Programme de recherche triennal Pelagos 2021 - 2024 CIAN - DYNI LIS CNRS - Université de Toulon & Parc national de Port-Cros au titre de l'animateur de la Partie française du Sanctuaire Pelagos

« Bilan d'une décennie d'observations des grands cétacés en milieu anthropisé Nord Pelagos:

BOMBYX, KM3NeT, et antennes mobiles Sphyrna et WhaleWay »

Hervé Glotin, Stéphane Chavin, Justine Girardet, Pascale Giraudet, Paul Best, Maxence Ferrari, Véronique Sarano, François Sarano, Pierre Mahé, Valentin Barchasz, Valentin Gies, Nicolas Deloustal, Fabien de Varenne, Julie Patris, Jean-Marc Prévot, Olivier Philippe, Franck Hieramente, Vincent Bertin, Paschal Coyle, Sébastien Paris

Centre International d'Intelligence Artificielle en Acoustique Naturelle <u>https://cian.lis-lab.fr</u> Université de TOULON Laboratoire d'Informatique et Systèmes LIS – UMR 7020 Domaine Universitaire de Saint-Jérôme Avenue Escadrille Normandie-Niemen 13397 Marseille cedex 20 glotin@univ-tln.fr Parc national de Port-Cros 181 allée du Castel Sainte-Claire BP 70220 83406 HYÈRES CEDEX Tél : 04 94 12 82 30 Fax : 04 94 12 82 31 accueil.pnpc@portcros-parcnational.fr

Contrat de partenariat

Service utilisateur : Parc national de Port-Cros Contrat n° :10/2021

Imputation budgétaire :

Date du contrat : 2021

Service Connaissance pour la gestion de la biodiversité 617 PC Opération : MIN19PELAGOSETUDES COP : 2-2 Financement MTE

Date de notification : déc. 2023

Titulaire : Pr H. Glotin

https://cian.lis-lab.fr

CIAN - Centre d'Intelligence Artificielle en Acoustique Naturelle Université de TOULON Laboratoire d'Informatique et Systèmes LIS – UMR 7020 Domaine Universitaire de Saint-Jérôme Avenue Escadrille Normandie-Niemen 13397 Marseille cedex 20 glotin@univ-tln.fr **Titre de l'étude :** Bilan d'une décennie d'observations des grands cétacés en milieu anthropisé Nord Pelagos: BOMBYX, KM3NeT, et antennes mobiles JASON

Citation de ce rapport de recherche :

Hervé Glotin, Stéphane Chavin, Justine Girardet, Pascale Giraudet, Paul Best, Maxence Ferrari, Véronique Sarano, François Sarano, Pierre Mahé, Valentin Barchasz, Valentin Gies, Nicolas Deloustal, Fabien de Varenne, Julie Patris, Jean-Marc Prévot, Olivier Philippe, Franck Hieramente,
Vincent Bertin, Paschal Coyle, Sébastien Paris (2024), 'Bilan d'une décennie d'observations des grands cétacés en milieu anthropisé Nord Pelagos: BOMBYX, KM3NeT, et antennes mobiles Sphyrna et WhaleWay', Prog. recherche Pelagos 2021-2024, 151p, Ed. CNRS, French Ministry of Transition Ecology,

https://cian.lis-lab.fr/publications/Pelagos_Glotinetal_2024

Couverture : (Gauche) Les cachalots Farouche et Nada plongeant (et chassant) en phase, le 1er octobre 2023 dans Pelagos Nord non loin du passage des ferries (Fig.9.7). (Droite) Trace d'hélice sur l'individu 'Survivor' dans Pelagos Nord, 2023 WW (crédit F. Sarano / Longitude 181).

Table des matières

Remerciements	5
Acronymes / Glossaire	7
1.Introduction	9
Observatoires de l'étude	10
Objectifs de l'étude	10
PARTIE I : MATERIELS et METHODES	14
2. Stations filaires	14
Stations sur Stochaedes	
Station LSPM	
3. Suivi par antennes mobiles	17
Parabole mobile	17
Antenne mobile tétraédrique larguée	17
Antenne mobile pentaédrique de surface	
4. Suivi par bouée acoustique	19
Bouée stéréo BOMBYX-1	
Bouée pentaphonique BOMBYX-2	
5. IA pour la détection automatique de cétacés	22
6. Estimation de positions des sources	24
Angles d'arrivée, azimut et élévation	24
Estimation du rayon de détection du cachalot	25
Estimation de position du rorqual commun	29
7. Estimation des niveaux dB	
PARTIE II : RÉSULTATS sur les CACHALOTS	
8. Bilan des détections : calendrier de 2015 à 2023	32
9. Suivi par antenne mobile des cachalots en zone anthropisée Nord-Est Iles d'Or	34
Pistage par BOMBYX-2	41
10. Séparation des sources et suivi de taille par IPI	42
Estimation de l'âge en fonction de l'IPI	
Evolution de la taille des cachalots sur 10 ans	
11. Ethoacoustique 3D du cachalot et rythme nycthéméral	50
Etat de l'art	50
Ethoacoustique 3D sur Mission WhaleWay-4	
Partie III : DÉTECTION d'AUTRES ODONTOCÈTES	60
12. Détection d'autres odontocètes dans Stochaedes	60
PARTIE IV : RÉSULTATS sur RORQUALS COMMUNS	65
13. Bilan des détections : calendrier 2009-2023	65
14. Défilements de rorquals communs	

