
A standardized method of classifying pulsed sounds and its
application to pulse rate measurement of blue whale
southeast Pacific song units

Julie Patris,1,a) Franck Malige,1 Herv�e Glotin,1 Mark Asch,2 and Susannah J. Buchan3,b)

1Universit�e de Toulon, l’Universit�e d’Aix-Marseille, Centre National de la Recherche Scientifique, Laboratoire
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Pulsed sounds are an interesting example of complex biological sounds, frequent in cetaceans’

vocalizations. A two-group classification of these sounds is proposed: tonal or non-tonal. Through

two simple mathematical models, it is shown that this classification can lead to better techniques

for measuring the pulse rate. This classification is thus useful for improving measurement accuracy,

but can also help in formulating hypotheses regarding mechanisms of sound production. This

method of classification is applied to south Pacific blue whale vocalizations and it is found that the

pulse rate corresponds to the fundamental frequency (not expressed in the spectrum) of the song.

Thus, the hypothesis that the sound is produced by only one organ and then filtered by the body of

the giant is reinforced. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5126710

[WWA] Pages: 2145–2154

I. INTRODUCTION

A. Pulsed sounds in blue whale song types

Among the numerous varieties of animal sounds, pulsed

sounds are particularly complex and interesting and are com-

mon in marine mammals (Au et al., 2000; Richardson et al.,
1995). A pulsed sound is the repetition of similar “pulses” or

short signals, with a constant pulse rate, and aurally these

sounds are often perceived by humans as amplitude modu-

lated sounds. Among cetaceans, such a repetition of similar

“pulses” has been studied in odontocete vocalizations

(Murray et al., 1998; Miralles et al., 2012) and is also

described in mysticete songs (Cummings and Thompson,

1971). By way of an example, two biological pulsed sounds

from marine mammals—blue whale (Balaenoptera muscu-
lus) and bottlenose dolphin (Tursiops truncatus)—are repre-

sented in the time domain in Fig. 1.

As with most baleen whales, blue whales produce high

energy, low frequency, and long duration vocalizations

(Cummings and Thompson, 1971) that are highly structured

in time, with endless repetition of remarkably self similar

phrases. Since only males have been reported to produce

these sounds (Oleson et al., 2007), they are thought to play

a role in reproduction, as happens in humpback whales

(Megaptera novaeangliae) (Glockner, 1983). Several very

distinct song types have been registered for blue whales

worldwide, each characteristic of a population, and most of

these song types include units that are aurally characterized

as pulsed (McDonald et al., 2006). Because of the very

interesting phenomenon of frequency decrease in blue

whales’ songs (McDonald et al., 2009), it is particularly

critical to have good descriptors of the song, and the pulse

rate might be a useful metric. However, though the pulse

rate is generally part of the description of the song

(Watkins, 1968, Cummings and Thompson, 1971; Miller

et al., 2014), no recent efforts have been made towards

studying its properties and the best methods to measure it.

In this paper we aim to show that it can be useful to

classify pulsed sounds in two different classes: a tonal (or

periodic) signal, or a non-tonal (aperiodic) one: first, because

the technique for measuring the pulse rate is different

whether the signal is tonal or not; and second, because it can

help in understanding the sound production mechanisms.

B. Sound production in cetaceans

Sound production in large marine mammals is a difficult

subject since live animals cannot be examined. Though

physical and anatomical analyses have been proposed

(Aroyan et al., 2000), sound production in mysticetes is still

poorly known compared to odontocetes (Au et al., 2000) and

is an active area of research (Mercado III et al., 2010;

Reidenberg, 2017). Some studies try to reproduce sound pro-

duction using theoretical models or sound production

machines (Adam et al., 2013). According to these studies

and anatomical analyses, sound could be produced by vibrat-

ing U-shaped vocal folds and a complex system of resona-

tors (lungs, laryngeal sac, trachea, and other tissues) that

modify the sound as a passive filter.
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Regarding pulsed sounds, they can be produced through

the action of two organs as in killer whales (Orcinus orca)

(Brown, 2008). In this case the sound produced is called

“two-voiced sound”: one high frequency sound is modulated

in amplitude by the action of another organ at a much lower

frequency.

Another way to produce pulsed sound is to use one

organ which regularly produces similar pulses. Reidenberg

(2017) proposed such an organ for the production of pulses

in mysticetes’ sounds: “a pair of broad tissue flaps supported

by the corniculate cartilages.” Dziak et al. (2017), in a recent

study of north Pacific blue whales’ songs, also shows the

growing interest in finding clues in signal processing and

signal modeling for sound production.

