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Use of recurrence plots for identification and extraction of 
patterns in humpback whale song recordings
F. Malige a, D. Djokicb,c, J. Patris a, R. Sousa-Limab,c and H. Glotina

aCNRS, LIS, DYNI Team, Université De Toulon, Aix-Marseille Université, Marseilles, France; bLaboratory of 
Bioacoustics, Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte (UFRN), 
Natal, Brazil; cGraduate Program of Psychobiology, Biosciences Center, UFRN, Natal, Brazil

ABSTRACT
Humpback whale song is comprised of well-structured distinct 
levels of organisation: combinations of sounds, repetition of 
combinations, and a sequence of repetitions, which have no 
clear silent intervals. This continuous sound output can be 
hard to delimit, rather, it could be interpreted as a long series 
of states of a system. Recurrence plots are graphical represen-
tations of such series of states and have been used to describe 
animal behaviour previously. Here, we aim to apply this tool to 
visualise and recognise structures traditionally used in infer-
ences about behaviour (songs and themes) in the series of 
units manually extracted from recordings of humpback whales. 
Data from the Abrolhos bank, Brazil were subjected to these 
analyses. Our analytical tool has proven efficient in identifying 
themes and songs from continuous recordings avoiding some 
of the human perception bias and caveats. Furthermore, our 
song extraction is robust to errors coming from both manual 
and automated transcriptions, constructing a level of descrip-
tion largely independent of the first stage of analysis.
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1. Introduction

Songs usually describe sequences of sounds showing some structure. Complex 
strings or sequences of sounds have evolved in many taxa (Kershenbaum et al. 
2014) and animals may sing with varying degrees of complexity. Depending on the 
research question, one may or may not consider the adjacent acoustic context in 
which such songs, or sound sequences, are delivered, i.e., some are separated by 
silent intervals, but some are not. These long and continuous complex sequences of 
sounds impose the added challenge of limiting when one biological meaningful 
sequence ends, and another begins. The humpback whale male song is an example 
of such an animal acoustic output structure which is very hard to characterise due 
to the issues just described.
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1.1. Structure of humpback whales songs

Schreiber (1952) was the first to describe sounds recorded in the ocean by the U. S. Navy 
in 1951 which were later attributed to humpback whales, Megaptera novaeangliae 
(Schevill and Watkins 1962). Nonetheless, the complex structure of the humpback 
whale acoustic display – the song – was noticed almost a decade later by Katy and 
Roger Payne in 1969 and formally published by Payne and McVay (1971). Three decades 
after that, genetic confirmation (Darling and Brub 2001) supported the behavioural and 
morphological evidence that only males sing (Darling (1983), Glockner (1983)).

According to Payne and McVay’s description, singing males emit sound units that are 
arranged in phrases that are repeated to form a theme. Themes are sung in a fixed order 
which is a song, and a song session is the continued rendition of the song. Constant 
changes in the song throughout the singing season, called song evolution characterise the 
dynamic of singing activity in humpback whales (Payne et al. 1983). This hierarchical 
song structure that cycles in a fixed order was revised by Cholewiak et al. (2013) to 
incorporate multi-level variation in song structure and to address some caveats with the 
original structure and order proposition. Fundamental differences between bird song 
literature that inspired Payne and McVay (1971), such as the lack of silences between 
song renditions, hindered the acknowledgement that boxing humpback whale song into 
static artificial hierarchical levels was potentially misleading inferences (Cholewiak et al. 
2013). Specially complicated is to arbitrarily define limits of songs and themes that would 
vary depending on who was describing it.

Methodology on humpback whale song elements identification (and extraction) is still 
advancing as consensus on the best protocols are not yet established. As the song and its 
elements vary in length and order (Cholewiak et al. 2013), it is challenging to manually 
identify them (and their limits) without subjectivity. Automating the process of song 
structure recognition would significantly reduce the frequent human bias. As a mean of 
going a step closer to this goal of automation, we propose a method based on the ‘unit’ 
level of the vocalisation. Unit is the best-defined element of the humpback whale song, 
and can be described as ‘the shortest sound entity recognised by the human ear, separated 
from other sounds by a short period of silence’ (Payne and McVay 1971). Even though 
classifying units can be a tricky process since there is some versatility in the renditions of 
the same unit, yet as an entity, the unit remains the most unambiguous element of the 
humpback whale song hierarchy.