15. Trajectoires 2D de rorquals communs Sud Iles d'Or	
PARTIE V : PAYSAGES ACOUSTIQUES	71
16. Anthropophonie autour des Îles d'Or	71
17. Paysage acoustique dans Stochaedes	75
18. Anthropophonie sur BOMBYX-2, Sud Monaco	
PARTIE VI : DISCUSSION et CONCLUSION	83
19. Bilan des détections de cachalots en zone anthropisée	83
Importance des observations mobiles	83
20. Bilan des détections de rorquals communs	85
Renforcement par apprentissage IA de la fonction d'alerte anti-collision	
21. Vers le système d'alerte anticollision BOMBYX	86
Possibles déploiements du réseau BOMBYX	
Elaboration d'une alerte automatique de risque de collision	
22. Vers un modèle éthoacoustique de la mégafaune en fonction du trafic	
23. Conclusion générale	
24. Diffusion et valorisation	96
Présentations en conférence de ce projet	96
Valorisation au Collège de France et l'Education Nationale en programme national de mathé des lycées	matiques 97
ANNEXES	98
A1. Sensibilité des hydrophones SQ26 et C57	99
A2. Estimation dB absolus	
A3. Suivis compilés des cachalots enregistrés depuis le bateau WW-4	
A4. Suivis journaliers des cachalots pendant WW-4	102
A5. IPI par les antennes mobiles Tétra et Penta à WW-4 de 2023/09/23 à 2023/10/07	111
A6. IPI sur Baguera WW-4 du 2023/09/23 au 2023/10/07	117
A7. Cycles de plongée des individus lors de la mission WhaleWay-4	126
A8. Niveau dB Max sur KM3NeT	
A9. Effets dB de l'activité récifale sur les stations Stochaedes	129
A10. IPI des autres missions 2022 2023	130
A11. Etude expérimentale des émissions de JetSki	
A12. Données techniques de la station KM3Net	139
A13. Script de calcul dB et calendriers Bombyx, KM3NeT et Stochaedes	
A14. Fiches d'identité de cachalot réalisées par Longitude 181 / WhaleWay	
A15. Autres données en format Géonature	150
BIBLIOGRAPHIE	151

Remerciements

Nous remercions pour leur confiance et leur cofinancement de cette étude :

- Pelagos, et notamment le soutien scientifique de l'équipe de A. Barcelo et du PNPC.

- la Fondation Prince Albert II - FPA2, les Explorations de Monaco, et ACCOBAMS pour le financement des missions Sphyrna Odyssey dans Pelagos.

- l'ONG Longitude181 ainsi que ses sponsors Maison Francis Kurkdjian et Explore pour nos missions WhaleWay dans Pelagos.

- l'ONG Live Together et ses financeurs pour nos missions Souffle de Vie dans Pelagos.

- la Chaire IA de H. Glotin (ANR-20-CHIA-0014) 'ADSIL' cofinancée par DGA Innovation et l'ANR, cf les postdoctorats de P. Best et M. Ferrari et M. Poupard.

- l'ANR également pour les financements des projets '**ULPCochlea' (ANR-21-CE04-0020)**, et '**Sylvania' (ANR-21-CE04-0019)** qui ont en partie soutenu les recherches sur la carte QHBV3 JASON.

- l'Europe pour notre financement **BIODIVERSA EUROPAM** aux actions dans Pelagos.

- TPM et la Région Sud pour le financement de la thèse de P. Best sur Pelagos.

- la Fondation Engie pour ses soutiens sur l'étude du rorqual et du cachalot dans Pelagos.

- la société **Biosong** qui a cofinancé avec UTLN la thèse de M. Poupard en partie sur Pelagos.

- la DGA Innovation qui a cofinancé la thèse de Maxence Ferrari sur le cachalot.

- l'**Institut Universitaire de France** (IUF) pour sa Chaire analyse de scène acoustique Glotin 2011-2016 relative à l'invention, la réalisation et les analyses des mesures de BOMBYX-1.

- l'APRI de l'université de Toulon pour le co-financement de BOMBYX-1.

- M. Rougier, le MIO et les plongeurs de PMS pour leurs collaborations à BOMBYX-1.

- O. Philippe et son équipe à OSEAN, F. Hieramente et F. Rocca pour leur collaboration sur BOMBYX-2.

- le programme FEDER GIAS MARITIMO pour le financement de BOMBYX-2.

- le **Département de l'Environnement de Monaco** pour sa collaboration à l'installation des BOMBYX-2 à Monaco avec **ProDive**.

- le **Préfet maritime du Var** pour l'arrêté préfectoral AP83 du 4 mai 2022, donnant dérogation permettant l'indispensable approche des cétacés pour mener à bien nos observations.

- la DREAL PACA/SBEP/UB pour son aide attentive.

- le **Domaine du Rayol, Le Jardin des Méditerranées**, sa direction et son équipe, pour l'accueil et aide sur notre station Stochaedes 'Rayol'.

- l'équipe du PNPC à Port-Cros pour son aide à la pose de la station 'Rascass'.

- la Région Sud pour le cofinancement du projet ETHAC.

- P. Coyle et V. Bertin du CPPM, pilotes d'ANTARES et KM3NeT.

Ce mémoire est dédié à notre très cher Gianni Pavan, Professeur à l'université de Pavia, Italie, compère avec qui je partageais l'ivresse joyeuse de la bioacoustique depuis vingt ans, et dont le chemin prit fin tragiquement au printemps dernier.