C. Classification of pulsed sound for analysis

The goal of this paper is to propose a simple classifica-

tion of pulsed sound, along with two mathematical models

(Sec. II). We show the interest of such methods for obtaining

a better description of the sound, to achieve more accurate

measurements of marine mammals’ vocalizations, but also

as a clue to sound production mechanisms (Sec. II). While

most of the efforts of describing pulsed sounds have been

dedicated to odontocetes (Murray et al., 1998; Rankin et al.,
2007; Simard et al., 2008; Brown, 2008), we propose to ana-

lyze pulsed sounds emitted by blue whales in Chilean coastal

seas (Buchan et al., 2014) as an example of the application

of our method (Sec. III). In this case, we show that our anal-

ysis gives a better precision in the songs’ description and

tends to confirm the source-filter hypothesis for sound

production.

II. A METHOD FOR THE ANALYSIS OF CETACEANS’
PULSED SOUNDS

A. Tonal sound versus non-tonal sound

The Fourier transform of a pulsed sound shows peaks

(or lines) of frequencies, with a constant separation between

frequencies (see Fig. 2). As can be verified in our models

below, and is also shown in Watkins’ original paper

(Watkins, 1968), this band interval corresponds, in the time

domain, to the repetition rate of pulses, or pulse rate, called

fpulse in our study. These bands are often called side-bands in

the literature. In order to better understand and characterize

FIG. 2. (Color online) Spectra (by means of a FFT) of the two biological

pulsed sounds presented in Fig. 1. (a) Unit B of the southeast Pacific song

type 2 of a blue whale (Balaenoptera musculus), signal length is 4 s. (b)

Buzzed sound of a bottlenose dolphin (Tursiops truncatus), signal length is

0.07 s.

FIG. 1. (Color online) Waveform of two biological pulsed sounds, both

recorded off Cha~naral de Aceituno Island, Chile, in 2017 with an autono-

mous recorder at fs ¼ 48 kHz (see Sec. III B for details on data acquisition).

The amplitude on the y axis is in relative pressure. (a) Extract of unit B of

the southeast Pacific song type 2 of a blue whale (Balaenoptera musculus).

(b) Extract of a bottlenose dolphin (Tursiops truncatus) buzzed sound. The

signals have been identified by experts, given the ecological context of the

location, and through comparison with other recordings made locally.
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the pulsed sound, we will examine the relation between this

side-band separation (or pulse rate) and the abscissa of the

peaks.

Let us call {fi} the abscissa of the peaks in the spectrum

and Df ¼ fpulse the constant band interval and visualize them

in our examples. Table I gives the peak frequencies {fi} and

the averaged band interval or pulse rate Df ¼ fpulse for the

two examples of pulsed sound presented in Fig. 2.

Frequency uncertainty due to signal length limitation is

0.25 Hz for the blue whale’s signal and 15 Hz for the

dolphin’s.

We propose the following criterion for a classification

of pulsed sounds in two groups: if there exists ðkiÞ 2N such

that for all i,

fi ¼ kiDf (1)

then the sound will be called tonal (although the fundamental

frequency may not be visible or expressed in the spectrum).

That is, the peak frequencies {fi} are all integer multiples of

the pulse rate Df. In this case the signal is periodic of period

Tpulse ¼ 1/fpulse, and fpulse is the fundamental frequency of

the sound. Else, the pulsed sound will be called non-tonal. If

we examine again our two examples of the blue whale song

and the dolphin buzz, we see that the former can be classified

as a tonal signal, whereas the latter cannot (see Table II).

Based on this classification, Sec. II B will examine how

the pulse rate can be measured in each case, with the help of

two mathematical models.

B. Mathematical models for the measurement of
pulsed sound parameters

In this section we present two mathematical models of

pulsed sounds. The first one, model A, can only apply to a

signal where the peak frequencies {fi} are integer multiples

of the band interval or pulse rate Df (tonal signals). The sec-

ond one, model B, is more general and can be applied to

either of the two possibilities described in Sec. II A. In both

models, we consider the pulsed sound as infinite in time,

which means we are not addressing the effects of the global

duration of the sound. Eventually, if needed, a window w cor-

responding to the global duration of the signal will be used

in the computation of theoretical formulas. For each model

we present and compute the Fourier transform and autocor-

relation function of the signal. These two operators are often

used in signal processing to analyze the signals and to mea-

sure parameters such as peak frequency and pulse rate.

