

QHB

ACOUSTIC ACQUISITION SYSTEM

QUALILIFE HIGHBLUE

QHB

Summary	
Features	6
Applications	7
Connectors Description	8
On Motherboard:	8
POWER Connector (J2:"POWER IN")	8
External SWITCH Connector (J1: "Switch")	8
External Capacitor (J3:"CAPA")	9
CR2032 Connector (U109)	9
Extension Connector (U402)	10
Uart 1 Connector	10
Uart 2 Connector	11
Uart 3 Connector	11
USB Connectors	12
USB HOST Connector	12
USB Device Connector	12
On Daughter Board:	13
Extension Connector Top (U300)	13
Extension Connector Bot (U301)	13
Hydrophone/Microphone/Line Input/Differential Input/DC Output (J100, J200)	14
Hydrophone CXX:	15
Hydrophone SQ26:	16
Specifications	17
Absolute Maximum Ratings	17
ESD Ratings	17
Electrical Characteristics	18
Characteristics of input filter	18

_		_
\mathbf{n}	ш	D
U.	п	D
-		_

18
20
22
23
23
23
23
24
25
25
25
25
25
26
26
27
27
27
28
28
28
28
29
30
30
31
32
34
34

QHB

Hardware Configuration:	35
Daughter Board Input Configuration (S101, S201)	35
Example of Configuration Of Daughter Board Input For Cxx Hydrophones (S101, S201)	35
Example of Configuration Of Daughter Board Input For SQ26 Hydrophones (S101, S201)	35
Example of Configuration Of Daughter Board Input For Differential Inputs (S101, S201)	36
Daughter Board Digital Output Routing Selection	37
One or Two Channels Configuration example:	37
Four Channels Configuration exemple:	38
For the first Daughter Board:	38
For the second Daughter Board:	38
Daughter Board Analog Gain Configuration (S100-S102, S200-S202)	39
Stop system and recovery measures	40
.Log File Descriptor	41
File Structure Overview	41
Header Description	42
Additionnal_DataBloc Description	43
DataBloc Description	43
Noise Measurement	44
Single Ended - Input Shorted to GND	44
GAIN X1	44
Noise spectrum in mel scale	44
GAIN X10	44
Noise spectrum in mel scale	44
Noise spectrum in mel scale	45
GAIN X100	45
Noise spectrum in mel scale	45
Notes level with single input charted to succeed is holey. Of dD for frequencies high an	4h a 1 4 1 - 1 -

Noise level with single input shorted to ground is below -86dB for frequencies higher than 1kHz.This leads to 15 significant bits in x100 amplification mode.45

Q	HI	B	

Single Ended - Pure Sine Input	45
Pure sine 100mV F=1kHz	45
Gain X1	45
Waveform and spectrogram	45
Spectrum	45
Gain X10	46
Waveform and spectrogram	47
Spectrum	47
Pure sine 20mV F=1kHz	48
Gain X50	48
Waveform and spectrogram	48
Spectrum	48
Gain X100	48
Waveform and spectrogram	49
Spectrum	49
Single Ended - Sweep Input	50
Sweep sine 100mV F=1Hz to 256kHz	50
Gain X1	50
Waveform and spectrogram	50
Gain X10	50
Waveform and spectrogram	50
Sweep sine 20mV F=1Hz to 256kHz	51
Gain X50	51
Waveform and spectrogram	51
Gain X100	51
Waveform and spectrogram	51
eck-list	52

Check-list

QHB

Faq	52
Guarantee	53
Remarks / Miscellaneous	53
Information on the status of LEDs:	53
Fuse Replacement:	53
NOTES:	53
Mechanical Information	54
QHB Motherboard V2 drawing	54
Orientation of Axes (IMU)	54
QHB Daughter board V2 drawing	55
QHB Daughter board V3 Drawing (Current version)	56
Contact us	57

QHB

FEATURES

ACQUISITION:

- Acquisition Sample Rate: Up to 512 Ksps
- Frequency range of the input signal: 0.5 Hz to 256 kHz.
- Acquisition resolution in 8, 16, or 24 bits adjustable via a configuration script.
- Differential acquisition with 2.5V maximum input level.
- Accurate timestamping
- Anti-aliasing filter configurable to input signal without change of input signal in the passband (see section « characteristic of Anti-Aliasing filters »).

AMPLIFIER :

- Differential amplifier
- Amplifying the signal from the hydrophone: X1, X10, X20, X100
- Single ended input and differential output
- Input impedance: 10 ^ 13 ohm.
- Input Filter: First order High-Pass filter : Cutoff frequency = 0.96Hz

STORAGE:

- Storage support on micro SD card (or SD via an adapter)
- Storage support on USB MSD (USB Flash Drive, HDD, SCSI)
- Storage support on PC (USB Device Mode)

MOTION:

• Integrate Inertial motion sensor (9DoF)

WIRELESS:

• Integrate a BLE 4.0 chip that allow user to monitor/configure system

POWER SUPPLY:

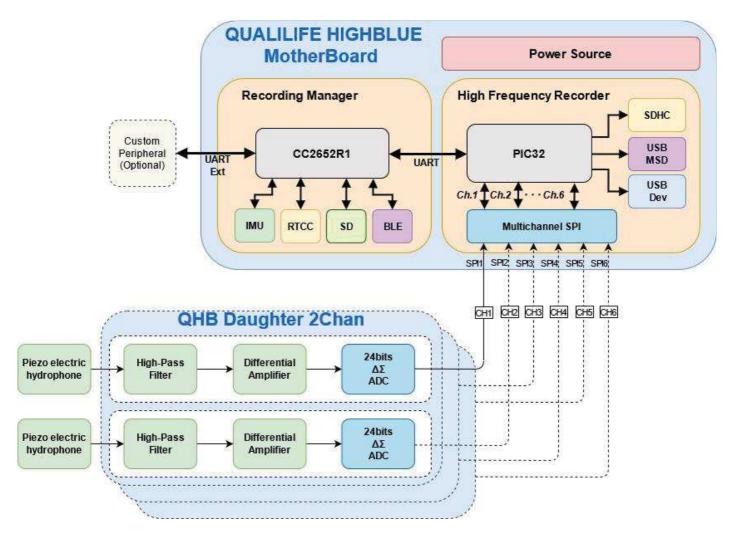
• Power Supply range: From 7V to 35VDC

ENERGY CONSUMPTION :

- Max Power Consumption: 4W in lifelong learning (SD and hydrophone including C75, X5 channels)
- Max Power consumption: 100μW in Sleep Mode

PROCESSING:

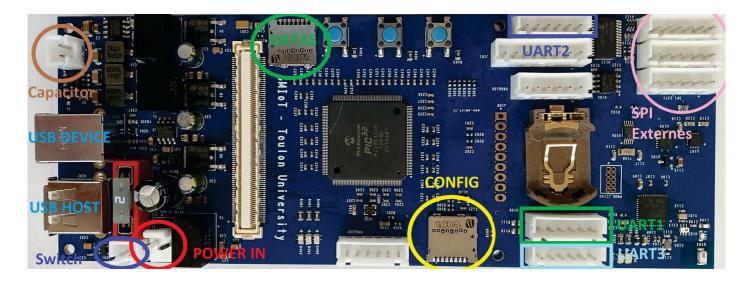
• Support embedded processing by deep Learning


QHB

APPLICATIONS

- Vibration and Modal Analysis
- Data Acquisition Systems
- Acoustics and Dynamic Strain Gauges
- Power Quality Analysis
- Long Term Monitoring
- 3D Tracking of source
- Motion tracking

QHB Block Diagram



QHB

CONNECTORS DESCRIPTION

ON MOTHERBOARD:

POWER CONNECTOR (J2:"POWER IN")

This Connector is the POWER Connector. It is used to provide power to the board.