Acronymes / Glossaire

Anthropophonie : Ensemble des bruits produits par l'humain ou ses technologies (parole, bruit de moteur, sirène, turbine, éolienne). Une source acoustique étant caractérisée par sa durée, sa fréquence, son intensité et le cas échéant sa directivité.

AIS : Système d'identification automatique, qui permet aux navires et aux systèmes de surveillance de trafic de connaître l'identité, le statut, la position et la route des navires.

AOT : Autorisation d'Occupation du Territoire pour un observatoire notamment acoustique, délivré par la préfecture.

Biosonar (ou train de clics) : Signal bref produit ici par un mammifère marin, optimisé pour produire un écho sur un volume, une proie, et donner à l'animal émetteur une information de position ou de déplacement sur cette cible.

Baguera : Antenne mobile de Dyni avec QHB et 4 hydrophones en tétraèdre et un 5^{ième} en bout. Elle est fixée en poupe de bateau.

BOMBYX-1 : "Bouée Océanographique Multimodale Bioacoustique", version 1, conçue en 2011 par H. Glotin et construite en 2014 par M. Rougier, A. Molcard, et H. Glotin par le projet de sa Chaire IUF en analyse de scène acoustique. BOMBYX-1 était fixe. Elle a été posée en 2014, en fonctionnement de 2015 à 2018 entre les Îles d'Or. Elle a été la première bouée stéréophonique long terme équipée d'ADCP (et d'une caméra aux premières poses). On la notera BX1.

BOMBYX-2 : Seconde version de BOMBYX, pentaphonique, avec IA embarquée et ballast, transmission 4G, en activité depuis 2022 à Monaco. On la notera BX2.

BOUSSOLE : Bouée dans le gyre du courant Ligure au large de Nice qui a été le support de notre écoute bioacoustique en 2009.

CIAN : Centre d'Intelligence Artificielle pour l'Acoustique Naturelle, structure initiée par l'Université de Toulon en 2020 pour fédérer et rationaliser les instrumentations avancées et versatiles, les protocoles et méthodes IA d'analyse de la biodiversité par acoustique passive. CIAN regroupe en 2023 près de 100 partenaires de par le monde.

dB : Décibel, unité de mesure d'intensité acoustique.

Ethoacoustique : Analyse du comportement animal par l'acoustique, l'analyse des formes de leurs vocalises ou biosonars, néologisme de Glotin H. dans Poupard M. et al. 2018.

IPI : Inter Pulse Interval ou intervalle inter pulse (de l'ordre de la milliseconde).

JASON ou QHB: Carte son SMIoT UTLN LIS, multicanal haute vélocité (5 x 512 kHz x 24 bits, 210 dB de dynamique).

KM3NeT: Observatoire interdisciplinaire, incluant bioacoustique lié au laboratoire d'astrophysique de neutrino au large de Toulon, câblé par 40 km de fibre optique depuis la fosse aux laboratoires. En 2024 il est converti en la plateforme LSPM.

OSEAN : PME basée au Pradet, experte en instrumentation sous-marine.

Penta : Tetra avec un 5^{ième} hydrophone dans le tétraèdre.

PMS : Porquerolle Marine Service, société de plongeurs ayant travaillé sur BOMBYX-1.

ProDive : Société de plongeurs intervenant sur BOMBYX-2.

RSB : Rapport Signal à Bruit, SNR en anglais. RSB =10.log10 (E(signal) / E(bruit)) en dB.

SMIoT : Plateforme technologique de l'UTLN, ayant construit la carte son JASON / QHB, programme lancé en 2015 par le pôle INPS de l'UTLN.

SP1, SP2... : Missions de Sciences Participatives organisées par Longitude181 en 2022, 2023, 2024, équipées d'acoustique passive par CIAN.

TDoA : Time Delay of Arrival (en milliseconde le plus souvent).

Tetra : Antenne mobile de DYNI conçue avec QHB, à 4 hydrophones disposés aux coins d'un tétraèdre d'arête de 1 m environ.

WhaleWay ou WW : Missions WhaleWay initiées par Longitude 181, en collaboration avec CIAN UTLN CNRS DYNI, débutées en 2022 par WW-1, actuellement 4 missions effectuées.

1.Introduction

Le Sanctuaire Pelagos est un espace maritime de 87 500 km² dédié à la protection des mammifères marins (Fig. 1.1). Il héberge un capital biologique de haute valeur patrimoniale, tant en quantité qu'en qualité, de par la présence régulière de 8 espèces de cétacés, notamment en période estivale. Cet espace est également une plateforme de concertation et d'échanges, il doit permettre aux nombreuses activités humaines déjà présentes de s'y maintenir durablement, le plus harmonieusement possible avec le milieu naturel.

Figure 1.1 : Carte du Sanctuaire Pelagos. En hachurée la zone principale de l'étude.

Le Sanctuaire Pelagos a notamment pour mission de rassembler et de soutenir les différentes équipes de recherche travaillant sur les mammifères marins de Méditerranée. Le suivi scientifique des populations de cétacés, de même que les recherches technologiques pour limiter l'impact des activités humaines, représentent la base nécessaire de la connaissance permettant d'orienter les décisions que prendront les gestionnaires du Sanctuaire.