1. Model A

Let us first consider a pulsed sound as the repetition of

distinct and similar pulses, separated by a duration Tpulse.

This is the point of view developed by Dziak et al. (2017) to

model unit B of the northeast Pacific blue whale song type.

Then the easiest way to mathematically represent such a

function of time is the convolution of a specific wavelet p
(the pulse) by a Dirac comb IIITpulse

, characterized by the

time Tpulse between each impulse. We note fpulse ¼ 1/Tpulse.

Thus, the signal shown in Fig. 3 can be written as

sAðtÞ ¼
X
n2Z

pðt� nTpulseÞ ¼ p � IIITpulse

� �ðtÞ; (2)

where * is the convolution symbol, ½g � h�ðtÞ ¼
Ðþ1
�1 gðuÞhðt

�uÞdu; IIITpulse
ðtÞ ¼

P
n2ZdnTpulse

ðtÞ is the Dirac comb distribu-

tion of period Tpulse, and dt0ðtÞ is the Dirac distribution centered

at t0. A good reference on these techniques is Appel (2008). We

note that sA is then a periodic function, of period Tpulse. There is

no phase difference between the pulses (see Fig. 3). A more

complete model could include an additive noise term, �(t),
usually assumed to be of zero mean and known (estimated)

variance.

The Fourier transform of the function sA(t) is defined by

SAðf Þ ¼
Ðþ1
�1 sAðtÞe�2ipftdt and gives

SAðf Þ ¼ Pðf Þ � IIIfpulse
ðf Þ; (3)

TABLE II. Ratio between frequencies fi of Table I and pulse rate of the two

examples shown in Fig. 2. A ratio close to an integer is compatible with a

tonal sound. A non-integer ratio excludes the possibility of having a tonal

sound.

f1
Df

f2
Df

f3
Df

f4
Df

Whale 3.04 6 0.1 4.03 6 0.1 5.00 6 0.1 6.01 6 0.1

Dolphin 26.55 6 0.24 27.54 6 0.24 28.55 6 0.24 29.55 6 0.24

FIG. 3. (Color online) Model A in waveform (top) and its FFT (bottom). In

model A, we choose the pulse as the product of a sine function of frequency

f0 ¼ 31.7 Hz with a Gaussian of standard deviation (r ¼ 0.02 s). We also

choose fpulse ¼ 6 Hz. In the FFT we can see that the peaks are multiples of

fpulse ¼ 6 Hz.

TABLE I. First peak frequencies and average pulse rate, in Hz, of the two

examples shown in Fig. 2 as measured from the spectra. Uncertainties

(measured by the standard deviation, r) are 0.25 Hz for blue whale and

15 Hz for bottlenose dolphin frequency measurements. Standard deviations

for Df have been computed by measuring all peaks and not only the first

four.

f1 f2 f3 f4 Df r(Df)

Whale 19.0 25.2 31.3 37.6 6.26 0.25

Dolphin 18900 19610 20330 21040 712 6
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where P(f) is the Fourier transform of the wavelet. In Fig. 3,

p(t) is a Gaussian multiplied by a sine of frequency f0
¼ 31.7 Hz and its Fourier transform P(f) is therefore a

Gaussian centered on f0. We observe that the Fourier trans-

form of the signal is the spectrum of the pulse P multiplied

by a Dirac comb. Thus, the spectrum of sA is a set of

frequency bands at integer multiples of fpulse (Fig. 3, bot-

tom). The frequency band with higher energy (30 Hz) does

not correspond to f0 ¼ 31.7 Hz (even if the wavelet energy

was maximal at this frequency) because of the multiplication

by the Dirac comb.

It is important to underline that in practice, the signals

analyzed are finite of duration Tsignal. In this case, we can

write sA,finite (t) ¼ sA(t) � w(t) where w is a window of dura-

tion Tsignal. A classical window is the rectangular window,

built on an indicator function wðtÞ ¼ 1½�Tsignal=2;Tsignal=2�ðtÞ, but

any kind of window can be used, as in Dziak et al. (2017). In

this case, the Fourier transform is

SA;finiteðf Þ ¼ ðP� IIIfpulse
Þ �W

� �
ðf Þ; (4)

where W is the Fourier transform of w. In the case of a rectangu-

lar window, the Fourier transform is Wðf Þ ¼ Tsignal

� sincðpTsignalf Þ, a cardinal sine giving a width to the peaks in

Fig. 3, linked to the value of Tsignal.