It use a JST connector: B2P-VH(LF)(SN)

The cable to use to power the system have to be a JST: VHR-2N

PIN	FUNC
1	+VCC
2	GND

The voltage (VCC) should be at least 15V (with 12V output capability), up to 35V DC,

Or from 7V (without 12V output capability), up to 35V DC

EXTERNAL SWITCH CONNECTOR (J1: "SWITCH")

This connector is used to close or open the power circuit. If not used, connect the two pin together (with a jumper).

It use a JST connector: B2B-XH-A(LF)(SN)

QHB

The cable to use to connect the switch to the system have to be a JST: XHP-2

PIN	FUNC
1	VCC_IN
2	VCC_OUT

EXTERNAL CAPACITOR (J3:"CAPA")

To avoid power loss at light impacts or movements (when used in a sealed tube), a decoupling capacitor has been added to the system. This must be connected to the capture card to ensure proper operation thereof.

It use a JST connector: **B2B-XH-A(LF)(SN)**

The cable to use to connect the capacitor to the system have to be a JST: XHP-2

PIN	FUNC
1	+VCC
2	GND

CR2032 CONNECTOR (U109)

QHB the system has a holder for a CR2032 for saving and maintenance of the internal clock for a period of 10 to 15 years in the case of cutoff of the power supply. This battery will be necessary to maintain the time of day system (Main Switch Off), or in the case of too low power (low battery, ...).

QHB

EXTENSION CONNECTOR (U402)

There is an extension connector, used to stack multiple daughter boards to the motherboard.

This is a 168 pin connector.

UART 1 CONNECTOR

This Connector is used to connect a GPS to QHB. (Not used yet)

It use a JST connector: B6P-VH(LF)(SN)

The cable to use to power the system have to be a JST: XHP-6

PIN	FUNC
1	+3.3V Always ON
2	GND
3	Rx1
4	Tx1
5	INT_1
6	3.3V Switched

QHB

UART 2 CONNECTOR

This Connector is used to connect a GSM to QHB. (Used in MARITIMO)

It use a JST connector: B6P-VH(LF)(SN)

The cable to use to power the system have to be a JST: XHP-6

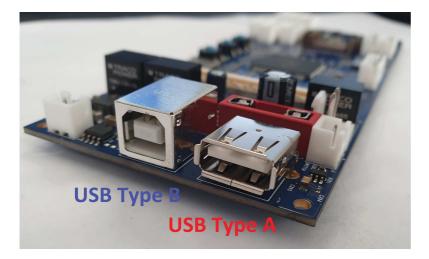
PIN	FUNC
1	+3.3V Always ON
2	GND
3	Rx2
4	Tx2
5	INT_2
6	3.3V Switched

UART 3 CONNECTOR

This Connector is used to connect an external system to QHB. (For example a Buoy in MARITIMO)

It use a JST connector: B6P-VH(LF)(SN)

The cable to use to power the system have to be a JST: XHP-6


PIN	FUNC
1	+3.3V Always ON
2	GND
3	Rx3
4	Tx3
5	INT_3
6	3.3V Switched

USB CONNECTORS

Note: Do not connect USB type A and USB Type B at the same time!!

USB HOST CONNECTOR

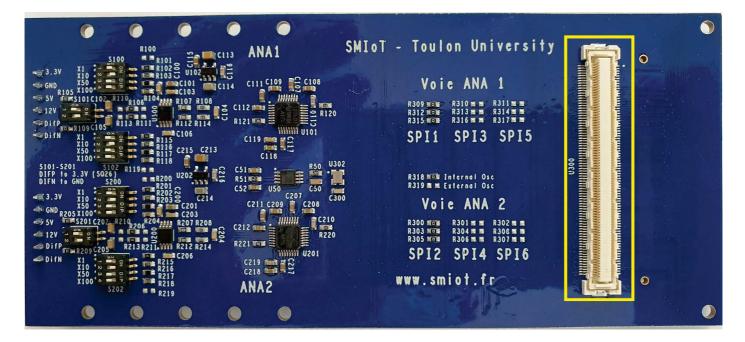
The USB Host Connector (USB type A) allows the user to plug a USB Flash drive or HDD/SSD to QHB as a storage device for datas.

In this case, the QHB operates as "Host", and will write data on the storage media plugged to the USB type A slot.

USB DEVICE CONNECTOR

The USB Device Connector (USB type B) allows the user to use QHB as a peripheral device from a personal computer.

In this mode, the QHB operates as a device, and it is responsible to the host to grab data from the board.



QHB

ON DAUGHTER BOARD:

EXTENSION CONNECTOR TOP (U300)

This connector is used to attach the Daughter board to the motherboard, or to another Daughter board (more than 2 channels)

This is a 168 pin connector.

EXTENSION CONNECTOR BOT (U301)

This connector is used to attach another Daughter Board to this Daughter board (more than 2 channels)

QHB

HYDROPHONE/MICROPHONE/LINE INPUT/DIFFERENTIAL INPUT/DC OUTPUT (J100, J200)

When wiring hydrophones ensure work is accomplished in an anti-static environment, and be discharged of static load. (Avoid wool clothing and touch a point of grounding ie: PC casing, ...).

This connector is used to connect an Hydrophone, Microphone, or Line input to the acquisition board. It can also provide DC output to power hydrophone/microphone.

It use a JST connector: B6B-XH-A(LF)(SN)

The cable to use have to be a JST: XHP-6

PIN	FUNC
1	+3.3V Output
2	GND
3	+5V Output
4	+12V Output
5	DiffP (Positive Input)
6	DiffN (Negative Input)

QHB

In the case of a system in MONO configuration, the hydrophone is connected to the path "ANA1". In the case of a system configuration Stereo or more, the hydrophones are connected on both channels and/or on multiple daughter boards if more than 2 channels are used.

HYDROPHONE CXX:

Connections to QHB:

Hydrophone CXX from *Cetacean Research*[®] is a 3wire device (+VHydrophone, GND, Output signal). It accepts voltage input ranging from +5VDC to + 30VDC.

In case of a long wire between the board and the microphone (L>2 Meters), +12V output is preffered to power the hydrophone.

Otherwise +5V output is sufficient.

Wiring of J100, J200:

PIN	FUNC
1	N.C.
2	GND
3	+5V Hydrophone power (if short wire)
4	+12V Hydrophone power (if long wire)
5	DiffP Hydrophone signal
6	N.C.

For CXX, don't forget to configure the hardware input of the daughter boards.

QHB

HYDROPHONE SQ26:

Connections to QHB:

Hydrophone SQ26 from *Cetacean Research*[®] is a 2wire device (+VHydrophone/Output Signal, GND). It accepts voltage input ranging from +3.3VDC to + 5VDC.

Wiring of J100, J200:

PIN	FUNC
1	N.C.
2	GND
3	N.C.
4	N.C.
5	DiffP: Hydrophone signal + power on signal
6	N.C.

For SQ26, don't forget to configure the hardware input of the daughter boards.

UNIVERSITÉ DE TOULON

QHB

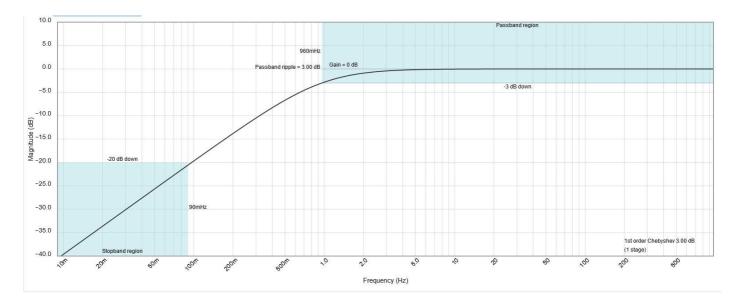
Absolute Maximum Ratings

		MIN	MAX	Unit
	VDD to GND with 12V output supply	15	36	V
Voltage	VDD to GND without 12V output supply	7	36	V
	DIFFP to DIFFN	0	2.5	V
	Digital input	DGND-0.3	DVDD+0.3	V
	BACKUP Battery (CR2032)	1.3	3.6	V
Current	Input, continuous, any pin except power supply pins	-10	10	mA
	Timekeeping (From VBAT), VCC=0V	850	2300	nA
Température	Operating ambient, Ta	-40	100	°C

ESD RATINGS

		Value	Unit
V(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001	±2000	
	Charged-device model (CDM), per JEDEC specification JESD22-C101	±1000	V

QHB


ELECTRICAL CHARACTERISTICS

Minimum and maximum specifications apply from $TA = -40^{\circ}C$ to $+100^{\circ}C$. Typical specifications are at $TA = 25^{\circ}C$.