Dans ce cadre, ce rapport fait la synthèse de l'étude "éthoacoustique", de l'identification acoustique des cétacés et de leurs comportements, notamment en milieu anthropisé, à partir d'un ensemble d'observatoires positionné autour des îles d'Or et au nord de Pelagos, région

PACA/Sud de Toulon à Monaco. Il en résulte une meilleure connaissance des populations de cachalots, rorquals communs, grands dauphins et globicéphales. Ce projet, qui poursuit l'effort de modélisation de leur comportement et de leur présence sur les grands rails de trafic maritime, pourrait permettre de prévenir les risques de collision avec les navires, collisions qui ont également un impact économique mesurable et très conséquent.

Le bilan de la bouée BOMBYX-1 stéréo (Glotin H et al, 2018, 2021a,b, Poupard et al 2022, Best et al 2022), au large du PNPC de 2015 à 2018, et la construction des algorithmes embarqués dans la carte QHB SMIoT UTLN (Best et al. 2022), ont conduit à un observatoire des populations de cétacés. Cet observatoire est une suite logique de notre projet FEDER GIAS MARITTIMO 2019-2021 qui a permis d'élaborer et construire avec OSEAN SA et SMIoT UTLN LIS IM2NP la bouée BOMBYX-2 nouvelle génération, avec 5 hydrophones, permettant l'observation 3D et la transmission 4G des détections des cétacés.

De plus, nous sommes porteurs du projet bioacoustique de l'observatoire KM3NeT d'astrophysique qui mesure les signaux sous-marins au large de l'UTLN.

Ce projet repose donc sur 3 observatoires dont nous croiserons les mesures pour une analyse continue et affinée des comportements des cétacés.

Observatoires de l'étude

Les observatoires de ce projet consistent en la station BOMBYX-1 de 2015 à 2018, des drones Sphyrna en 2019 et 2020, de BOMBYX-2 dès 2022 autour de Monaco, de KM3NeT en 2020 et 2021, et des antennes mobiles JASON équipant les missions WhaleWay et les missions de sciences participatives réalisées en collaboration avec Longitude 181 en 2022 et 2023.

Les bouées BOMBYX-2 disposent de 5 hydrophones pour le suivi en 3D de la faune, similaires à notre système de drone Sphyrna avec lequel nous avons mis en évidence, pour la première fois, la chasse en meute de cachalots (Glotin *et al.*, 2020) et un possible lien de leur présence avec les formes de courants et fronts hydrologiques.

Objectifs de l'étude

Ce projet répond aux prérogatives des directives nationales et internationales : mieux connaître l'état du milieu marin et sa fréquentation par la mégafaune. Il apporte également des éléments vis-à-vis de la prérogative de la prévention des collisions entre cétacés et trafic maritime qui impacte une vingtaine de grands cétacés par an, provoque des dégâts coûteux sur les navires, en plus du risque de blessures sévères sur les passagers. Ce projet est aligné avec les objectifs de l'Accord Pelagos, déclinés de nouveau dans son dernier plan de gestion, et le besoin de connaissances sur des pollutions nuisibles à la biodiversité.

L'observatoire et les méthodes développées ciblent des sites de grands risques de collision. L'analyse, temps-réel de KM3NeT et embarquée par les bouées BOMBYX-2, leurs synthèses et transmissions en temps-réel sont innovantes. L'approche de l'équipe de recherche du LIS est centrée sur une méthode d'intelligence artificielle qui a pour objectif d'optimiser le système complet sur les espèces présentes dans chaque site. Ce projet se place à l'intersection des communautés Bioacoustique et "Machine Listening / Deep learning", pour le suivi du paysage acoustique ainsi qu'une meilleure connaissance et protection de la biodiversité. Des retombées dans différents domaines sont visées, notamment :

- théoriques, en posant conjointement la question de la localisation et de la détection acoustique via un observatoire acoustique et des algorithmes embarqués, avec une approche par renforcement/apprentissage, couplée aux conditions marines (trafic maritime, météo marine, courants),
- expérimentales, avec une validation/implémentation concrète du système complet dans le cadre du projet Marittimo GIAS,
- informations apportées aux gestionnaires (PNPC, Pelagos, CrossMed et in fine REPCET) pour diminuer le risque de collision,
- statistiques de détection et des bruits mesurés sur plusieurs mois qui permettront de compléter, auprès des organismes concernés, les connaissances sur les populations de cétacés, leurs comportements, et de quantifier la pollution acoustique de ces sites,
- diminuer le risque de collision entre cétacés et le trafic maritime et améliorer la sécurité de la navigation par l'installation de systèmes de veille acoustique intelligente et de communication placés en subsurface, à l'instar de notre prototype BOMBYX. Ces sytèmes seront installés aux points stratégiques à fort risque de collision en déterminant des zones de présence privilégiées qui seraient mises en protection forte et dans lesquelles la navigation serait réglementée (diminution de la vitesse en dessous de 10 nœuds). Il s'agit notamment dans les prochains mois d'élaborer une stratégie anti-collision cétacés-trafic maritime dans la ZMPV ouverte par l'OMI il y a quelques mois, entre Pelagos et Barcelone. Ce rapport permet de donner la recommandation d'étudier les habitats et les comportements des cétacés et de réguler par habitat les vitesses et passages des ferries. Il s'agit en effet d'un paradigme à dimension spatio-temporelle, réduction de vitesse dans l'habitat identifié, par saison notamment, suivant les activités des cétacés : chasse, repos, socialisation, différence suivant la composition des groupes, juvéniles et femelles versus mâles pour les cachalots par exemple.