The autocorrelation function of a signal s is

CsðsÞ ¼ limT!þ1ð1=TÞ
Ð T=2

�T=2
sðtÞs�ðtþ sÞdt, where s* is the

complex conjugate of s. In the case of a finite signal sA,finite

and a rectangular window wðtÞ ¼ 1½�Tsignal=2;Tsignal=2�ðtÞ, the

autocorrelation function is

CsA;finite
ðsÞ ’ K

s
Tsignal

� �
�

X
n2Z

jPðnfpulseÞj2e2ipnfpulses
� �

;

(5)

where K(t) is the triangular function (K(t) ¼ 1þ t on [–1; 0],

K(t) ¼ 1 – t on [0,1] and zero outside of [–1; 1]). The proof

is very similar to the proof given in the Appendix for model

B and will not be detailed here. An important remark is

that the first maximum of the modulus of the autocorrelation

function (other than s ¼ 0) is obtained for s ¼ Tpulse, the

period of the signal. Thus, for this model of pulsed sound,

the autocorrelation, or the summed autocorrelation (Wise

et al., 1976), is a good, unbiased tool to measure the pulse

rate.

2. Model B

We will now examine the case when the pulsed sound

can be described as a tonal sound modulated in amplitude by

a periodic function. This kind of pulsed sound has been

described by Watkins (1968) or Brown (2008). A straightfor-

ward way to represent this signal is to multiply a tonal func-

tion gT0
(characterized by a fundamental frequency f0) by a

signal that could be an envelope e convolved with a Dirac

comb (of period Tpulse). We assume that fpulse � f0 so that

the tonal function gT0
is modulated in amplitude by a func-

tion with a much smaller frequency.

We write

sBðtÞ ¼ gT0
ðtÞ �

X
n2Z

eðt� nTpulseÞ

¼ gT0
ðtÞ � e � IIITpulse

� �ðtÞ: (6)

In this case, the signal is not a periodic function. If we exam-

ine each of the “pulses,” they do not have the same phase

(see Fig. 4). This is due to the multiplication of two tonal

functions with different periods.

Let us compute the Fourier transform of such a signal.

We obtain

SBðf Þ ¼
X
n2Z

EðnfpulseÞGf0ðf � nfpulseÞ; (7)

where E and Gf0 are the Fourier transforms of e and gT0
,

respectively. The proof is given in the Appendix. In this for-

mula, as gT0
is a tonal sound, only multiples of f0 are found

in its spectrum and thus SB(f) is different from zero only if

f – nfpulse is a multiple of f0, that is only if f ¼ nfpulse þ mf0,

which is usually not a multiple of fpulse. In this case, side-

bands appear in the spectrum at distances nfpulse of mf0. In

addition, if the tonal signal gT0
ðtÞ has its energy concentrated

at the frequency f0, and if the Fourier transform of the enve-

lope E(f) is sufficiently regular, we see that the pulsed signal

sB has a maximum of energy also at f0 (see Fig. 4).

As gT0
is a tonal signal with fundamental f0, we can

write its Fourier series as gT0
ðtÞ ¼

P
n2Zane2ipnf0t. Then the

autocorrelation function of the finite signal associated to

model B is

CsB;finite
ðsÞ ’ Kðs=TsignalÞ

X
n2Z

janj2e2ipnf0s
� �

�
X
m2Z

jEðmfpulseÞj2e2ipmfpulses
� �

: (8)

The proof is given in the Appendix. Contrary to the model

A, the non-zero maximum of this function is not obtained

for s ¼ Tpulse (see remark in the Appendix). Thus, the

FIG. 4. (Color online) Model B in waveform (top) and its FFT (bottom). In

this model, we choose the tonal function gT0
as a pure sine function

of period T0 and the envelope e as a Gaussian with standard deviation r
¼ 0.02 s. As in Fig. 3, we choose f0 ¼ 31.7 Hz and fpulse ¼ 6 Hz. In the FFT

we can see that the frequency peaks are not centered at multiples of fpulse.
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maximum of the autocorrelation function is a biased estima-

tor of the pulse rate in this case.

C. Conclusions on the method

1. Consequences on measurement techniques

As can be seen in Sec. II B, if the pulsed sound is tonal,

the autocorrelation function is a good tool to measure the

pulse rate fpulse. This can be of importance because the auto-

correlation function method can be much more precise than

other methods, as is shown in an example in Sec. III E.