CHARACTERISTICS OF INPUT FILTER

QHB Daughter board comes with a High-pass input filter.

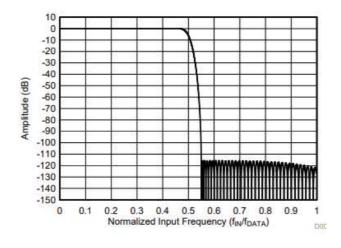
It is a first order (C-R) High-Pass filter with a Cutoff frequency of 0.96Hz. It can be customised upon demand.

ADC CHARACTERISTICS:

PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	Unit			
ANALOG INPUTS								
Differential input impedance	HR mode,							
DC PERFORMAN	CE	-						
Resolution	No missing codes	8	16	24	bits			
DataRate	Wideband filters	512,256,1	28,64		KSPS			
	Low-latency filters	512,128,3	2,8					

QHB

Integral nonlinearity	VCM=AVDD/2		2.5	10	ppm	
offset error			±0.1		mV	
Offset drift			1.5	3.0	μV/°C	
	WB2, OSR 32		10.6			
Noise	WB2, OSR 64		7.3	10.1		
	WB2, OSR 128		5.1	7.2	μVRMS	
	WB2, OSR 256		3.6	5.2		
CMRR	Common-mode rejection ratio fCM= 60Hz		95		dB	
AC PERFORMAN	NCE	·		•	•	
	WB2, OSR 32		104.4			
	WB2, OSR 64	104.9	107.8			
SNR	WB2, OSR 128	107.9	110.9		dB	
	WB2, OSR 256	110.6	113.9			
THD	Total harmonic distortion		-113		dB	



QHB

CHARACTERISTICS OF ANTI-ALIASING FILTER

Lowpass 1 (Wideband1): Cutoff frequency = 0.4 * Sampling Rate, constant gain in the passband, high attenuation beyond so as to avoid aliasing phenomena with an attenuation of 110 dB in the stopband.

Lowpass 2 (Wideband2): Cutoff frequency = 0.5 * SR. constant gain in the passband, high attenuation beyond so as to avoid aliasing phenomena.

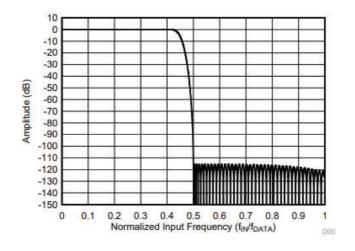


Figure 2: Transfer function of the filter WB2

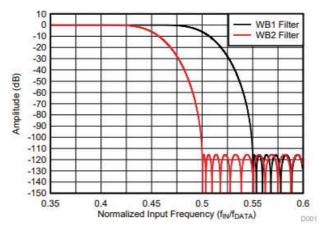
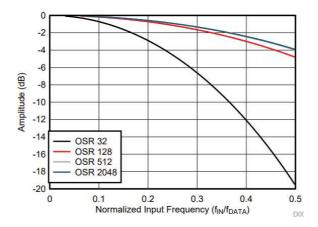



Figure 3: Comparison of transfer functions of filters WB1 and WB2

Filter Low Latency (sinc / sin5c): Constant phase shift between the output and input signals irrespective of the frequency of the input signal. In return, the gain is not perfectly consistent in bandwidth. The noise level is lower than with an anti-aliasing filter.

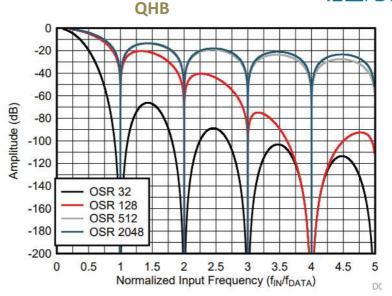


Figure 5: Filter Transfer Function Low Latency for a range of fréquencies beyond the Shannon limit frequency

FEATURES ANALOG DIGITAL CONVERSION STAGE:

Table 1. Wideband Filters Performance Summary at AVDD = 3.0 V, DVDD = 1.8 V, and 2.5-V Reference

MODE	DATA RATE (SPS)	OSR	TRANSITION BAND	PASS BAND (kHz)	SNR (dB)	V _{RMS_noise} (µV _{RMS})	ENOB	IDVDD (mA)	
	540.000	32	Wideband 1 filter	230.4	103.7	11.61	18.72	7.50	
	512,000	32	Wideband 2 filter	204.8	104.1	10.64	18.84	7.50	
High-resolution (HR) 1	050.000	64	Wideband 1 filter	115.2	107.3	7.61	19.33	4.35	
	256,000	64	Wideband 2 filter	102.4	107.7	7.25	19.40		
	128,000 128	100.000 100	420	Wideband 1 filter	57.6	<u>110.4</u>	5.35	19.83	2.80
		120	Wideband 2 filter	51.2	110.9	5.06	19.91	2.80	
	C4 000	04.000	Wideband 1 filter	28.8	113.4	3.79	20.33	2.00	
		64,000	64,000 256	Wideband 2 filter	25.6	113.9	3.58	20.41	2.00

Figure 6: acquisition noise level depending on the configuration of wideband filters

Table 2. Low-Latency Filter Performance Summary at AVDD = 3.0 V, DVDD = 1.8 V, and 2.5-V Reference

MODE	DATA RATE (SPS)	OSR	-3-dB BANDWIDTH (kHz)	SNR (dB)	V _{RMS_noise} (μV _{RMS})	ENOB	V _{PP noise} (µV _{PP})	I _{DVDD} (mA)
	512,000	32	101.8	107.6	7.40	19.37	64.67	1.60
High-resolution	128,000	128	50.6	110.8	5.12	19.90	44.11	1.39
(HR)	32,000	512	13.7	116.2	2.74	20.80	24.14	1.33
	8,000	2048	3.5	122.0	1.41	21.76	11.32	1.32

Figure 7: Noise level of acquisition depending on the configuration of Low Latency filters

QHB

POWER CONSUMPTION:

All measurements were made with VCC=20.0V. GAIN X100 on each analog channel.

The daughter cards are not all fitted in all cases.

RECORDING

USB DEVICE MODE

	Power consumption Max(mA)						
	Chan Count		Sample Rate (KSPS)				
		512	256	128	64	32	
Daughter 2&3	1	125	121	120	118	118	
not mounted	2	126	121.5	120	118	119	
Daughter 3 not	3	145	138	134	132	132	
mounted	4	146	139	135	133	133	
Daughter 1,2	5	170	158	151	148	148	
&3 mounted	6	171	159	152	148	148	

USB HOST MODE (USB HDD [TOSHIBA 1TO])

The following measures include Hard drive consumption. (Model: Toshiba DTB310)

Power consumption Max(mA)								
	Chan Count	Sample Rate (KSPS)						
		512	256	128	64	32		
Daughter 2&3	1	228	215	206	210	224		
not mounted	2	230	221	213	210	223		
Daughter 3 not	3	242	238	230	224	242		
mounted	4	242	236	233	225	242.5		

QHB

Daughter 1,2	5	275	251	244	237	262
&3 mounted	6	275	252	246	240	263

SLEEP MODE

Power consumption in sleep mode includes RTCC Timekeeping.

