a taxonomia of species, allowing for more
accurate hierarchical classification schemes.
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Abstract

We describe a submission to the ICML 2013
Bird Challenge, in which we explore the use
of sparse representations as an advance on
the standard technique of cross-correlation
template matching in time-frequency repre-
sentations. The Matching Pursuit algorithm
is used to represent the signal as a sparse set
of activations of templates derived from the
challenge training audio.

Given an audio recording, it is a challenging task to de-
tect automatically which bird species are represented,
and a task that is relevant to practical applications
in bioacoustics (Stowell & Plumbley, 2010). Recent
research developments go beyond single-label classi-
fication and can identify multiple species simultane-
ously present in a recording (Briggs et al., 2012), or
track multiple birds through an audio scene (Stowell
& Plumbley, accepted). The ICML 2013 Bird Chal-
lenge stimulates developments in the field by challeng-
ing researchers to identify algorithmically which of 35
bird species are present in a public dataset of 90 audio
recordings.1 The present note describes a contribu-
tion to the challenge which explores the use of sparse
representations in a multi-label classification problem.

In signal processing, a sparse representation is recov-
ered by assuming that the signal is composed from
some “dictionary” of atomic elements, with only a
small number of those elements being active (nonzero)
for any given signal of interest (Plumbley et al., 2010).
This approach is motivated by the discovery that neu-
ral coding often makes use of such sparsity, and also
by the engineering prospect of representing signals in
highly compact form. Sparse representations are cur-

1www.kaggle.com/c/the-icml-2013-bird-challenge

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

rently the subject of much research activity, and have
been used in audio and music for tasks such as audio
compression and transcription (Plumbley et al., 2010).

Our submission explores sparse representation to im-
prove on the common technique of cross-correlation
template matching in time-frequency representations
(such as spectrograms). In the standard cross-
correlation scenario, we have one or more templates
per species, and each template is separately cross-
correlated against the spectrogram in question. Peaks
in the cross-correlation function are taken as detec-
tions for the corresponding species. However, when
there is a large number of species to be detected, and
some of these potentially have very similar templates,
there is a problem: a single region of energy in the
spectrogram (e.g. a single birdsong syllable) could in-
dependently match against multiple templates, giving
spurious detection of many species from a single sound.
Sparse decompositions can overcome this, by finding
a representation of the signal as a sum of activations
from all elements considered together as a dictionary.

1. Method

In the present case we use the simple and widespread
Matching Pursuit (MP) algorithm to find a sparse rep-
resentation of a sound spectrogram as a sum of tem-
plates. We use a fast optimised implementation pro-
vided by the free and open-source Matching Pursuit
Toolkit (MPTK) (Krstulovic & Gribonval, 2006). Our
script is implemented in Python, using the Python
bindings recently available in MPTK 0.7.

Preprocessing: Each audio file is converted into a
standard spectrogram representation (log-magnitudes
of STFT, frame size 512). We apply median-based
background subtraction to help counter stationary
background noise.

Training: Training the system consists of creating a
dictionary of spectrogram “patches” from the training
audio files. Each file is divided into segments using
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simple power thresholding, and long segments are fur-
ther divided into multiple segments of maximum dura-
tion one second. We then discard segments which do
not contain much structure and are broadly flat, since
these are not strongly discriminative and can match
against any noise. This decision is based on the crest
factor of pixels within the patch. Each segment is then
normalised in magnitude (to unit L2 norm).

Testing: To analyse an audio file, we apply MP to
its spectrogram using the dictionary of time-frequency
segments, via MPTK. This produces a list of activa-
tions associated with elements in the dictionary, which
can be used to reconstruct the signal or for further
analysis. In the present case the required output is a
list of probabilities per species. We derive the proba-
bility for each species heuristically as proportional to
the total energy that MP has allocated to activations
associated with that species.

2. Results

At time of writing, the AUC score on the annotated
development data is 70.3%, and the AUC score eval-
uated on 1

3 of the full data (this is the method used
on the Kaggle website to give results-in-progress) is
66.2%. This demonstrates that the approach gener-
alises satisfacorily. However, results evaluated on the
larger dataset at the close of the challenge give AUC
of 53.8%, indicating scope for improvement.

3. Discussion

Note that this submission does not make use of any in-
formation other than the training and test audio pro-
vided by the challenge. In particular, for a real work-
ing system we would advocate the use of much larger
audio collections to build the training data. However
we wanted to explore how well the approach could
make inferences from the provided data. Also, we do
not perform adaptation of the system to the differing
weather conditions, nor to the very different (reverber-
ant) acoustic environment of the test audio.