Thus, our recommendation for a precise measurement of

pulsed sound characteristics would be to:

(1) compute the fast Fourier transform (FFT) of the

whole pulsed signal (the FFT resolution in frequency is

1/Tsignal, so it is important to have as long a signal as

possible);

(2) measure the frequencies, {fi}, corresponding to peaks in

the FFT;

(3) compute their interval Df ¼ fpulse or find an approxima-

tion of Df ¼ fpulse by getting the envelope of the signal

(the envelope can be obtained by squaring the signal and

low-pass filtering it) and then compute the maximum of

the autocorrelation function of the envelope;

(4) check whether the signal is tonal or not by examining

the quotients fi/Df;
(5) if the signal is tonal, get a better approximation of Df
¼ fpulse by finding the first maximum of the modulus of

the summed autocorrelation function.

2. Consequences on sound production

If the sound is tonal (as in model A for example), then it

is compatible with the action of only one source of sound

production, altered by a passive filter (source-filter theory)

(Fant, 1960). This is the same case as formants in human

voice production (Flanagan, 1965; Howard and Angus,

2006), but the sound will appear “pulsed” or “amplitude

modulated” when the first harmonics are filtered out. This

has been shown to be the case in some musical instruments

(e.g., timpani or trombone) or some birds [e.g., Parus atrica-
pillus (Nowicki and Capranica, 1986)]. Tonal pulsed sounds

are also compatible with the regular repetition of very short

separated pulses produced by one organ as proposed by

Dziak et al. (2017) or by Reidenberg (2017).

If the sound is not tonal (as in model B for instance),

then it is a combination of sounds with two different fre-

quencies (f0 and fpulse) that are not linked. In this case, it is

not compatible with the source-filter theory. One possibility

is that two independent organs are used to produce the

sound: one produces a signal, and the other acts as an ampli-

tude modulation of the first signal. As shown in Sec. II A,

the dolphin’s buzz seems not to be a tonal signal, and our

analysis is thus consistent with the mechanism proposed by

Au et al. (2000) (p. 114) to explain rapid trains of clicks

involving the concomitant action of two generators.

III. APPLICATION TO BLUE WHALE SONG UNITS

A. The southeast Pacific blue whale song type

In this paper we are interested in a southeast Pacific blue

whale song called SEP2, first recorded in 1996 (Stafford

et al., 1999) and first described in detail in 2014 (Buchan

et al., 2014). A representation of the repeated phrase is given

in Fig. 5. This phrase, composed of several units, is usually

repeated every two minutes in a sequence lasting from some

minutes to a few hours.

These units have been described as pulsed (Buchan

et al., 2014). Their spectra show a set of peaks that are regu-

larly spaced but where the fundamental frequency does not

appear. This aspect is not due to a propagation effect, since

all recordings of this song type show the same aspect

FIG. 5. (Color online) Phrase of the southeast Pacific blue whale song, SEP2, recorded off Isla Cha~naral, Chile, February 2, 2017, sample frequency fs
¼ 48 kHz. (a) Waveform of relative intensity. (b) Time-frequency representation (FFT 212 points, overlap of 90%, Hanning window). Low frequency bars are

background noise.
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independently of the place and technology of the recording

device (Stafford et al., 1999; Buchan et al., 2014).

Alternatively, pulses are also visible if we zoom in on the

waveform, as in Fig. 1, top. However, the amplitude modula-

tion visible on the waveform is not rectangular as in sepa-

rated pulses, but rather like a sinusoidal modulation.

B. Data collection

Data were collected close to the Isla Cha~naral marine

reserve in northern Chile, between the Isla Cha~naral and the

mainland, at 29
�
0004400 south and 71

�
3102600 west during the

austral summer of 2016/2017, between 16 January 2017 and

27 February 2017. The hydrophone and recording package

BOMBYX II was deployed at 15–20 m below the surface on a

mooring where water column depth was 70 m. Data were col-

lected during three periods of two weeks in January and

February (Patris et al., 2017). The recording device BOMBYX II

was mounted by the University of Toulon and includes a

Cetacean Research C57 hydrophone and a commercial SONY

PCM-M10 recording device. The hydrophone has very high sen-

sitivity, a flat response down to 20 Hz and is omni directional at

low frequencies (less than 10 kHz). The hydrophone is alimented

by 9 V and high-pass filtered (C¼ 47 lF, frequency cut 0.15 Hz)

to remove the continuous component. The SONY PCM-M10

recorder (gain 6, Rin ¼ 22 kOhm) is equipped with a 256 GB

memory card, and set up in a specialized tube made by Osean

able to resist high pressure (Patris et al., 2017). Recording was

done at a sample rate of 48 kHz so as to record a vast diversity

of cetaceans, ranging from large whales to dolphins (namely bot-

tlenose dolphins, Tursiops truncatus), and at 16-bits, allowing

for high sensitivity without saturating the memory.