In order to reliably define patterns of higher hierarchical level – themes and songs, as 
assemblies of units, we propose a new method to remove some of the human influence in 
defining the start and end points of songs. This is done by adopting a semi-automated 
protocol to detect, analyse or extract the aforementioned features from transcribed unit 
label strings.

1.2. Recurrence plots

Recurrence plots are used to visualise and analyse, at a global level, long series of states of 
a system (see definition by Eckmann et al. (1987) in the case of a general dynamical 
system). This tool and its graphical representation have been used in several scientific 
topics: first in medicine in Zbilut et al. (1990) and then in astronomy, neuroscience, 
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mechanics, geology, climate changes (see review by Marwan et al. (2007)). This tool has 
recently been proposed to study structures in animal movements or communication in 
Ravignani and Norton (2017). It was used in acoustics – monitoring of air guns (Miralles 
et al. 2015), and bioacoustics – shrimps sound production (Hee-Wai et al. 2013). A closer 
application to our problem of analysing humpback whale songs has been to visualise 
structures of a music extract (Foote 1999) or to cut it automatically as in Foote (2000) or 
Paulus et al. (2010). It has recently been used to study the rhythm of humpback whale 
sound production in Schneider and Mercado (2018), without focusing on the spectral 
content of the sounds.

The main topic of this paper is to apply this tool to visualise and recognise the main 
structures (songs and themes) in unit series of humpback whales. We apply this method 
to data taken in Abrolhos bank, off the northeastern coast of Brazil (see section 2.1). 
These recordings were manually transcribed into a string of units named as letters (see 
section 2.2). On this input, a matrix of distances, based on the Levenshtein distance is 
computed as done in recurrence plots (see section 3). A method for the automatic 
extraction of songs in the series of units is proposed (see section 4) and tested on our 
data set in the final section 5.

2. Data collection and sound units transcription

2.1. Data collection

Data were collected in the Abrolhos bank, located off the Northeastern coast of Brazil 
(17oS and 38oW) where humpback whales come during the austral winter and which is 
considered the main calving grounds for the species in the western south Atlantic Ocean 
(Martins et al. (2001) and Andriolo et al. (2006)). During 2000 and 2001 research cruises, 
groups of humpback whales were sighted and monitored for acoustic activity using one 
HTI 90 min hydrophone connected to a portable DAT Sony TCD D-10 (sampling rate 
48 kHz). Vocalising males were then identified and located by monitoring the amplitude 
decrease of an individual’s sounds as it surfaced to breath. Silent approaches to these focal 
singers were performed using a small zodiac with an improvised sail. Songs were collected 
from the zodiac at distances that varied from 100 to 500 m to the focal male while its 
behavioural activity was continuously registered. Several recordings were made but only 
the best quality ones were used in our analyses. Selected recordings made in September of 
the year 2000 generated 3 high-quality audio files (recordings #1,2,3) lasting, respectively, 
58 minutes, 1 h 37 min and 2 h and 7 minutes. In September 2001, the two selected audio 
files (recordings #4,5) were, respectively, 26 min and 1 h and 38 min long. Another study of 
song sessions in the same place in 2000 will serve as a comparison for the data we present 
(Arraut and Vielliard 2004).

2.2. Sound unit transcription

Classifying units into specific types is a complex problem, since there is a large versatility 
in the acoustical properties of a single unit (Janik 1999). First, there is a seemingly infinite 
number of different unit types used by whales, in an ever-changing song. Second, even 
the units belonging to the same type may vary to a certain level throughout the same 
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song, in the recordings of different singers, and depending on the quality of the dataset. 
Thus, a different final product of classification can arise from the same dataset due to 
differences in the methods used to determine the units. The final number of different unit 
types in different studies varies greatly, from 12 to more than 100 (Pines 2018). Challenge 
to group the units by type (as similar or different) opens the debate on what is the 
acceptable level of variation within the same unit type.