	Power consumption Max(mA)
With RTCC Timekeeping	5.84

UNIVERSITÉ DE TOULON

QHB

MANUAL

RECOMMENDATIONS OF USE

SAFETY PRECAUTIONS

In this manual, the warning signs and caution should be read by users to avoid dangerous accidents and problems. The meaning of these symbols is as follows:

If users ignore this symbol and mishandle the device, it can result in personal injury and damage to equipment.

Please read the safety tips and the following precautions to ensure a safe use of the JASON system.

<u>FOOD</u>: The power consumption of this device is low. It should only be operated by being powered by a type of continuous supply of 12 to 35V (or Li Ion / Batteries / battery according to the application, contact us).

- Lead acid batteries must be recharged using a 12V battery charger.
- When you disconnect the battery to perform charging, grasp the connector on the electronic board and never pull on the cable.
- Use a conventional 12V lead acid battery without changing the power cables.
- The QHB system can not be used to recharge the batteries.
- In case of no use, remove the batteries from the system.

ENVIRONMENT

To avoid problems and malfunctions, avoid using the system in an environment where it will be exposed to:

- Extreme temperatures (<-15 ° C;> 60 ° C)
- Heat sources such as radiators or stoves
- Excessive vibration or shock

HANDLING

- Do not place any objects filled with liquids, such as vases, on the open, as this may cause electric shock.
- Never place naked flame sources, such as lighted candles on the system as this may cause a fire.
- The QHB system is a precision instrument. Be careful not to drop or subject it to shock or excessive pressure, as this could cause serious problems.
- Make sure that no foreign objects (coins or pins etc.) or liquid (water, soft drinks and fruit juices) penetrate the unit.

QHB

CONNECTING CABLES AND INPUT / OUTPUT

You should always turn off the system and all other equipment before connecting or disconnecting cables. Be sure to disconnect all connection cables and turn off the power before moving the system.

MODIFICATIONS

Never attempt to modify it in any way. It may cause damage and be dangerous for the user.

QHB

PRECAUTIONS

ELECTRICAL INTERFERENCE

For security reasons, the system QHB was designed to provide maximum protection against the electromagnetic radiation from the device and to protect against external interference. However, any equipment that is very sensitive to electronic interference or that emits strong electromagnetic waves must not be placed near the system because the possibility of interference can not be completely eliminated. With any type of digital control device, including the QHB, electromagnetic interference can cause malfunctioning and corrupt or destroy data. Care must be taken to minimize the risk of damage.

CLEANING

Use a dry, soft cloth to clean the system. If necessary, dampen the cloth slightly. Do not use abrasive cleaners, waxes or solvents (such as paint thinner or cleaning alcohol), since these materials may dull the finish, damage the surface or cause damage to the PCB.

Please keep this manual in a safe place for future reference.

QHB

UNPACKING:

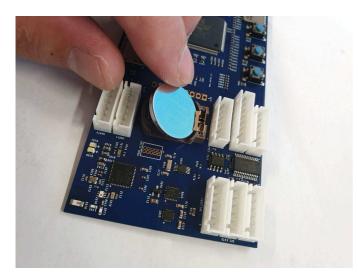
As with any electronic device, you should take care to handle this equipment carefully. Before removing the device from its packaging, discharge yourself of any static charge using a wrist strap or by simply touching the computer chassis or other grounded object to eliminate any stored static charge. Contact us immediately if any components are missing or damaged.

INSTALLING THE HARDWARE:

The hardware of the system should be delivered already assembled. No additional installation is required, except in certain cases. Only the connection of the IO and power supply should be required.

INSTALLING THE CR2032:

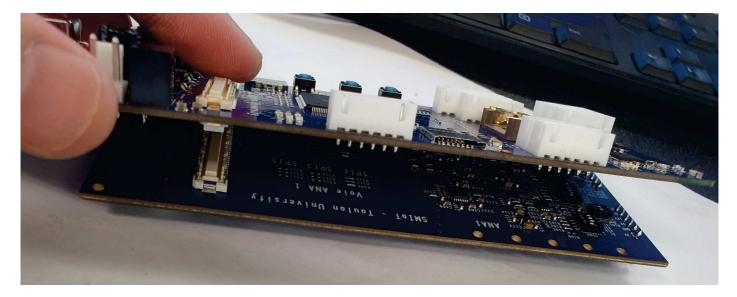
To install the CR2032 battery, please follow the steps below:

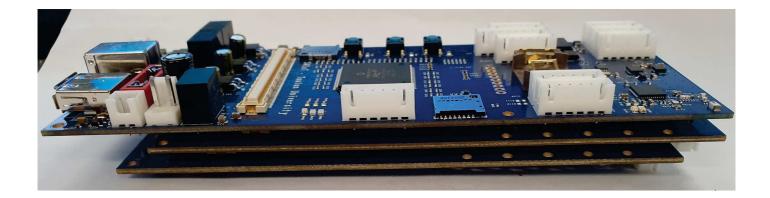

- 1. Turn ON Power on board
- 2. Update the system time by software or configuration script
- 3. Place the coin battery
- 4. Turn off the power

Note: <u>The system has to be powered</u> before placing the backup battery.

To place the coin battery on board, please insert it under the tongue then press it.

UNIVERSITÉ





QHB

STACKING MULTIPLE DAUGHTER BOARDS:

right-click the storage media

QHB

System Startup:

Commissioning is very simple. Please accomplish the following steps in order:

FORMATTING THE STORAGE MEDIUM

The QHB system takes into account the FAT / FAT32 /exFAT file systems. It is therefore recommended to format the storage media to use **exFAT**.

<u>Please preferably use fast storage media to benefit from a high transfer rate, and avoid packet loss (eg</u> <u>Western Digital Element 1TB).</u>

Formatting can be done via the Windows format utility (right click on the media to format):

Data (D	:)			
Form Capital Syst	o ♥ ♥ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Ouvrir dans une nouvelle fenêtre Épingler dans Accès rapide Numériser avec Windows Defender Partager avec Notron Security Restaurer les versions précédentes Combiner les fichiers pris en charge dans Acrobat Inclure dans la bibliothèque Épingler à l'écran de démarrage WinZip Formater Copier Créer un raccourci Renommer Propriétés r Lecteur USB (F:) Leiger défaut	Sele	Go to the desktop of your system, format -> "Format". ect a unit of allocation of <u>2048ko</u> .
204 Res	de v	nité d'allocation : o-octets rer les paramètres par défaut volume : s de formatage matage rapide Démarrer Fermer		k "Start". it for the media to be formatted.

QHB

SOFTWARE CONFIGURATION:

The system parameter (and / or updates) via the text configuration file "JConfig.CFG" given below :

WARNING:	This	file	is	placed	in	the	« Config »	folder.	lts	content	is	"Case	sensitive"
Sampling	_Reso. _Freq	lutio =2560	on=: 000;	16; ; // 25; //per //512; //Fi1; //128; //fi1;	// : 6000 sec 000, ters 000, ter 1;) = s ;). F 2560 ;, or 3200 filt	Resolutio ampling f Possibles 000, 12800 512000, 00,8000 Wi er select	requenc values 0,64000 th Low	y(in are) With Late	n sample th WidBa ency	в		
					Nide	band	11 (0.45 t 12 (0.40 t 1cy	-					
AutoStart FILE_Size			500(00000;		11	= true = File Size bytes) = minutes	limita	tio	n (in	oot		
Record_U	se_Ti	meInt	terv	val=tru	e;		Set or un recording		di	screte			
Shutdown_	_Dura	tion	=5;				Time peri between e seconds)						
Preparing	g_Dura	atio	n=5;				ot and pre ot the sa	-	.c 3	2 (SD Ca	ard		
Stopping	_Dura	tion	=5;	//Time not	e to the	sto sam	l of recor pp Pic 32 me) channels t	(SD Car	d o		3		
				//Sto	rage har	e tar	get (SD f sk drive	or SD o	ard				

If this file is not present, the recordings will not start.