C. Analysis

A systematic analysis showed that blue whales’ songs were

present almost all days of recording (Balcazar and Alosilla,

2018). Long series of up to 70 phrases of high signal to noise

ratio (SNR) were recorded, especially on Feb, 2nd 2017.

We selected 100 high SNR phrases from this data set.

These phrases were selected visually on waveforms or spectro-

grams when all four units are clearly seen (Fig. 5). The phrases

were selected on six different days of our recording to reduce

the probability to have only one individual producing the

songs. On these phrases, we decided to apply our criterion to

characterize the nature of these blue whales’ “pulsed” sounds.

To this end, we measured the peak frequency set {fi} and pulse

rate Df ¼ fpulse. For the selected high SNR signals, we analyzed

the four units A, B, C, and D of the signals (see Fig. 5) that

have different frequency characteristics but are all pulsed.

These units are described in detail in Buchan et al. (2014).

1. Peak frequency

For all selected units, we performed an FFT on the first

4 s of the unit by a routine in OCTAVE (Eaton et al., 2009). We

measured one of the peak frequencies, which is the one that

on average shows the highest SNR. This fi is measured as the

frequency corresponding to the maximum value (in modulus)

of the FFT between 23 and 25 Hz for unit A and between 22

and 26 Hz for units B, C, and D. As we performed an FFT on

Tsignal ¼ 4 s of the signal, there is a quantification of

the measure of the frequency which is equal to 1/Tsignal

¼ 0.25 Hz and thus the uncertainty on this measure is on the

order of 1%. Due to the fact that the precision in frequency is

inverse to the duration of the signal, it is important to use as

long a signal as possible. Nevertheless, for consistency, we

chose to extract 4 s of each song unit. Indeed, unit A, B, C,

and D all last longer than, or exactly 4 s in each recording.

2. Pulse frequency

The estimation of fpulse by a difference of two frequen-

cies {fi} obtained by the FFT would lead to a poor precision,

on the order of 8%. Thus, to measure the pulse rate fpulse of

the signal with a better precision, we first performed an

envelope detection. To this effect we squared the signal and

then low pass filtered it using a fifth order Butterworth filter

with frequency cut-off at 10 Hz. Other methods of recon-

structing the envelope of the signal can be used (Glotin,

2001) giving similar results. Then a summed autocorrelation

(Wise et al., 1976) on the first 4 s of the signal was per-

formed to measure the pulse rate. The relative uncertainty on

this measure is around 1.5% (see Sec. III E).

D. Results

The results of the measures of the ratio between fi and

fpulse for the four units of the SEP2 phrase are shown in Fig. 6.

As we can see, the dispersion of the ratio value fi/fpulse

around a fixed integer number is small, especially for units C

FIG. 6. (Color online) For 100 high

SNR SEP2 phrases in 2017, histograms

of the ratio between the peak fre-

quency, measured by an FFT, and the

pulse rate, measured by envelope

detection and summed autocorrelation

for units A, B, C, and D [(a), (b), (c)

and (d), respectively].
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and D, which usually have a better signal to noise ratio. This dis-

persion can be explained by errors in measurements (see Sec.

III C), presence of additional low-frequency noise (see Fig. 5) or

variability in the frequency (especially for unit B). For unit A,

the ratio is near 8, and for the other units near 4. Thus, our mea-

sures are compatible with the hypothesis of a tonal signal for the

four units of the SEP2 song phrases. The values of the very low

fundamental frequencies f0 (which coincides with the pulse rate

fpulse) are given in Table III for 2017. This fundamental fre-

quency is very stable between two phrases.