La zone d'étude commence à la porte Nord-Ouest du sanctuaire, zone de passage obligatoire pour des ferries, vers Toulon, où les cétacés sont très exposés au risque de collision. Les rorquals communs et cachalots sont particulièrement sujets aux collisions avec les navires dans le Sanctuaire Pelagos tant le trafic y est intense (Fig. 1.2). Sans que l'on connaisse le nombre précis des cétacés et les zones précises qu'ils fréquentent, de nombreuses études attestent du risque très élevé de collision le long des côtes françaises et italiennes (Ham *et al.*, 2021).

Les alertes envoyées par 4G vers notre serveur LIS sécurisé pourront être déployées à plusieurs fins notamment une application sécurisée sur SIG pour les organismes d'Etat souhaitant l'information et suivant recommandation de Pelagos. Des formations et la dissémination des résultats du projet dans les clubs nautiques de PACA suivant les conseils de Pelagos, ainsi que des actions de sensibilisation dans les milieux nautiques professionnels pourraient être organisées afin d'alerter et accroître la prise de conscience des risques de la navigation auprès d'un public d'utilisateurs qui naviguent à des fins récréatives. L'observatoire et les méthodes

développées dans ce projet ciblent le front toulonnais, de Sicié au canyon des Stoechades, mais aussi des sites de grands risques de collision. Ce projet produira des données utiles à la gestion du risque de collision entre les grands cétacés vulnérables et un trafic maritime en croissance continue.

Figure 1.2: Echelle du risque de collision entre trafic maritime et grands cétacés, (Gauche) l'été versus (Droite) l'hiver (Crédit GIS3M).

Figure 1.3 : Exemple de cachalot ayant survécu à une collision, coupe franche par une hélice. Cet individu, nommé Survivor, a été observé et suivi plusieurs jours au cours de WW-4 en automne 2023 (cf. Annexe 16). Sa carte d'identité, qui permet son identification et donc sa "recapture" régulière en mer, permet de suivre finement ses déplacements au cours des saisons et des années (crédit F. Sarano / Longitude 181).

Ce rapport présente les stratégies de détection et d'apprentissage en ligne des modèles IA embarqués pour l'estimation des positions des rorquals communs ou des cachalots, et la décision pour les alertes anti collisions par les bouées BOMBYX-2 et les systèmes embarqués sur les missions WhaleWay notamment.

Nous traitons de l'estimation des angles d'arrivée et montrons comment nous estimons la position du cachalot et du rorqual commun. Une dernière partie concerne les stations filaires. Nous concluons sur les évolutions requises pour affiner les détections, et présentons la carte de suivi des risques de collisions qui inclut l'état de la mer et les lignes de ferry pour une décision optimale d'alerte.

PARTIE I : MATERIELS et METHODES

2. Stations filaires

Stations sur Stochaedes

Le bilan de BOMBYX-1 bouée stéréo au large du PNPC, de 2015 à fin 2018, est très intéressant en terme de suivi de population de cétacés, notamment les cachalots. Afin d'observer plus en détail un milieu très anthropisé (tourisme et pêche), et en présence de plusieurs espèces de cétacés, nous proposons une thèse modélisant les observations des activités de cétacés sur une large zone de la tête du canyon de Stoechades. Nous pourrons y mesurer l'activité des grands dauphins, mais aussi les passages dans Stoechades des cachalots, éventuellement rorquals communs. Le niveau de pollution anthropophonique, mais aussi simplement la présence et les types de bateaux et leurs parcours, seront corrélés aux déplacements des cétacés sur la zone. Le comportement des cétacés sera modélisé par éthoacoustique (cf glossaire), suivant la forme de leurs vocalises et le contexte enregistré, pour caractériser les réponses à la pression anthropique. Cet observatoire est composé de 2 stations stéréophoniques, une à Rascas, l'autre sur la plage du Rayol et synchronisées pour vues conjointes. Un repérage et des tests ont été réalisés pour déterminer l'emplacement de l'antenne Rayol qui a été installée au fond sur le sable, en dehors

de tout herbier de Posidonie (Figs. 2.1-2.3). Les stations ont été posées en juillet 2021 par un nageur en PMT avec des rotations régulières, environ 10 sur la durée du projet (autonomie d'un mois). Les AOT sont acquises depuis juillet 2020. Cette installation pourrait localiser les cétacés jusqu'à 4 km de distance, le tombant de la plage du Rayol étant adéquat (continu jusqu'à la tête du canyon).

Figure 2.1 : Situation générale du site des deux stations stéréophoniques, de part et d'autre de Stochaedes (Antenne 2=Rayol, Antenne 1=Rascas).

	Nbr/types hydro	Date début	Date fin
Rayol 2021	4=4 SQ26	19/07/2021	11/08/2021
Rayol 2022	5=1 C75+2 C3+2SQ26	02/03/2022	06/03/2022
Rascas 2021	4=4 SQ26	19/07/2021	11/08/2021
Rascas 2022	5=4 SQ26 +1 C75	02/03/2022	06/03/2022

Table 2.1: Protocole des stations Stochaedes, Fréquence d'échantillonnage 128 kHz.

Figure 2.2 : (Gauche) Antenne posée à Rascas, le 2 mars 2022. (Droite) Pose à Rayol le 4 mars 2022, -4m, orientation H1H2=206°.