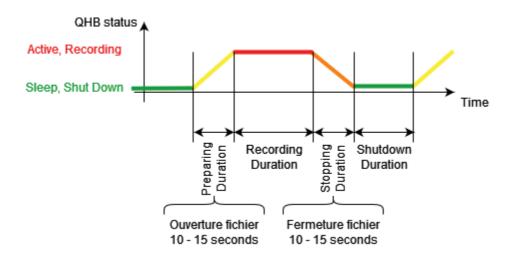
This file has to be placed in the "Config" μ SD card slot.

SOFTWARE PARAMETERS DESCRIPTION

The following tab describes the customizable parameters of QHB.

Parameter Name	Descr	iption			
	this configures the sampling resolution in bits.				
	Possibles values are:				
Sampling_Resolution	24				
	1	6			
		3			
	This is the sampling freque Possibles v	ency in Sample per second. values are:			
	With Wideband filter	With Low Latency Filter			
Sampling Frog	512000	512000			
Sampling_Freq	256000	128000			
	128000	32000			
	64000	8000			
	This sets the anti aliasing filter. Possibles values are:				
	Value	Description			
Filter_Selection	0	Wideband1 (0.45 to 0.55 x fDATA)			
	1	Wideband2 (0.40 to 0.50 x fDATA)			
	2	LowLatency			
AutoStart	This parameter allow the	system to start recording			

	automatically	upon power on.		
	Value	Description		
	true	Record will automatically start at boot		
	false	Record will not start automatically		
FILE_Size_Limit		file size in bytes. (file will be tted)		
	This set or not the dis	crete recording mode.		
	Value	Description		
Record_Use_TimeInterval	true	Enable discrete recording		
	false	Continuous recording		
Shutdown_Duration	This set the time of sleep period (in seconds)			
Preparing_Duration	Time to boot and to prepare filesystem (in seconds)			
Recording_Duration	Time of the record period (in seconds)			
Stopping_Duration	This set the time to let the system to flush DDR and close file (in seconds)			
Channel_Count	This set the number of Channels to acquire.			
Storage_Target				
	Value	Description		
	SD	This sets the system to save data on USB Flash drive or Data SD Card. (standalone Mode)		
	USB	This sets the system to use Device Mode. (Peripheral Mode)		



QHB

Operation Sequence in Standalone Mode

The graph below indicates how the system operates in "standalone" and "Discrete recording" mode.

UPDATING THE DATE AND TIME OF THE SYSTEM:

The system set or updates board current Time via a text configuration file "CLOCK.CFG" in the following form:

CLOCKTIME= 11/02/2018 10:02:00;

To update the system, the CLOCK.CFG file must be placed in the Config folder. Then insert the mass storage in QHB, and turn-ON the system.

The system will read the content of the CLOCK.CFG, update Time, then delete it. The date and time are kept current as the battery backup (CR2032) is present on the system.

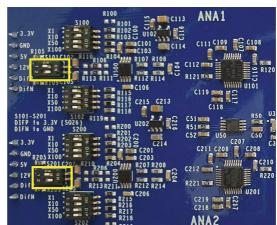
QHB

HARDWARE CONFIGURATION:

On the Daughter boards, there are some Dip Switches that should be configured depending on usage.

DAUGHTER BOARD INPUT CONFIGURATION (S101, S201)

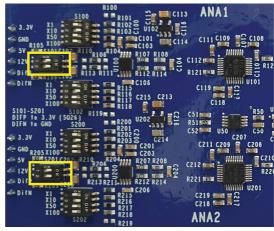
There are Two configuration DIP Switch (S101, S201) on the board.


Switch number	"ON"	"Off"
1	Superposing 3.3V on Signal (SQ26)	Others
2	Connect DiffN to GND (Single Ended Input)	Differential Input

EXAMPLE OF CONFIGURATION OF DAUGHTER BOARD INPUT FOR CXX HYDROPHONES (S101, S201)

When using a **CXX** Hydrophone, the daughter board have to be configured for single input without superposing VCC on Signal like follow:

Switch number	State
1	"Off"
2	"ON"


This configuration also work for Line Input.

EXAMPLE OF CONFIGURATION OF DAUGHTER BOARD INPUT FOR SQ26 Hydrophones (S101, S201)

When using a **SQ26** Hydrophone, the daughter board have to be configured for single input without superposing VCC on Signal like follow:

Switch number	State
1	"ON"
2	"ON"

EXAMPLE OF CONFIGURATION OF DAUGHTER BOARD INPUT FOR DIFFERENTIAL INPUTS (S101, S201)

When using a differential input, the daughter board have to be configured for differential input without superposing VCC on Signal like follow:

Switch number	State
1	"Off"
2	"Off"

S100 R100	3 ANA1
≪ 3.3V X1 K1028 U102 ≪ GND X50 ***********************************	4 C111 C109 2 C108
59 TOPESIOLCIO2, RIIO RIO6 RIO4	C112
DI DI ANTONIO, RIIS RIII MILE RIIE RIIE DI N XI CONTRACTORI CONTRA	R121 ISSN 1402 3 "1 C119 ISSN 2407 3 101 C118 25 101
X50 (4	C118 R50
S101-S201 S102 R119 R200 U202	C51 R51 C52 U50 K50 C50
43.3V X10 X203 C214 4 GND X50 X100 X201 C201 A C203 X100 X203 X100 X200 X200 X200 X200 X200 X200 X200	C211 C209 C208
59 59 129 129 129 129 129 129 129 129 129 12	C212
DifN X1 X10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
X50 X100 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ANA2

DAUGHTER BOARD DIGITAL OUTPUT ROUTING SELECTION

This is the only one hardware modification that is possible to do according to the use case.

This applies when the number of channels needed is more than 2.

As the daughter cards are all identical, it is necessary to assign them a digital channel. To do this, a small hardware modification may be necessary.

Indeed, on the boards, switching resistances are present for this purpose. They allow you to route an output channel to a specific input on the motherboard.

The Routing of the channels have to be ordered.

ONE OR TWO CHANNELS CONFIGURATION EXAMPLE:

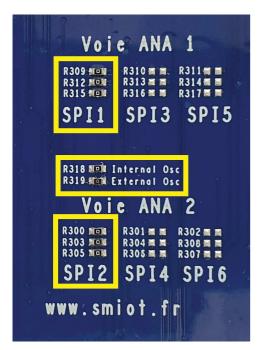
For example, if only one or two channels are needed, these channels have to be routed to SPI1 and SPI2, and <u>must use internal OSC</u>.

This indicate that ANA1 is routed to SPI1

This indicates that the ADC uses it's internal OSC. This indicate that the OSC of this board is routed to other boards (if present)

UNIVERSITÉ

This indicate that ANA2 is routed to SPI2



Four Channels Configuration exemple:

For example, if four channels are needed, these channels have to be routed to SPI1 and SPI2, SPI3 and SPI4, First Daughter board have to use internal OSC and have to provide OSC for other Daughter boards.

For the first Daughter Board:

This indicate that ANA1 is routed to SPI1

This indicates that the ADC uses it's internal OSC. This indicate that the OSC of this board is routed to other boards (if present)

This indicate that ANA2 is routed to SPI2

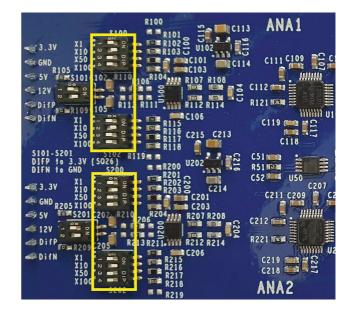
For the second Daughter Board:

This indicate that ANA1 (of the second board) is routed to SPI3

This indicates that the ADCs use the OSC provided by other Daughter Board.