E. Discussion

1. Measurements of pulse rate

As seen in Sec. II C, in the case of a tonal pulsed sound,

the measurement of fpulse can be done without bias by at least

three different methods: FFT of the signal and measure of

the gap between two frequency peaks as in Sec. II A,

summed autocorrelation of the envelope of the signal (see

Sec. III C), summed autocorrelation of the signal (Wise

et al., 1976). In Fig. 7, we present three histograms of the

values of fpulse (for unit C) measured by these three methods

on our set of 100 signals.

In the case of the measure of the difference between two

peaks of the FFT, the result has a quantification value of

0.25 Hz. This value is clearly seen in Fig. 7 and this method

is inefficient for measuring fpulse in this configuration (short

duration of the signal compared to the pulse period Tpulse).

The mean value and standard deviation of the measure is in

this case fpulse ¼ 5.9 6 0.2 Hz. However, the statistical distri-

bution of the values is far from being a normal distribution

[see Fig. 7(a)], so the standard deviation is clearly not a tool

that is adapted to this result.

In the case of the autocorrelation of the envelope of the

signal, we obtain fpulse ¼ 5.88 6 0.08 Hz [see Fig. 7(b)]. In

the case of the summed autocorrelation, we obtain fpulse

¼ 5.88 6 0.02 Hz [see Fig. 7(c)]. The best precision is thus

obtained by summed autocorrelation of the signal, however,

this measurement technique can only be used for a tonal

signal. Thus, we see the importance of first assessing the

tonal nature of the signal before measuring the pulse rate.

2. Sound production

Since we have shown that SEP2 units are tonal, they are

compatible with a sound produced by only one organ. The

whale song is either produced by a source-filter mechanism

[that could be U-folds and the body of the animal as

described in Reidenberg (2017)], or by the regular repetition

of pulse production by an organ (Dziak et al., 2017). In each

case the fundamental frequency of vibrations is given by the

pulse rate and is around 3 or 6 Hz for SEP2 units.

This could also be the case for another type of blue whale

song, units B and C of the SW Pacific song type recorded off

TABLE III. Mean fundamental frequencies f0 (shown to be the same as the

pulse frequency) with standard deviation of the four units of the SEP2 song

for the 100 phrases recorded in 2017.

Unit A B C D

fpulse (Hz) 2.98 6 0.19 6.52 6 0.17 5.88 6 0.08 5.89 6 0.11

FIG. 7. (Color online) Histograms of the estimation of pulse rate fpulse for unit C of 100 high SNR blue whale phrases. Three different methods of estimation

were employed. (a) Estimation by difference of frequency peaks fi in the FFT. (b) Estimation by summed autocorrelation of the envelope of the signal. (c)

Estimation by summed autocorrelation of the signal.
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New Zealand. Indeed, in Miller et al. (2014), a joint yearly

decrease at almost the same relative rate of peak and pulse fre-

quencies tends to show that these frequencies are linked, proba-

bly by an integer ratio, fpeak being around ten times fpulse.

However, pulsed units of blue whale song types worldwide

seem to not always be tonal sounds as are SEP2 units. For

example, the first unit of the pygmy blue whale song type from

south and west Australia (SE Indian song type) has side bands

indicating its pulsed nature (Gavrilov et al., 2011; Stafford

et al., 2011). Spectrograms presented in these studies show that

during a song occurrence the peak frequency increases (up-

sweep) while the pulse rate decreases (the gap between fre-

quency side-bands narrows) (Watkins, 1968). Thus, these two

frequencies are not linked by an integer ratio, and their produc-

tion is probably not explained by a source-filter mechanism.

IV. CONCLUSION

In this paper we presented mathematical models to bet-

ter characterize and thus understand a pulsed sound. Though

we compared them to only one example, the SEP2 blue

whale phrase, they could be compared to numerous other

biological pulsed sounds. The four units of the SEP2 song

type are found to be tonal in spite of their pulsed nature.

Thus, the fundamental frequency (or pulse rate) is the best

tool to characterize it. Some studies, like the study of fre-

quency decline in baleen whales (McDonald et al., 2009),

compare several song types worldwide. It would be useful to

have a single, common criterion to characterize a sound, and

the fundamental frequency may be a good option.
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APPENDIX: COMPUTATION OF THEORETICAL
FORMULAS AND PROOFS

In this appendix we present proofs of the results stated

in Sec. II B.

1. Fourier transform of the model B

Statement: If sBðtÞ ¼ gT0
ðtÞ � ½e � IIITpulse

�ðtÞ, then

SBðf Þ ¼
P

n2ZEðnfpulseÞGf0ðf � nfpulseÞ is its Fourier

transform.