In order to overcome this difficulty, we used the context i.e. the position of the unit in 
the song (or more commonly in the phrases within each theme), defined by the arrange-
ment of adjacent units (Green et al. 2011). The context has proven as a good way to help 
determine the unit type (Cholewiak et al. 2013). For this work, all recordings were 
inspected by hand. Spectrograms were created using 1024 point FFTs, Hann window, 
43.1 Hz resolution and 50% overlap (created by software Raven pro 1.5 – Cornell Lab of 
Ornithology, Ithaca, NY, (2014)), and subjected to aural and visual inspection by two 
trained analysts. Each analyst separately inspected and labelled the whole dataset. This 
procedure is a common protocol adopted by humpback whale song researchers (Payne 
and McVay (1971), Darling et al. (2019)). Our protocol for unit classification also takes 
context into consideration, i.e. where the unit is placed, so that other hierarchical levels of 
organisation can help define how much variation is allowed in a single unit type. Note 
that even when studies carry on unit annotation using computational methods, the 
results are usually validated using manual classification (Pace et al. (2010), Garland 
et al. (2013), Allen et al. (2017)).

The labelling was done in the following way: every unit type was attributed to an 
alphabet letter based on its distinctiveness from other units (Darling et al. 2019). Analysts 
considered visually and auditory perceptual characteristics for classification such as unit 
tonal or pulsed quality, its pitch content and frequency modulation pattern, its duration, 
and its placement within phrases (context). Each time the specific unit would arise in the 
recording, it was labelled in Raven, according to its type, minding its context (adjacent 
units). The final product of every separate recording would be a list of N consecutive 
letters, the way the units appeared in that specific humpback whale vocalisation (see 
Figure 1 and supplementary material #1). This list of letters (units) will, in the later steps 
of the method, serve as an input for computing recurrence plots (section 3). Finally, an 

Figure 1. Time (min:sec)/frequency (kHz) representation of an extract of recording #3 (from Abrolhos 
Archipelago 2000), 1024 point FFTs, Hann window, 43.1 Hz resolution and 50% overlap. Unit 
transcription into letters is signalled above the boxes.
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inexperienced analyst, using another software (Audacity, using a 8192 points FFT, 
Hanning window, 99% overlap) independently transcribed part of recording #3 into 
a series of units as a comparison with the first transcription and a check on the robustness 
of our method (see section 5.2).

3. The Levenshtein distance recurrence plots

3.1. Definition of the Levenshtein distance recurrence plot of ordern

To visualise the structures contained in a recording, we compute a distance matrix, using 
OCTAVE (Eaton et al. 2009) in the following way. Each recording is transcribed as a string 
of N letters representing sound units (see section 2.2). Then, we define extracti as an n- 
letter extract beginning with unit number i. The length of the extracts n is taken much 
smaller than the total length of the string N. The Levenshtein distances dij ¼ Levenshtein 
distance ðextracti; extractjÞ between all pairs of n-letters extracts are computed.

The Levenshtein distance between two strings is the minimum number of insertions, 
deletions and substitutions necessary to transform one string into the other (Levenshtein 
1965). Note that the computation of other types of distance matrix could be achieved 
choosing other distances between two strings of letters: Jaro-Winkler, Damerau- 
Levenshtein and Hamming distances for example.

For convenience, we defined a correlation index by: 

cij ¼
n � dij

n 

Thus, the coefficients of the matrix satisfy cij 2 ½0; 1�. The coefficient 0 means maximum 
Levenstein distance and thus minimal correlation. The coefficient 1 means zero 
Levenstein distance and thus maximal correlation.

The resulting matrix ðcijÞ is a square matrix of size N � nþ 1 ’ N, symmetrical, and 
has ones on its diagonal (maximal correlation between one element and itself). As an 
example, Figure 2 shows the graphical representation of this Levenshtein distance matrix 
of recording #2 (a total of N ¼ 1260 units), with 5-letters extracts (n=5).

The result is a recurrence plot of a dynamical system (as defined in Eckmann et al. 
(1987)) in which a state is a vector of n letters. We call this special recurrence plot the 
Levenshtein distance recurrence plot of order n (LDRPn).

The value of n is chosen by the analyst. In our data, the visual information is basically 
the same when n varies (see Figure 3). For low values of n, there are few levels of Grey. 
For high values of n, the resulting figure is more blurred (see Figure 3), and the 
computation of Levenshtein distance is rather time-consuming (the time of computation 
of the distance between two strings of n letters is proportional to n2) (Wagner and Fischer 
1974). The computation of the LDRPn for n ¼ 17 and N ¼ 800 in Figure 3, takes around 
1 h in a domestic computer. The parameter n can be adapted depending on the use of the 
LDRPn: visual analysis, extraction of structures, etc.

BIOACOUSTICS 5



Figure 2. Example of a Levenshtein distance recurrence plot (5 letter extracts) created form recording 
number #2 from Abrolhos Archipelago (2000). The number of units of this recording is N ¼ 1260. The 
coefficients of the matrix denote correlation between 5 letter extracts (0 is no correlation, 1 is maximal 
correlation).