In classical template-matching approaches, Dynamic
Time Warping is commonly used to match templates
against signals which have similar shape but with local
differences in the length/speed of subregions. The MP
approach we have deployed has no direct equivalent of
this, which is a drawback when analysing sounds such
as birdsong with natural variability in their produc-
tion. The incorporation of such flexibility into sparse
representations is an open topic; alternatively, novel
signal representations may counter this issue.

We also note that template-matching approaches gen-
erally do not consider any time-sequencing of sounds
at larger timescales, e.g. the grammatical sequencing
of syllables. We are exploring how to combine syllable-
by-syllable detection with methods which make infer-
ences from temporal sequencing of birdsong, such as
the Markov renewal process method we recently intro-
duced (Stowell & Plumbley, accepted).

Future refinements of this approach could include more
advanced approaches to creating the dictionary. For
example, one might apply dictionary learning, a tech-
nique in sparse representations which directly opti-
mises the dictionary so as to represent its inputs
sparsely. We are also currently working with alter-
native signal representations which can provide detail
of fine frequency modulations (Stowell et al., 2013).

Supported by EPSRC Fellowship EP/G007144/1.
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Abstract

This working notes for the ICML 2013 Bird
Challenge attempt to explain the method de-
veloped for identifying bird species in contin-
uous audio recordings. Our approach uses
a syllable segmentation procedure and cal-
culates MFCC and Delta-MFCC as features.
Then, we use a LDA projection and a neural
network for classification.

1. Introduction

In this working notes we present a method to auto-
matically decide whether a certain bird species sings
in an audio clip recorded in a natural environment or
not. The only training set used by this method were
35 clean audio clips provided, one for each bird species.
First of all the audio is bandpass filtered keeping the
frequencies corresponding to the birdsong spectra of
most species. Then, we use a state-of-the-art syllable
segmentation algorithm to select the relevant portions
in the audio clip, eliminating most background noise
in the process. For the windows corresponding to the
syllables found, we extract the Mel-Frequency Cepstral
Coefficients (MFCCs) and Delta-MFCCs, forming the
set of available features. To further enhance tem-
poral information, super-observations are constructed
by concatenating variables over a sliding window of a
fixed size. That is followed by a dimensionality re-
duction step, a projection using Linear Discriminant
Analysis (LDA) is calculated. The final chosen clas-
sifier has been a bagger of artificial neural network,
an approach which dampens the problem of local min-
ima in common neural networks while still having an
acceptable computational cost.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

2. Syllable Segmentation

Syllable segmentation is based on the amount of en-
ergy detected in parts of the spectrogram of the audio
clips. In order to calculate the signal spectrograms, a
kaiser-window (α = 8) of size 256 samples is employed
with an overlap of one-quarter of the window size.

Before applying syllable segmentation, we filter the
signal of each audio clip with a 10th-order Butter-
worth band-pass filter. The lower normalized cutoff
frequency is 0.03 and the higher is 0.5.

Figure 1. Block diagram of the entire process

The syllable segmentation algorithm, which is a sim-
plified version of (1), can be described as:

1 Compute the spectrogram of the song segment
using FFT, being S(f, t) the spectrogram matrix
where f is the frequency and t is time.

2 Find the maximum value in the spectrogram and
the corresponding position in time. Then we move
from the point of maximum forward and backward
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while the spectrogram magnitude decreases until
the decrease reaches a certain threshold U.

3 Observing the syllable extraction on the training
set, the threshold was defined empirically.

4 Set to zero this part of the spectrogram to delete
the segmented area.

5 We continue extracting syllables until the next
maximum is below a certain threshold with re-
spect to the global maximum of the clip.

Figure 2. Spectogram and syllable segmentation

3. Feature Extracction

After obtaining the instants of time to the syllables of
each bird, we extract the features using the MFCCs
and Delta-MFCCs. Then, to exploit the temporal re-
lationship between birds song of the same class, we
group variables of adjacent samples into a vector with
high dimensionality using a sliding window. The in-
crease in the size of the dimensions is really significant.

4. Dimensionality Reduction

As we are working with high dimensionality vector, we
decide to use a multiclass Linear Discriminant Analy-
sis (LDA) for reducing the length of the vector. The
projections obtained in the training phase are stored
for using later in the test set, preventing the increase in
dimensions suffered after applying the sliding window.

5. Classification

Even though we actually deal with 35 binary simul-
taneous classification problems, our method actually
treats the problem as a set of many successive mul-
ticlass classification problems. That is, rather than
directly answering “does bird X sing in clip Y?” we
try to answer instead “which bird, if any, sings in in-
stant T?”. By doing so, we will then combine a very
high number of such answers per clip to actually solve
the original binary classification decisions.