Proof:

SBðf Þ¼ Gf0 � ðE� IIIfpulse
Þ

� �
ðf Þ

¼
X
n2Z

EðnfpulseÞdðf �nfpulseÞ �Gf0

� �
ðf Þ

¼
X
n2Z

EðnfpulseÞGf0ðf �nfpulseÞ:

2. Autocorrelation function of the model B

The signal sB;finite ¼ gT0
ðtÞ � ½e � IIITpulse

�ðtÞ � wðtÞ is of

the form

sB;finite ¼
X
n2Z

ane2ipnf0t �
X
n2Z

eðt� nTpulseÞ
� �

� wðtÞ

considering that gT0
is a tonal sound with fundamental equal

to f0 and thus can be expressed as Rn2Zane2ipnf0t.

Statement: Let a finite pulsed sound

sB;finiteðtÞ ¼
X
n2Z

eðt� nTpulseÞ
� �

�
X
n2Z

ane2ipnf0t � wðtÞ;

where wðtÞ ¼ 1½�Tsignal=2;Tsignal=2�ðtÞ which satisfies the two

hypotheses:

• the duration of the signal Tsignal is high compared to Tpulse;
• the frequency bandwidth of e is within the interval [–f0/2;

f0/2].

Then its autocorrelation function is approximately

CsB;finite
ðsÞ ’ K

s
Tsignal

� � X
n2Z

janj2e2ipnf0s
� �

�
X
m2Z

jEðmfpulseÞj2e2ipmfpulses
� �

;

where K(t) is the triangular function (K(t) ¼ 1þ t on [–1; 0]

and K(t) ¼ 1 – t on [0,1] and zero outside of [–1; 1]).

Proof: The Fourier transform of sB,finite is (see previous

paragraph)

SB;finiteðf Þ ¼
X
m2Z

EðmfpulseÞGf0ðf � mfpulseÞ �Wðf Þ

¼ Tsignal

X
m2Z

EðmfpulseÞ �
X
m2Z

andðf � mfpulse

"

�nf0Þ � sincðpTsignalf Þ
#
ðf Þ

¼ Tsignal

X
n;m2Z

an EðmfpulseÞ

� sincðpTsignalðf � mfpulse � nf0ÞÞ: (A1)
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The Pancherel formula [Appel (2008), p. 263] applied to sB,finite(t) and s�B;finiteðtþ sÞ gives that the autocorrelation func-

tion CSB;finite
ðsÞ is the inverse Fourier transform of the squared spectral density jFTðsB;finiteÞj2ðf Þ of the signal. Thus,

CSB;finite
ðsÞ ¼ FT�1

���� X
n;m2Z

an EðmfpulseÞ � TsignalsincðpTsignalðf � mfpulse � nf0ÞÞ
����
2

0
@

1
A:

The two facts that the duration of the signal Tsignal is high compared to Tpulse and that the bandwidth of e is within the

interval [–f0/2; f0/2] imply that for a particular f all but one term of this sum are very close to zero. Thus, we can say that

CSB;finite
ðsÞ ’ FT�1

X
n;m2Z

janj2 jEðmfpulseÞj2 � jTsignal sincðpTsignalðf � mfpulse � nf0ÞÞj2
� �

’
X

n;m2Z

janj2 jEðmfpulseÞj2 � FT�1 jTsignal sincðpTsignalðf � mfpulse � nf0ÞÞj2
	 


’
X

n;m2Z

janj2 jEðmfpulseÞj2 � e2ipðnf0þmfpulseÞsKðs=TsignalÞ

’ Kðs=TsignalÞ
X
m2Z

janj2e2ipnf0s
� �

�
X
m2Z

jEðmfpulseÞj2e2ipmfpulses
� �

:

Remarks. The maximum of
P

m2Zjanj2e2ipnf0s is

obtained when s is an integer multiple of T0 and the maxi-

mum of
P

m2ZjEðmfpulseÞj2e2ipmfpulses is obtained when s is an

integer multiple of Tpulse. Thus, in the case of a tonal signal

where Tpulse ¼ k T0, we will have a maximum of CSA;finite
for s

¼ Tpulse. In the case of a non-tonal signal (f0/fpulse is not an

integer), we will have a maximum of CSB;finite
at the multiple

of T0 which is the nearest value to Tpulse. In this case the

determination of Tpulse by autocorrelation has a bias.

A more detailed version of these proofs can be obtained

by asking the authors.
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