Figure 2.3 : Les antennes de Stochaedes en 2022. Toutes 2 ont été renversées à la dernière pose, suite à un gros temps, ou à une ancre, car nous y avons retrouvé des traces de rouille. (Gauche) Rascas renversée malgré ses 10 kg de masse de plomb. (Droite) Rayol le 26 mars après avoir été renversée.

Station LSPM

LSPM (laboratoire Sous-marin Provence Méditerranée) est un observatoire interdisciplinaire d'astrophysique et d'environnement, dont le laboratoire hôte est le CPPM CNRS AMU. Il est constitué d'une infrastructure sous-marine installée par 2 440 m de profondeur, à 40 km au sud de Toulon, avec transmission en temps-réel des données des divers instruments vers les salles de contrôle à terre (La Seyne-sur-Mer). La plateforme LSPM accueille le détecteur de neutrinos KM3NeT/ORCA ainsi que des capteurs environnementaux EMSO.

LSPM représente aussi le site Ligure-Ouest d'EMSO pour des études environnementales menées par la Division Technique de l'Institut National des Sciences de l'Univers DT-INSU du CNRS, l'Ifremer, l'Institut Méditerranéen d'Océanologie MIO, le Laboratoire Informatique et Systèmes LIS (équipe CIAN DYNI UTLN) et Géoazur. Le KM3NeT est la deuxième génération télescope a neutrino, après celle déployée dans le cadre de l'expérience ANTARES.

LSPM est financé, au travers du projet NEUMED dans le cadre du Contrat de Plan État Région (CPER), par la Délégation Régionale Académique à la Recherche et à l'Innovation (DRARI) Provence Alpes Côte d'Azur, la région Sud, le CNRS au travers de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), le conseil départemental des Bouches-du-Rhône, la métropole d'Aix-Marseille Provence, la ville de Marseille et MTPM.

Figure 2.4 : Illustration de KM3NeT avec ses colliers de capteurs neutrinos, les hydrophones utilisés dans ce projet étant à leur base. Il est transformé, en 2023, en LSPM (crédit LSPM).

Les données des hydrophones des lignes KM3NeT de ce rapport ont été enregistrées entre mars et mai en 2020 et en 2021 à 195 kHz Fe, 16 bits (cf Annexe).

Ligne	Hydro	Latitude	Longitude	Easting	Northing	Prof. (m)
DU02	808981515	42°48.3735'N	6°01.6539'E	256953	4743584	-2440
DU03	816978571	42°48.3744'N	6°01.6685'E	256974	4743584	id
DU09	808967761	42°48.3647'N	6°01.6468'E	256941	4743567	id
DU10	808981528	42°48.3642'N	6°01.6618'E	256965	4743566	id

Table 2.2 : coordonnées des hydrophones de KM3NeT

3. Suivi par antennes mobiles

Parabole mobile

Une parabole avec un hydrophone centré permet aux missions WhaleWay et LIS de repérer et de remonter vers le gisement de sources (Fig. 3.1). Puis c'est en cabine, avec les délais d'arrivée des signaux sur les 5 hydrophones d'une antenne fixée au bateau, que les suivis de cachalots sont réalisés. Ainsi, le suivi de cachalots a été réalisé en continu pendant plusieurs nuits et jours. Parallèlement, tous ces cachalots ont été identifiés visuellement pour pouvoir attribuer précisément chaque enregistrement à un individu (voir catalogue de cartes d'identité en Annexe).

Figure 3.1 : Localisation azimutale par la parabole lors d'une mission WhaleWay par P. Best et R. Jourdain (crédit F. Sarano / Longitude 181).

Antenne mobile tétraédrique larguée

Une antenne tétraédrique composée de 5 hydrophones, avec un tube contenant des batteries et une carte Jason, est immergée à environ 20 m de profondeur et enregistre en continu au moment voulu (Fig. 3.2). Cette immersion permet d'éviter les signaux parasites dus aux réflexions sur la surface, contrairement à l'antenne Baguera qui reste par -2 m environ.

Figure 3.2 : Antenne tétra en immersion par -20 m lors de la mission WhaleWay. Design V. Gies et H. Glotin. Sa version 'penta' intègre un 5^{ième} hydrophone (crédit F. Sarano / Longitude 181).

Antenne mobile pentaédrique de surface

L'enregistreur sous-marin Baguera, spécialement conçu par l'équipe, comporte 5 hydrophones pour une meilleure discrimination en 3D des émissions sonores (Fig. 3.4). Équipée d'une carte Jason, et reliée par câbles à l'ordinateur du bord, elle permet de suivre les enregistrements en direct (Fig. 3.3). Le but étant de suivre les déplacements des cachalots pendant leur chasse dans les profondeurs tout en restant à bonne distance puisque le contact est acoustique durant les sondes à plusieurs centaines de mètres.

Figure 3.3 : Analyse des enregistrements en temps-réel sur l'ordinateur de bord (crédit F. Sarano / Longitude 181).

Figure 3.4 : (Haut Gauche) Installation de l'antenne Baguera. (Haut Droit) Mise à l'eau de l'antenne. (Bas) Vues sous-marines de l'antenne en place (crédit F. Sarano / L181 / S. Chavin).