Figure 3. Recording #5 (from Abrolhos Archipelago 2001): Levenshtein distances recurrence plots for 
different values of the length n of the extract (2,7,12 and 17).
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3.2. Visual identification of main structures in the recurrence plot

Figures 2, 3 and 4 show obvious structures in the recording. On the diagonal of the 
matrix, squares represent auto-similar structures. Rectangles out of the diagonal show 
whether these structures correlate with each other. The high contrast of this representa-
tion is due to the sparsity of input representation (letters) added to the efficiency of the 
distance operator.

In Figure 4, we annotated the two different scales of structures found in all recordings 
of this study. First, a global pattern can be seen that is reproduced periodically (the 
‘period’ can be seen in the horizontal or vertical regularly spaced correlations of parts of 
the recording). We thus define a song as the largest repeated structure that can be found 
in a recurrence plot. The song is repeated with a high level of similarity, apparent in the 
non-zero correlation with other songs. This structure is obvious in our representation, it 
is also in accordance with the general literature on humpback whale bioacoustics (Payne 
and McVay 1971; Mercado-III et al. 2003; Cholewiak et al. 2013).

A second scale of the structure is visible in the LDRPn: each song is itself composed of 
several auto-similar parts or ‘squares’ (Figure 4). These parts are not repeated within a song 
(square 1 does not correlate with others during the same song). We define a theme as the 
string of units corresponding to a ‘square’, or self-similar part of a song. With this 
definition, we are consistent with general literature on humpback whales (Mercado-III 
et al. 2003) which states that a theme is a repetition of similar phrases composed of similar 
sound units. Nevertheless, it is difficult to see a distinctly visual signature of phrases in the 
recurrence plot. Anyway, the separation of themes in squares could help a humpback whale 
song analyst to identify phrases in each series of units corresponding to a square.

Figure 4. Recording #1 from Abrolhos archipelago, 2000: Levenshtein distances recurrence plot 
commented (n=5). The main structures of humpback whale sound production appear: songs in 
blue, themes in yellow.
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4. Automation of the extraction of songs

Based on the computation of the distance recurrence plots, we wrote a routine that 
separates songs in a fully automatic way. We defined the song as a structure that is repeated 
with a good amount of similarity, with the largest possible scale in our recording. The 
approximate size (in number of units) of a song can be estimated by a two-dimensional FFT 
of the Levenshtein distance recurrence plot of order n (see Figure 5, left). Then, the 
following algorithm for song extraction is proposed:

(1) Compute the Levenshtein distance recurrence plot for a given value of n
(2) Perform a 2D Fast Fourier transform of the matrix considered as an image. A peak 

at a frequency inverse to the mean length of the song can be seen (Figure 5, left). 
The abscissa of this peak is then measured to obtain an order of magnitude of the 
lengths of the songs.

(3) Read the first line of the Levenshtein distance recurrence plot and select the 
columns with non-zero correlation. Sum all these columns to improve the signal- 
to-noise ratio. The resulting column is represented in Figure 5, centre.

(4) Find sudden increases or upward steps in the resulting column using convolution 
with a step filter (Figure 5, right). Keep only the steps compatible with the average 
song size predicted by the 2D Fourier transform. Here, we defined the margin of 
acceptability at one-third of the average size given by FFT analysis.

(5) Extract the units transcribed from the recording between two upward steps: this is 
a song (Figure 6).

5. Results: song extraction

5.1. Extraction of songs in series of units from Abrolhos Archipielago in 2000/2001

We applied the algorithm presented in the previous section to the five recordings of our 
study. Visually, the same features corresponding to our definition of songs and themes 
appear in each Levenshtein distance recurrence plot. The recording #4 is too short and do 
not present a complete song and our routine consequently did not extract any song. In all 

Figure 5. Steps in the extraction of the songs. Left: Step 2 of the algorithm, extract of the 2D fast 
Fourier transform of the Levenshtein distance matrix (for n ¼ 5, recording #1). A peak is visible at 
a frequency of about 0.045 units� 1 (which means a scale of 200 to 250 units of the recording) centre: 
Step 3 of the algorithm, the horizontal sum of selected columns of the recording 1, n=5. Right: Step 4 
of the algorithm, each peak shows the transition between two songs.
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the other recordings, the extraction of songs was achieved successfully. In recording #5, 
only one song is present.