In order to solve the “instantaneous” multiclass clas-
sification problem, many different classifiers could be
applied to this problem but, in practice, the high num-
ber of observations makes neural networks highly at-
tractive for this task. We still need to handle the severe
problem of convergence to local minima which appears
in that kind of classifiers. Our approach to solve that
has been to apply bagging to introduce diversity in
both training set and initialization.

Given a pre-filtered test clip, we find the syllables ac-
cording to the syllable extraction algorithm and then
extract features for those syllables. Also, this feature
vectors are projected using LDA. We use the soft out-
put of the neural network bagger for each class. Be-
cause birds can sing at any given time instant in the
clip, we thought that it was much more sensible to
make a decision about the presence or absence of a
birdsong during a test clip using the maximum score
achieved. In this way, if a bird sings very clearly but
only during a short time, we would still detect it.

Finally, before the end of the competition the score on
the Public Leaderboard was 0.743, so the reduction in
testing performance on the final test set (a score of
0.6954 in the Private Leaderboard) was not as high as
the reduction suffered by other competitors.
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Abstract

This technical report details our approach to
solving the ICML 2013 Bird Challenge, in
which the goal was to predict which of 35 dif-
ferent species of birds were singing in a given
audio recording. Our approach was based
on a pipeline of unsupervised clustering, su-
pervised classification for feature extraction,
with a final supervised classification for bird
identification.

1. Summary of Methods

1.1. Input Data

We worked exclusively with the pre-extracted MFCC
(Mel Frequency Cepstral Coefficient) features ex-
tracted by the contest sponsors on both the training
and test sets. We focused primarily on the 9 species
represented in the first three files of the test data (6, 8,
12, 16, 18, 27, 32, 33, 34), plus two additional species
deemed to be common and detectable (9, 22).

1.2. Processing Stages

Our method was based on a two-stage process of gath-
ering accurate training data for use in the final stage
of classification of all recordings. The main steps in-
cluded:

1. For each species, the pre-extracted MFCC fea-
tures (16 per sample) in the training data were
passed through a K-means clustering algorithm
with a small value of K. The first cepstral coeffi-
cient was used to isolate bird from background in
each of the training files.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

2. A three-layer backpropagation network was
trained on the data from the training files for the
11 species plus all background data isolated from
all of the training files. Each of the cepstral fea-
ture vectors was used as a training sample. There
was no aggregation of adjacent vectors.

3. The first three recordings of the test set (also con-
sidered training data) were passed through the su-
pervised classification algorithm to identify more
representative samples of the 11 species and back-
ground. This step in the processing compensated
for the lack of detailed annotation of the first three
test records.

4. A second three-layer backpropagation network
was trained on the combined training data from
the training set and the classification results of
processing the first three recordings in the test
set.

5. Finally, the entire test set was passed through the
second classifier, accumulating network activation
values for each of the 11 species and background
for each test recording. Our final output was
based on a summation of these output activations
for each species.

2. Discussion

We chose to work exclusively with the pre-extracted
MFCC feature vectors as provided by the sponsors.

The upside of this approach was its simplicity - all
records were treated the same, and computational load
was kept to a minimum. As can be seen in Figure 1,
there is some separability between species using just
the cepstral features.

The downside of our approach is that it eliminates
a great deal of higher-order information that can be
obtained from both intra- and inter-call patterns, as
could be obtained from a two dimensional spectro-
gram. Figure 2 shows a typical result of using K-means
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to cluster the cepstral vectors of the 35 species into 40
clusters. Species are represented by columns; clusters
by rows. Rows with multiple dark reddish squares
indicate clusters that contain multiple species. This
remained true in some cases even with 120 clusters,
illustrating the difficulty of separating certain species
based solely on the full set of MFCC features. One
promising avenue that we did not have time to explore
was the splitting of some species into their different
calls.

Another serious limitation of our approach was diffi-
culty in verifying the results of processing steps that
identified individual cepstral records as belonging to a
particular species. Working with such fine detail and
without the inverse transforms prevented us from do-
ing any form of audio verification of our processing.
We were restricted to visually inspecting time series
plots.

Figure 1. Distance matrix of centroids of MFCC vectors for
each species in the training set with the addition of back-
ground noise from the first three test records. The species
are in order by number, with background noise appearing
in row and column 36. The diagonal elements represent a
distance of zero. Darker reddish colors represent greater
inter-cluster distances.
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Figure 2. Results of using K-means to cluster the cepstral
vectors of the 35 species into 40 clusters. Each species ap-
pears in one column and each cluster in one row. Green
boxes represent zero membership of species in a particu-
lar cluster. Within each individual species column, colors
represent percentage of the samples belonging to a clus-
ter. So for example, a very dark reddish square indicates
that the majority of a species’ cepstral records belong to
this cluster, whereas a species with multiple lighter squares
indicates greater variety and splitting of the species calls.
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