4. Suivi par bouée acoustique

Bouée stéréo BOMBYX-1

La première bouée mise en œuvre, BOMBYX-1, a été installée au Sud-Ouest de Port-Cros, en haut d'un tombant de 1 500 m afin de maximiser les détections des événements acoustiques au large (Fig. 4.1). La première session d'enregistrement a commencé en mai 2015 et la dernière s'est terminée en décembre 2018. La bouée a été placée à 25 m de profondeur et était équipée de 2 hydrophones, espacés de 1,83 m et enregistrant à 50 kHz (Fig. 4.1). Elle permet de déterminer la direction des individus enregistrés grâce à l'évolution du délai des temps d'arrivée des vocalises. L'orientation de la bouée est relativement stable et les axes de ses hydrophones pointent vers le Sud. BOMBYX-1 étant totalement immergée à 25 m de profondeur sous la thermocline, l'impact des bruits de surface est réduit. La carte son a été fournie pour ce prototype par OSEAN. L'hydrophone du canal 1 (placé du fait du courant Ligure à l'Est) est un Neptune D140 (sensible jusqu'à 160 kHz, cf annexe), et l'hydrophone du canal 2 (placé à l'Ouest) est un D140, ou un HTI (sensible jusqu'à 80 kHz, cf annexe), selon les sessions, avec respectivement -207 ± 2 versus -206 ± 4 dB re 1V/Pa à 1 m. Le protocole d'enregistrement a changé au cours des années (variant entre l'enregistrement continu et 5 min d'enregistrement suivi de 15 min de

pause), et entre l'encodage 24 et 16 bits. Les sessions d'enregistrement durent jusqu'à 3 mois. Des plongeurs ont été régulièrement envoyés pour changer les batteries et collecter les enregistrements.

Figure 4.1 : (Gauche) Carte bathymétrique de la région indiquant l'emplacement de la bouée BOMBYX-1 et les trajectoires des ferries (lignes rouges) (crédit Poupard et al., 2021). (Droite) Installation de la bouée BOMBYX-1 par -25 m au Sud de Port-cros (crédit photo PMS).

Les résultats de BOMBYX-1 sont publiés dans Glotin *et al.*, Pelagos Report 2020, Poupard *et al.*, 2021 pour les cachalots, et Best *et al.*, 2022 pour les rorquals communs. Ils montrent une bonne fréquentation du site par les deux espèces, plus une stratégie d'évitement des bruits maximaux pour les cachalots, et une évolution des chants pour les rorquals communs.

Bouée pentaphonique BOMBYX-2

La bouée BOMBYX-2, construite dans le projet GIAS par CIAN DYNI LIS CNRS UTLN, est pentaphonique. Elle est équipée d'un ballast, d'une antenne 4G et d'une carte son avec IA embarquée développée par SMIoT (Fig. 4.2). Elle a été placée à 25 m de profondeur au large de Monaco (Fig. 8.1). Le protocole d'enregistrement consistait en 5 min d'enregistrement toutes les heures. Les algorithmes intégrés sont destinés à la détection des clics de cachalots et des pulses de 20 Hz des rorquals communs. Son ballast lui permet de remonter en 2 min à la surface pour émettre au serveur du LIS les enregistrements et rapports de détection calculés par sa carte IA embarquée. La bouée BOMBYX-2 est une rupture technologique car, à ce jour, les bouées de ce type étaient soit en surface, mais avec des problématiques sévères de mouillage et de robustesse aux tempêtes (de plus en plus fréquentes), ou subsurface statique (ex: BOMBYX-1 sans moyen de communication en temps-réel).

Figure 4.2 : (Gauche) Schéma de la Bouée GIAS BOMBYX-2 à 5 hydrophones et son système de ballast (hauteur totale de 3m). (Droite) Localisation géographique de BOMBYX-2 face aux rails de trafic maritime (en pointillés).

Les statistiques de mesures des angles par la MPU (Motion Process Unit) de la bouée BOMBYX-2 démontrent une très bonne stabilité de la bouée dans le courant du fait de son profil hydrodynamique (Fig. 4.3). Cela lui donne la capacité de mesures très fiables, notamment pour la localisation des pulses de rorquals communs en basse fréquence et des clics de cachalots comme le montrent les sections suivantes.

Figure 4.3 : Mesures, par la Motion Process Unit, des trois angles de position de la bouée BOMBYX-2 en juillet 2022. L'assiette est donc très stable.

5. IA pour la détection automatique de cétacés

Une méthode de détection automatique (réseau de neurones ou CNN) des clics de cachalot et des pulses de rorqual commun a été mise au point pour ce projet sur BOMBYX-2. Les rorquals communs émettent des vocalisations en basse fréquence, appelées pulses, de deux types (20Hz ou 130Hz) qui durent environ 1s (Figs. 5.1, 5.2). Ces pulses sont généralement produits en séquences avec des intervalles inter pulses réguliers (de 10s à 40s). Ils forment alors un chant pouvant durer plusieurs heures et qui évolue selon les années et les saisons (Best *et al.*, 2022).

Figure 5.1: Spectrogrammes de trois pulses de rorqual commun de type 18 Hz à 22 Hz.

Figure 5.2 : (Gauche) Spectrogramme d'une détection de pulse de rorqual commun sur BOMBYX-2. (Droite) Forme d'onde sur un pulse de rorqual commun détecté par BOMBYX-2, le 11 août 2022.