We compared the extraction of songs carried out by our routine, based on the 
Levenshtein distance recurrence plot, and songs delimited by a human expert. 
Comparison was performed for the recording #3. The analyst followed the instructions 
described in Cholewiak et al. (2013), the choice for the beginning point of the first song 
was the first complete theme (composed of the same type of letters). The extraction of the 
songs (presented in supplementary material #2) is equivalent by both methods. The only 
difference sits in a few transitional units (less than 5 units per song).

It is interesting to note that recurrence plots can show transitional phrases, which are 
combinations of units from the previous theme with ones from the next theme the male 
sings (Frumhoff 1983; Payne et al. 1983; Cholewiak et al. 2013). Transitional phrases 
appear in our recurrence plots as blurry areas around self-similar ‘squares’ that represent 
the themes. It is particularly clear in Figure 6 (right), where the three squares corre-
sponding to themes numbers 1,2 and 3 inter-penetrate each other. On the contrary, the 
transition between themes in Figure 6 (left) is quite abrupt: the squares are well separated.

Once the songs are extracted, the automatic measurement of the songs’ parameters is 
easily done. As an example, we automatically computed songs’ length, alphabet (set of 
different units – or letters – used in the song), and importance of units (% of the number 
of occurrence of a particular unit in a song occurrence compared to the length of this 
song). These results are presented in Table 1 and Figure 7.

Figure 7 gives the percentage of each unit in the song occurrence of recording #1. The 
first occurrence of the song, in red (or circles), is quite different from the other songs. 
Indeed, during the first song occurrence, a series of units are masked by boat noise and 
were labelled with a special letter (H) in place of a whole theme containing the letters J,K, 
L,M,O,P. It can be seen in the Levenshtein distance recurrence plot where the first theme 
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of the first rendition of the song does not correlate with any of the themes of other 
renditions (Figure 4). However, the recurrence plot still enabled us to extract the song 
structure accurately.

The results of Table 1, where the mean length of all the songs analysed is 255, compare 
well with the results of Arraut and Vielliard (2004), working with the same data but with 
manual analysis, where the mean song length is around 250–300 units.

5.2. Robustness of the extraction method

In order to test the robustness of our method of songs’ extraction, we first checked that 
the extraction is not dependent on the order n of the Levenshtein distance recurrence 
plot LDRPn. For each recording (#1 to #3) the number of songs extracted was the same 
for n going from 4 to 10.

We then checked that the extraction is not heavily dependent on the unit transcrip-
tion. For recording #3, an inexperienced analyst transcribed part of it in a string of units. 
Even though the confirmed analysts transcribed 1614 units and the inexperienced one 

Table 1. Mean and standard deviation of the songs’ length for recordings #1,2,3 and 5.
Recording Year nb of songs Mean length (in units) Standard dev. (in units)

#1 2000 4 238 22
#2 2000 6 177 25
#3 2000 8 301 72
#5 2001 1 438 None
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Figure 7. Percentage of each unit in the four song occurrences of recording #1 from Abrolhos 
archipelago, 2000 (colours are red, blue, green and black for song occurrences 1,2,3,4 respectively). 
The first occurrence of the song in the recording (see Figure 4), in red in this figure is quite different 
from the other occurrences in term of its units, due to boat noise that prevented an accurate 
identification of several units.
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1855, the recurrence plots have the same appearance (Figure 8). The automatic extraction 
of the song was then performed on these two strings of units and gave similar results: four 
songs are extracted in each case. The ratio ru of the length of the song extracted from the 
series of units produced by the confirmed analysts and the length of the song extracted 
from the series of units produced by the inexperienced analyst (measured in unit) is very 
stable for each song extracted (ru ¼ 0:86� 0:006). We also checked that the determina-
tion of the start and end of an automatically extracted song is consistent between the 
human transcriptions (with a ratio between songs’ durations (measured in seconds) of 
rt ¼ 1:01� 0:04 between the two human analysts). Thus, our method of song extraction 
is remarkably robust to differences in unit labelling due to the subjectivity or lack of 
training of the analyst.

