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Abstract—Passive acoustics allow to study large animals and
obtain information that could not be gathered through other
methods. In this paper we study a set of near-field audiovisual
recordings of a sperm whale pod acquired with a high-frequency
and small aperture antenna. We show how we analyze those
recordings in order to increase our knowledge regarding the
characterization of their vocalization.

Index Terms—Passive Acoustic Monitoring, Cetacean Survey,
Abyss Monitoring, 3D Tracking, Long Term Survey, Transient
Analysis, Weak Signal Detection, Autoencoder, FDTD.

I. INTRODUCTION

Due to their large size and long dives, sperm whales are
impossible to study in controlled conditions. The production of
their vocalizations remains less understood than that of other
smaller cetaceans such as dolphins. While anatomic descrip-
tions have been performed via dissections, functional aspects
and mechanisms involved are still unclear. We study their
acoustic production through data-driven techniques on multi-
channel near-field audio-visual recordings. Under the authority
of Marine Megafauna Conservation Organisation directed by
H. Vitry and, as part of the global program Maubydick, a
team led by F. Sarano has been conducting a longitudinal
study on the same group of 27 sperm whales since 2013. The
main goal is to understand the relationship between individuals
inside the family group and the dynamic of the Mauritian
population. The main originality is that, since 2017, the data
protocol is reinforced under the supervision of H. Glotin by
a high sampling rate hydrophone array that can record their
most acoustic intimate behaviour without disturbing them. We
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show in this paper the first results of these unique recording
of this endangered species, and the challenges opened for the
analyses, clustering and classification at the group versus the
individual levels of this complex transients including the most
advanced deep learning representation.

Two main studies are in progress: i) characterisation of
the vocalisation localization by multi-modal analysis; and ii)
an exploration of meaningful information contained in clicks
including individual signature. i) The Direction of Arrival
(DoA) is characterised using Generalized Cross-Correlation
(GCC) beamforming with adaptive time-frequency weighting
and pooling [1]. DoAs are crossed with the animal positions
obtained from the video by a simple tracking algorithm. In
the second study clicks are extracted and their DoA estimated.
Deep learning is employed to analyse fundamental aspects of
the clicks. Thus we propose new model, stereo autoencoders
(SAE) to analyse these complex transients.

II. MATERIAL

During the years, Franois Sarano and his team have been
periodically returning to Mauritius island in order to record
local Sperm Whales (Physeter macrocephalus, Pm). Each year,
we have been able to improve the recording protocol. Since
2017, on the initiative of H. Glotin, V. and F. Sarano has been
using a GoPro Hero 4 mounted on an a stereophonic acoustic
antenna of our design, based on our JASON SMIoT Toulon
ultra high velocity DAQ designed for this extreme recordings.
Our protocol evolved each year, with the access to additional
high quality hydrophones: 2 hydrophones in 2017, 3 in 2018,
and 4 in 2019. The hydrophones are from Cetacean Research.
The DAQ is the Qualilife sound card [2], which was used
in this study at 16 bits@600 kHz. It is able to record at a



Fig. 1. Blueprint of the 2018 antenna

Fig. 2. Franois Sarano holding the 2018 antenna (Image: F. Guerin).

sampling rate up to 2 MHz per channel, up to 5 channels.
In this paper, we focus on the results of 2018. The antenna is
composed of two C55 hydrophones. The third one is a C305
which has been changed by a C75 because the C305 was too
directive. The audio recording was on most of the time (during
all dives and part of boat transfers between dives), while the
video recordings were only done during dives. The audio files
are 1min 12sec long (350 MB) and continuous, while the video
recording was turn on manually.

III. CLICK DETECTION

Before doing any of the experiment we use a simple click
detector on all the sound files. We cross-correlate the signal
with one period of a 12.5 kHz sine which act as a band-
pass filter (bandwidth of echolocation clicks is 10–15 kHz [3]),
followed by a Teager-Kaiser filter [4], [5] and the extraction of
local maxima in 20 ms windows (twice the largest Inter-Pulse
Interval (IPI) of 10 ms [6]). We then convert the maxima’s
values into dB. The maxima usually form two distributions :
one that emanate from the click and one that emanate from
the maxima that are between click, which are maxima created

Fig. 3. Six frames from a video where the click have been localized. The
top right corner show for the frame the clicks’ azimuth / elevation, with the
black border being the GoPro screen border. Other videos are available on
http://sabiod.univ-tln.fr/workspace/Sarano 2018

by white noise. We thus filter out the noise by fitting two
gaussians on the distribution formed, and only keeping values
that are above the time the standard deviation of the gaussian
with the smallest mean [7].

IV. LINKING CLICKS TO THEIR EMITTER

Since the 2018 antenna had 3 hydrophones, we were able to
compute the elevation and azimuth of the clicks origin. With
the click detected in II, we computed the two independent
TDoA (Time Difference of Arrival) using the method describe
in [8]. In order to obtain the angles from the TDoA, we had
to suppose that the sperm whales where far from the antenna.
With the elevation and azimuth of each angle, each click origin
can be plotted on the video, as 3 shows. To do so, we converted
the elevation and azimuth to xy pixel coordinate while taking
into account the distortion added by the fish eye lens of the
GoPro. Unfortunately, the GoPro elevation was lost. Most
clicks seem to be shifted down in the video, which could be
explained by a wrong estimation of the GoPro elevation. The
GoPro video where re-synchronized with the audio recording
using cross-correlation. Each point (DOA of a click) stays for
7 frames (starting from the frames the corresponding click
is eared) on the video to make them easier to see. However
the antenna does not have means to measure its rotation in
space, which mean that every oscillation (which are strong due
to waves) will shift the scene. Seven frames is already long
enough for a point to give the impression that it is located
where it should not be, when it was in fact in the right place
in the first frames it was display. Since F. Sarano is able
to identify the sperm whales in the video, this localization
allowed us to link clicks to their emitter. This will allow us
to analyze the link between a click sequence and the sperm
whales behaviour that resulted.