This indicate that ANA2 (of the second board) is routed to SPI4

UNIVERSITÉ DE TOULON


QHB

DAUGHTER BOARD ANALOG GAIN CONFIGURATION (S100-S102, S200-S202)

There are Four configuration DIP switches (S100-S102, S200-S202) on the board. They allow users to customize input Gain.

The switches are working by pair. So S100 and S102, S200 and S202 <u>MUST</u> Have the same value.

	Switch r	number	Gain Value		
1	2	3	4	A (dB)	
0	0	0	0	Do Not Use	
1	0	0	0	X1 (1dB)	
0	1	0	0	X10 (20dB)	
0	0	1	0	X50 (34dB)	
0	0	0	1	X100 (40dB)	
1	1	0	0	X0.9(-0.91dB)	
1	1	1	0	X0.89 (-1dB)	
1	1	1	1	X0.89 (-1dB)	
0	1	1	0	X8.32 (18dB)	
0	1	1	1	X7.68 (17dB)	
0	0	1	1	X33.27 (30dB)	
	Others			Do Not Use	

QHB

SYSTEM STARTUP

If "Autostart" = true, then the system will start the recordings with the parameters of the configuration file from its power.

Orange LED located on the capture card should light indicating that the system is recording.

$\ensuremath{\mathsf{S}}$ top system and recovery measures

For powering down the tube under water, it is sufficient to rotate the cap on the top of tube tape counterclockwise (white arrow).

All LEDs on the card must go out. The measured data is saved continuously on the μ SD storage system. These are directly saved as a .log file.

Note: During the shutdown, it is possible that the last record is lost. This is why it is necessary to ensure enough wait time after the start of a record (greater than or equal to the parameter "Record_time"), or else to have a "FILE_SIZE_LIMIT" reduced (which has the effect of cutting the recording file size).

To recover the data on the card μ SD, refer to the next chapter "of the tube opening procedure".

.LOG FILE DESCRIPTOR

FILE STRUCTURE OVERVIEW

The .log file is a binary file that contains audio datas, information about record (sampling frequency, resolution, ...), as well as size of fields which made it up (Header size, DataBloc size,...).

Fichier .log
Header
Additionnal_DataBloc 1
DataBloc 1
Additionnal_DataBloc 2
DataBloc 2
Additionnal_DataBloc N
DataBloc N

HEADER DESCRIPTION

Header is the file structure descriptor. It contains information about records, and technical information about the .log file itself.

The Header contains the following fields (ordered):

Length (bytes)	Туре	Nom	Description			
4	ulong	headerSize	Size of header this field excluded.			
2	ushort	versionNumber	Software	e revision		
			Octet 1	Octet 0		
			Major Rev	Minor Rev		
1	uchar	numberOfChan	Channels count u	ised during record		
1	uchar	resolutionBits	Résolution of	record (in bits)		
4	ulong	samplingFreque ncy	Sampling Frequency (in Sample per sec)			
4	ulong	dmaBlockSize	Size of DMA bloc. (Bloc that contains audio datas, grouped together in a sub-block for each of the channel)			
4	ulong	sizeOfAdditionn alDataBuffer	Size of additionnal data bloc. (Datas IMU, GPS, others,)			
1	uchar	numberOfExtern alPeripheral	Number of external peripheral (IMU,)			
4	ulong	timeStampOfSta rt	TimeStamp local (timeStamp du High Frequency Recorder) du debut d'enregistrement.			
Variable	PERIPHERAL_ CONFIGURATI ON[]	periphConfig[]	Tableau de structure de type PERIPHERAL_CONFIGURATION contenant la configuration de chacun des périphériques externes. Tableau de "numberOfExternalPeripheral" PERIPHERAL_CONFIGURATION			

Additionnal_DataBloc Description

The Additional DataBloc contains datas coming from external sensors such as IMU, GPS, \dots

They are written in the same file as audio data (.log file) which allow synchronisation between various units. (Audio data, light data, absolute position, ...)

The datas contained in this block are formatted like a simple frame defined by the UTLN protocol. The size of this block is defined in the header of the file.

By default, the additional bloc size is **736** bytes, and can contain null values if no additional data are inserted in dataflow.

DATABLOC DESCRIPTION

The DataBloc is the block that contains audio datas. They are of variable length (of the size indicated by the field "dmaBlockSize" of Header), In the current configuration, the default size is **65536** octets. Those blocks are splitted by the number of channels.

DataBloc
Chan 1
Chan 2
Chan N

The audio length contained in one DataBloc it varies according to:

- Sampling Frequency
- Channels count
- Acquisition resolution

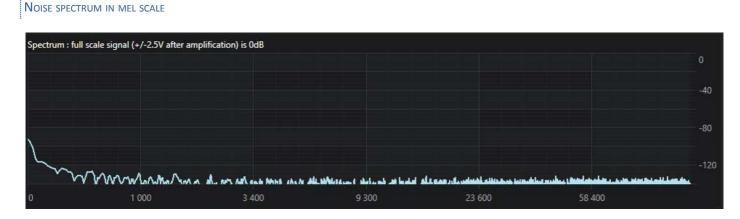
This length can be calculated by the following manner:

$$t = \frac{dmaBlockSize \div numberOfChan}{resolutionBits \div 8} \times \frac{1}{samplingFrequency}$$

Expression of number of DMABloc contained in a file:

 $nbBlock = \frac{(Record length \times samplingFrequency \times numberOfChan \times \frac{resolutionBits}{8})}{dmaBlockSize}$

Expression of file size (in bytes) according to parameters: $Size = nbBlock \times (dmaBlockSize + sizeOfAdditionnalDataBuffer) + headerSize + 4$


NOISE MEASUREMENT

Measurement are done with VCC=20.0V, Fe=512000SPS, res=24 bits

SINGLE ENDED - INPUT SHORTED TO GND

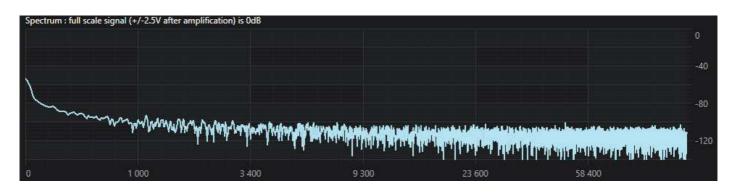
In this part, maximum signal level (+/- 2.5V) corresponds to 0dB.

GAIN X1

Noise level with single input shorted to ground is below -126dB for frequencies higher than 1kHz, and below -120dB for frequencies up to 1kHz. This leads to 21 significant bits in x1 amplification mode.

<u>GAIN X10</u>

Noise level with single input shorted to ground is below -106dB for frequencies higher than 1kHz. This leads to 18 significant bits in x10 amplification mode.



QHB

GAIN X50

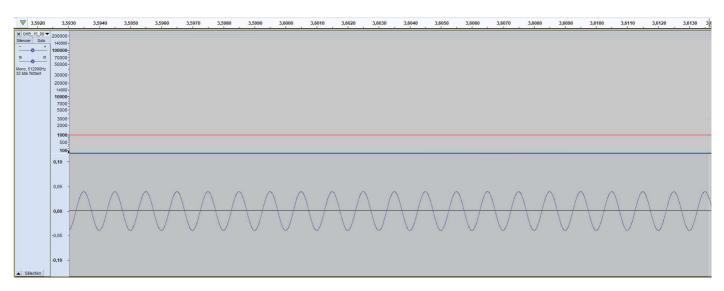
Noise spectrum in mel scale

Noise level with single input shorted to ground is below -92dB for frequencies higher than 1kHz. This leads to 16 significant bits in x50 amplification mode.