In addition, we checked the robustness of our method to accidental errors in units 
transcription, not considering whether this was done automatically or manually. We 
applied the extraction routine to the strings of units of recording #1 and #2, gradually and 
randomly changing a percentage of these units (replacing it randomly by a unit from the 
same recording). For each percentage of error, the test was repeated 20 times and the 
number of extracted songs was noted. The result is visible in Figure 9, where for each 
percentage of errors in unit identification, the average number of extracted songs is 
plotted, along with the error bar corresponding to the variation across the 20 draws. We 
see that for less than 5% of randomly changed units, the results are very coherent with the 
original recording. Even as the rate of error grows, the number of extracted songs stays 
close to the nominal one (1 song of difference for up to 20% of errors).

Last, we applied the extraction routine to strings of units of recording #1 where we 
gradually and randomly removed a percentage of these units. In this case, until 40% of 
units were removed, the routine extracts the correct number of songs for more than 90% 
of the tries. Therefore, our extraction method is robust to missing units during the 
transcription, for example when the signal-to-noise ratio of the vocalisations of hump-
back whale is low. However, this was done for randomly chosen units and do not account 

Figure 8. Recurrence plots of part of the recording #3 from Abrolhos archipelago, 2000, with n ¼ 5. 
Left: transcription into units by confirmed analysts, Right: transcription into units by an inexperienced 
analyst.
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for systematic errors (such as would happen if one type of unit only would be lost in the 
noise, which is not an improbable case).

6. Discussion

6.1. Use of recurrence plots

Recurrence plots are a very visual way of representing the sequence of units, allowing 
immediate global identification of the structures of the highly organised vocalisation 
emitted by male humpback whales, presented in the preceding sections. It helps with 
getting a qualitative view of their variability as well as the type of transition (abrupt versus 
gradual change) between these structures. It could be used as a valuable tool for every 
highly structured type of sound emission by animals and seems particularly well fitted to 
study the ever-changing structures of humpback whale songs.

Recurrence plots can also be used for automatic unsupervised selection of different structure 
levels in the recording translated as a series of units. The results of the previous section indicate 
that our method of extraction is quite robust to errors during manual or automatic transcrip-
tion of the sound units into a string of letters. The quantification of errors detected for song unit 
classification systems in studies such as Dunlop et al. (2007), Ou et al. (2013) or Rekdahl et al. 
(2018) is usually from 10% to 20% which compares well with the percentage of errors that still 
enables us to automatically extract songs.

The use of recurrence plot to extract songs is still a work in progress but these results are 
encouraging. Even in the situation of different criteria for unit labelling in different recordings, 
the song session structure will probably still be visible. This is an additional benefit of the 
proposed recurrence plot methodology, as it undermines differences in unit labelling among 
studies. The plot gives a representation of each recording, rather independent of the string it 
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was calculated from. In this way, the recurrence plots provide standardised limits of patterns in 
the recordings that can be further explored and compared.

This automated song extraction is the first step for many more studies regarding song 
analysis, and comparison between songs. The automated extraction of other structures 
(such as themes) could be performed based on this tool but is not as straightforward as 
songs extraction. Some of the difficulties of theme extraction are: blurred or imprecise 
transition between themes, unclear definition of a theme, very short or evanescent 
themes. Thus, any method of automated theme extraction would probably be rather ad 
hoc, which is the reason why we did not perform it on our limited set of data.

Finally, a matrix comparing two series of units extracted from two different recordings 
can be computed which shows the similarity between two recordings in term of song 
rendition. This type of analysis could enable people to compare quickly two song bouts 
distant in time or space.

6.2. Large scale automatic treatment of humpback whales’ recordings

This study is a step towards the automatic treatment of large-scale recordings. Automatic 
tools to transcribe sounds into a string of letters such as the one developed in Dunlop et al. 
(2007), Glotin et al. (2009), Rickwood and Taylor (2008), Pace et al. (2012), Ou et al. (2013), 
Razik et al. (2015), Bartcus et al. (2015) or Rekdahl et al. (2018) could be used beforehand. 
Then, our method could be applied to extract, classify and compare songs and their 
features along with other approaches to visualise the structures of humpback whale’s songs.

Finally, analysing humpback whale song structures with recurrence plots would be 
difficult in the case of a recording where many singers are vocalising together. In this 
case, the separation of these singers is a challenge that has to be addressed.

Highlights

● The complex hierarchical and cyclical structure of humpback whale song can be visually 
represented in recurrence plots.

● Recurrence plots of humpback whale singing provide insights into the intra-individual varia-
tion in song structures of a male.

● Our tool can help extracting structures, from long recordings, removing some human percep-
tual caveats.
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