http://sabiod.univ-tln.fr/workspace/Sarano_2018


Fig. 4. Various angle of view of the 3D TSNE
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Fig. 5. Autoencoder architecture

V. LEARNING LATENT SPACE AND INVARIANT BY STEREO
AUTOENCODER

In conclusion with the extraction of the TDoA from the
multichannel recordings, we were able to compute the DOA
(Direction of Arrival), which allowed us to pinpoint the source
location on the video. Since F. Sarano’s team is able to identify
each animal, we are able to tie each click to an individual,
thus giving us a database that can be used to understand more
deeply which features are tied to an individual, and which are
invariant and define the Pm sonar. We now use autoencoders
to analyse the data. The goal with the autoencoders is double.
As for usual autoencoders, the first aim was to study the
features captured by the autoencoders, which could be features
describing the individual that emitted the click, or features
describing the type of click that has been emitted. We show
that with the model we used, it was possible to obtain an
embedding space that clusters the examples regarding these
features as figures in 3D in Fig. 4.

For this study we chose a stereo autoencoder (Fig. 5) since
we already had similar work done with the same network
architecture. We thus chose to use the first two channels
because they are less noisy than channel 3, and recorded with
the same hydrophone, which could help the network to learn.
This autoencorder’s decoder is composed of two branches. One
that will reconstruct the signal, and one that will offset it to
match each channel input.

Layer type, Activation Input shape Kernel, stride Filters
Encoder

Convolution layer, tanh 2*12000*1 1*11, 1*4 64
Convolution layer,
leaky relu 5% 2*3000*64*1 1*1*64, 1*1*1 1

Convolution layer, tanh 2*3000*64 1*11, 1*4 128
Convolution layer,
leaky relu 5% 2*750*128*1 1*1*128, 1*1*1 1

Convolution layer, tanh 2*750*128 1*11, 1*4 128
Convolution layer,
leaky relu 5% 2*188*128*1 1*1*128, 1*1*1 1

Convolution layer 2*188*128 1*11, 1*4 128
Convolution layer,
leaky relu 5% 2*47*128*1 1*1*128, 1*1*1 1

Convolution layer 2*47*128 1*11, 1*4 128
Convolution layer,
leaky relu 5% 2*12*128*1 1*1*128, 1*1*1 1

Convolution layer 2*12*128 1*11, 1*4 128
Convolution layer 2*12*128 2*1, 1*1 256
Dense layer leaky relu 5% 3072 2048
Dense layer leaky relu 5% 2048 512
Dense layer 512 128

Decoder
Dense layer leaky relu 5% 128 1024
Dense layer leaky relu 5% 1024 2048
Dense layer leaky relu 5% 2048 2048
Transpose convolution,
leaky relu 5% 1*128*16 1*5, 1*2 8

Transpose convolution 1*256*8 1*5, 1*4 8
Transpose convolution 2*1024*8 1*5, 1*4 1

Extra branch
Dense layer,
leaky relu 5% 128 1024

Dense layer,
leaky relu 5%% 1024 2048

Dense layer,
leaky relu 5%% 2048 6000

Transpose convolution 2*3000*1 2*11, 1*4 1
Softmax 2*12000 1*12000 12000

TABLE I
MODEL ARCHITECTURE

The other goal of the autoencoder is to have an unsupervised
way of computing the TDoA. By computing TDoA in this
manner, the aim is to obtain better localization results than
with usual methods, such as the generalized cross-correlation.
Hence, we try to instance parameters of the 3D sonar produc-
tion model. Another output of this approach is to find invariant
in the embedded latent space related to a possible individual
signature of each individual, because we can feed the SAE
only with the localized / identified / named clicks from the
previous process.

VI. MODELISATION AND SIMULATION OF BIOSONAR
EMISSION

Obtaining the direction of each click, knowing which click
features characterize an individual and which describe the
information contain in a click help us improve the sperm whale
head model we made to understand his sonar. Knowing the
individual features allow us to study one sperm whale and
try to improve the other characteristics to better match the
recorded clicks, and then fix those characteristics and verify
that we still have good results when simulating other sperm
whales. Knowing the information contained in clicks is useful
to find on which part the sperm whale is able to act in order
to encode this information, or change the click in various
behaviour such as the one describe in [9].



Fig. 6. Top: Sperm whale slice. Bottom: 3D wave propagation simulation

Before trying more complex modelization methods, we tried
with simpler ones such as FDTD (Finite Difference Temporal
Domain). We design our model base on [10], [11]. Fig. 6
shows a slice of a 540 ∗ 220 ∗ 240 cm3 FDTD, with a 1 cm
space step and a 1 s. A 20ms simulation render in 1 hour. The
ABC (Absorbing Boundary Condition) use what is discribe in
[12].

VII. DISCUSSION AND CONCLUSION

Future work will complete AE with SiameseNets [13].
AEs work by reducing the signals to a few characteristics
while allowing their reconstruction. Siamese-nets are trained
to maintain small distances between representations of clicks
belonging to a given group, and large distances with others.
We will then group together clicks coming from the same
direction at similar times. The obtained representations are
visualized in search of interesting invariant like individual
acoustic signatures of each whale.
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