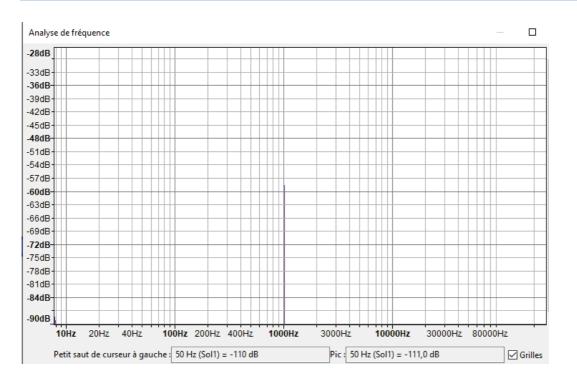
GAIN X100

NOISE SPECTR	UM IN MEL SCALE					
		PE 11 A IA				
Spectrum : full	scale signal (+/-2.5V after an	nplification) is UdB				
						-40
						-80
		~~~~~	huden fundliger linned	والمربية المتعاذ أتأودنا المراما والارتبا	a lahi basi da sula bahan da Bidash	e de la companya de l
			ini bina ta Ibdia			-120 1 1 1
0	1 000	3 400	9 300	23 600	58 400	

Noise level with single input shorted to ground is below -86dB for frequencies higher than 1kHz. This leads to 15 significant bits in x100 amplification mode.


# SINGLE ENDED - PURE SINE INPUT PURE SINE 100mV F=1kHz GAIN X1

WAVEFORM AND SPECTROGRAM



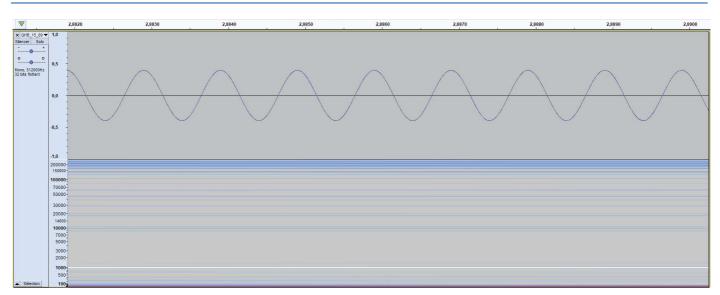



QHB

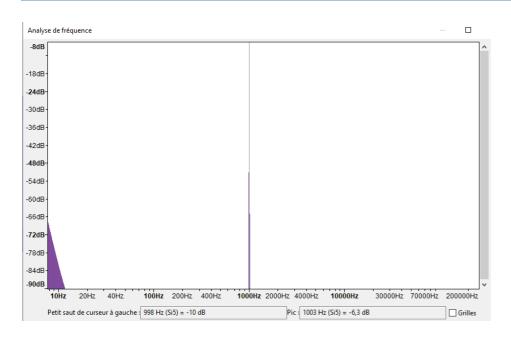


#### **S**pectrum




Noise level below -110dB






## GAIN X10

#### WAVEFORM AND SPECTROGRAM

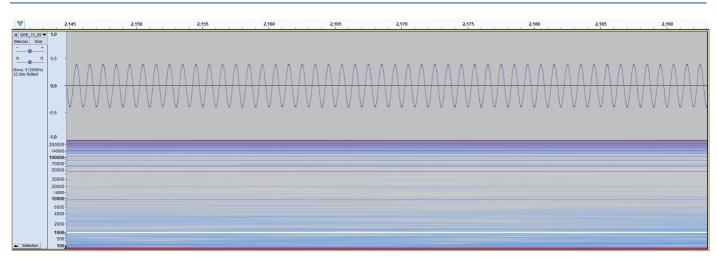


#### Spectrum

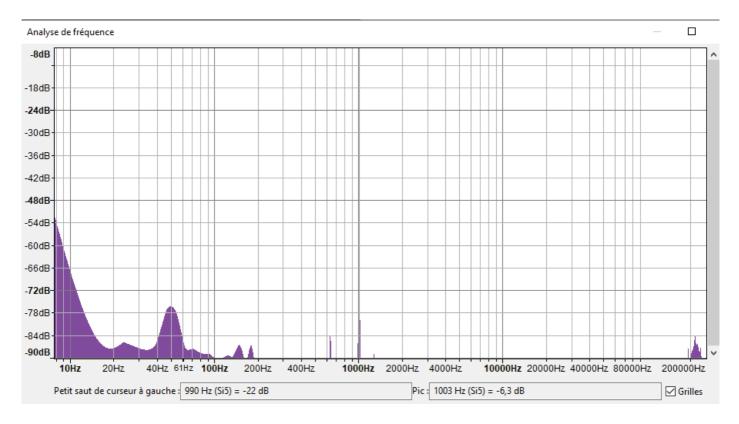


## Noise level below -110dB




QHB




## PURE SINE 20MV F=1KHz

#### GAIN X50

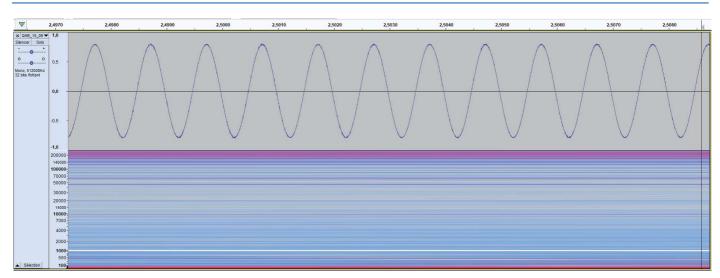
#### WAVEFORM AND SPECTROGRAM



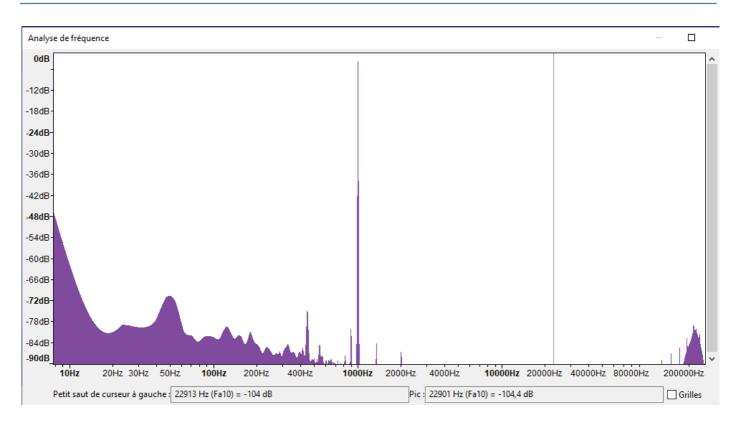
#### Spectrum



Noise level below -110dB







QHB

## GAIN X100

## WAVEFORM AND SPECTROGRAM

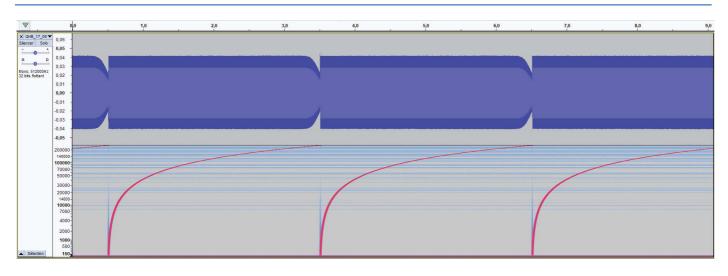


#### Spectrum



## Noise level below -104dB






Single Ended - Sweep Input

## SWEEP SINE 100mV F=1Hz TO 256KHz

## GAIN X1

#### WAVEFORM AND SPECTROGRAM



In x1 mode and with a sampling frequency of 512ksps, gain is constant for all input frequencies in a range going from 1Hz to 230kHz. An attenuation happens after (up to 50% at max signal frequency).

ain X10								
AVEFORM AND SF	PECTROGRAM							
QHB 17_09 ▼         0,0           encer         Solo         0,40	1,0	2,0	3,0	4,0	5,0	6,0	7,0	. 8,0
encer 500 0,35 0,35 0,35 0,35 0,35 0,35 0,25 0,25 0,25 0,25 0,25 0,15 0,15 0,15 0,15 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,15 0,05 0,05 0,05 0,15 0,05 0,05 0,15 0,05 0,05 0,05 0,15 0,05 0,05 0,15 0,05 0,05 0,15 0,05 0,05 0,05 0,05 0,15 0,05 0,05 0,05 0,15 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0								
19000 100000 50000 2000 2000 1000 1000 5000 5								

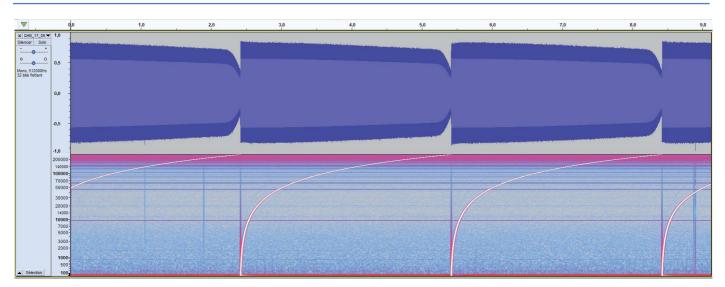





In x10 mode and with a sampling frequency of 512ksps, gain is constant for all input frequencies in a range going from 1Hz to 230kHz. An attenuation happens after (up to 50% at max signal frequency).

## SWEEP SINE 20MV F=1Hz TO 256KHz

GAIN X50


#### WAVEFORM AND SPECTROGRAM



In x50 mode and with a sampling frequency of 512ksps, gain is close to be constant for all input frequencies in a range going from 1Hz to 230kHz. An attenuation happens after (up to 50% at max signal frequency).

## GAIN X100

WAVEFORM AND SPECTROGRAM







In x100 mode and with a sampling frequency of 512ksps, gain is close (a progresive attenuation of less than 15% happens as frequency increases) to be constant for all input frequencies in a range going from \$1Hz to 230kHz. An attenuation happens after (up to 50% at max signal frequency).

# CHECK-LIST

- Check the uSD is correctly set.
- Check the batteries are fully charged and properly placed.
- Check that the switch or jumper is in place.



UNIVERSITÉ

# QHB



## GUARANTEE

SMIoT is not responsible for leakage or immersion inside the tube. If damaged, spare O-rings are provided, or available on request to SMIoT within 15 days if necessary. It is impossible that leakage can occur unless the above instructions are not followed.

REMARKS / MISCELLANEOUS

INFORMATION ON THE STATUS OF LEDS:

We advise you to check the status of the LEDs to detect any false manipulation

The LED **GREEN** indicates that the system has recognized the MSD device, and is ready to start acquisitions. The LED **ORANGE** indicates that the system is being recorded.

Finally, the LED **RED** indicates a potential problem: permanently lit: critical error (fatal error).

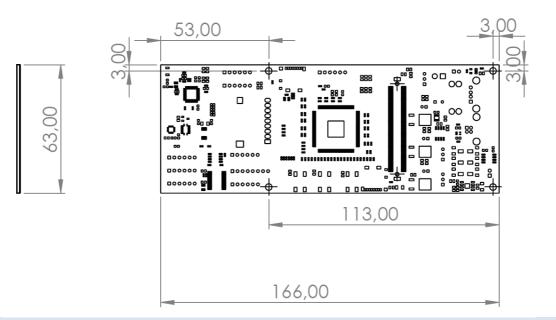
## FUSE REPLACEMENT:

A protection fuse is present on the QHB. It prevents QHB from being damaged in case of overcurrent.

It has to be 2A Max.

## NOTES:

<u>The storage medium is mandatory in the case of stand-alone operation</u>. If a system error in this case, restart the system.








# MECHANICAL INFORMATION

# QHB MOTHERBOARD V2 DRAWING



# ORIENTATION OF AXES (IMU)

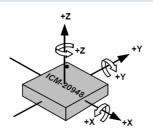
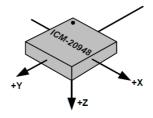
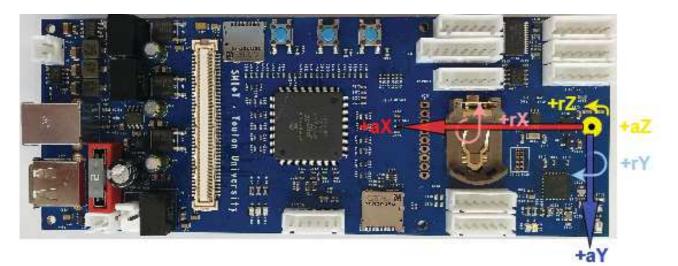
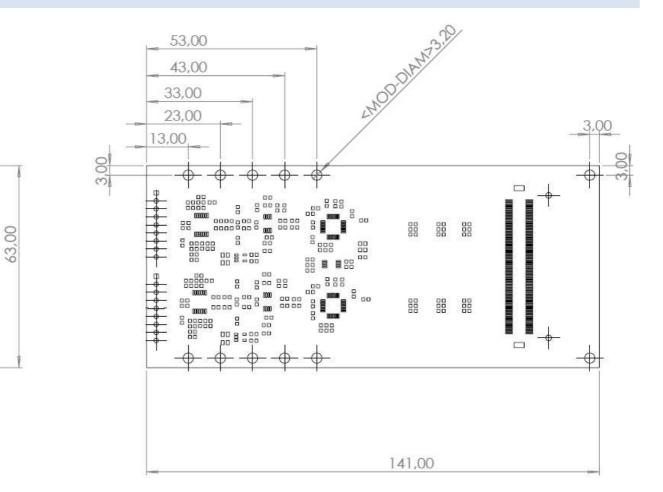



Figure 12. Orientation of Axes of Sensitivity and Polarity of Rotation

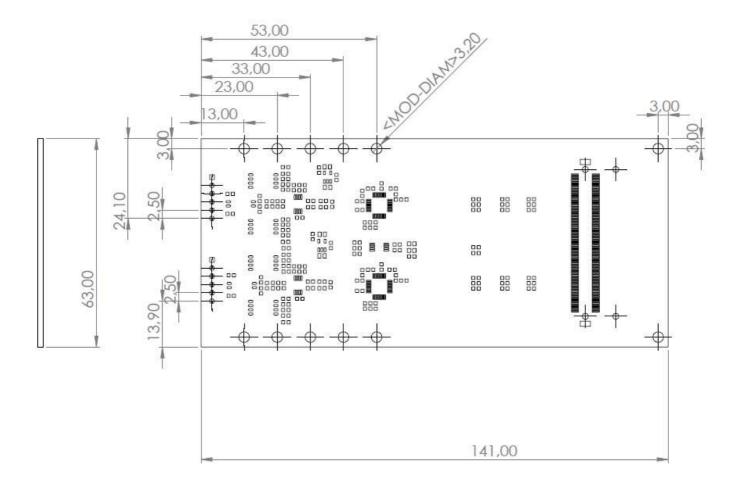





Figure 13. Orientation of Axes of Sensitivity for Magnetometer








## $QHB\ Daughter\ board\ V2\ drawing$







# QHB DAUGHTER BOARD V3 DRAWING (CURRENT VERSION)







CONTACT US

• Website of the technology platform at: <u>http://smiot.univ-tln.fr/</u> with updates of the documentation and french version.

Website of the University of Toulon <a href="http://www.univ-tln.fr/">http://www.univ-tln.fr/</a>

- Email technology platform: <a href="mailto:smiot@univ-tln.fr">smiot@univ-tln.fr</a>
- Email responsible of the technology platform: vgies@univ-tln.fr, vgies@hotmail.com
- Email responsible of scientific studies: glotin@univ-tln.fr
- Email design engineer: <u>valentin.barchasz@gmail.com</u>

TELEPHONE : Valentin Gies: +33 (0) 6 28 35 76 85

Address : IUT GEII Toulon Plateforme SMIoT Bat. E106 Université de Toulon Avenue de l'Université - BP 20132 83957 La Garde Cedex FRANCE contact for delivery : 06 28 35 76 85