Chez les cachalots, la communication et l'écholocalisation font appel à l'émission de sons dont l'unité de base est le clic. Lors des plongées, les cachalots émettent des trains de clics réguliers, tandis que pour la socialisation, ils émettent de petites séries rythmiques de clics (codas). Ces clics sont des sons hautes fréquences (de 0.2 kHz à 25 kHz) et durent quelques millisecondes. Chaque clic se présente comme une séquence d'impulsions également espacées, avec un intervalle régulier pour un même individu (intervalle inter-pulse ou IPI) (Fig. 5.3). Cet intervalle est le résultat de la réflexion du son dans l'organe acoustique. Il est lié à la taille de l'individu : plus l'organe est grand, plus l'IPI est grand. Il est après quelques années de recherche possible de calculer automatiquement les IPI et donc la taille des individus (Giraudet *et al.*, 2024).

Figure 5.3 : Exemple de détection de cachalot sur BOMBYX-2 le 28 juillet 2022. C'est un train de clics de déplacement, suivi d'une accélération.

Les réseaux de neurones convolutionnel (CNN) peuvent être entraînés pour classer les données avec un degré élevé de précision. Les CNN utilisent plusieurs couches de filtres (ou noyaux) pour convoluer des filtres appris sur les données jusqu'à ce qu'une valeur de confiance suffisante soit acquise. Le modèle est entraîné pour obtenir la meilleure adéquation entre cette valeur de confiance et les étiquettes données pour chaque échantillon acoustique. De cette manière, nous optimisons les filtres pour discriminer les classes d'échantillons (ici, le cachalot ou le rorqual commun par rapport à tout autre son) en tenant compte de la grande variété de bruits que l'on trouve dans l'ensemble de données.

Un réseau peu complexe (environ 10 000 paramètres) prend le Log MelSpectrum comme entrée de 3 couches de convolution. Il a été entraîné avec des données labellisées au moyen d'un processus itératif alternant entre l'entraînement, l'inférence sur des données non labellisées et la correction manuelle des prédictions (un protocole 'active learning' développé à CIAN). Ce processus d'annotation, d'entraînement et d'inférence a été répété comme un cycle jusqu'à ce que peu, ou pas, de corrections manuelles soient nécessaires. Ce modèle permet de détecter automatiquement les vocalises de rorqual commun et calcule une probabilité de détection à chaque milliseconde du signal.

Nous traiterons dans la suite de cette étude la détection des pulses de rorqual commun par ondelette et l'apprentissage IA par renforcement pour en estimer les niveaux dB (Fig. 5.4).

Figure 5.4 : Exemple de décomposition en ondelette de pulse de rorqual commun, enregistré en été 2022 par BOMBYX-2 (temps, fréquence). Le pulse débute à 19.5 min vers le canal 75 du scalogramme.

6. Estimation de positions des sources

Angles d'arrivée, azimut et élévation

BOMBYX étant doté de 5 hydrophones, les délais d'arrivée des vocalises par paire d'hydrophones peuvent être mesurés (Fig 6.1). Avec un système linéaire, le calcul du système des angles azimut et élévation peut être résolu comme dans la méthode de calcul de position des cachalots avec une antenne de même volume durant la mission Sphyrna Odyssey (Glotin *et al.*, 2020 <u>http://sabiod.org/SO1.pdf</u>).

Figure 6.1 : Mesures de délais d'arrivée des clics d'un cachalot sur BOMBYX-2, sur les 5 hydrophones (schéma centre). Ce cachalot est donc au SE car la bouée est orientée d'Ouest en Est, dans le courant Ligure cf sa Motion Process Unit. nb: H5 est centré 1.8 m plus bas que H2,4. Nous donnons ci-dessous un exemple d'analyse simple des angles d'arrivées de pulses de rorqual commun par BOMBYX-2. Cette tâche n'est pas aussi simple que pour le cachalot du fait d'interférence avec l'écho de surface, la longueur d'onde du pulse de rorqual commun étant de même ordre de grandeur que la profondeur de BOMBYX-2.

Figure 6.2 : Représentation des arrivées en passage en 0 du pulse de rorqual commun pour estimer les angles d'arrivée, azimut et élévation du rorqual commun. On rappelle que H5 est centré, 1.8 m plus bas.

Estimation du rayon de détection du cachalot

Nous estimons ici le rayon de détection de BOMBYX-2 pour un signal de cachalot. Cela dépend de la sensibilité de l'hydrophone C57, qui est relativement plate en fréquence jusqu'à 100 kHz (cf. Annexe A2), mais aussi de l'orientation de l'animal, du gain de la carte son (=1), la sensibilité de l'hydrophone, et d'autres paramètres. *In fine* il est possible d'estimer le niveau de la source (ASL).

Les spectres de puissance mesurés avant, pendant et après un clic (Fig. 6.3) montrent pour 3 kHz et pour 10 kHz des niveaux dB comparés au bruit de fond, de l'ordre de 5 dB. De plus, les abaques des niveaux dB à 1 m du cachalot (Zimmer *et al.*, 2005) pour les basses fréquences vers 3 kHz et pour P0 vers 10 kHz, donne une moyenne d'environ 188 dB respectivement 192 dB (Fig. 6.4).

Figure 6.3 : Analyse dB / spectre des pulses d'un clic de cachalot mesuré par BOMBYX-2 le 5 août 2022 (en temps et fréquence, et sa Power Spectral Density (Welch) en dB). (Haut) : mesure du bruit de fond. (Milieu) : P0 composante 10 kHz. (Bas) : pulse P1 (composante 20 kHz). Cela montre la variation dB de ces composantes à prendre en compte pour l'estimation de la distance de la source.

Figure 6.4 : Niveau dB à 1m des clics de cachalot modulo leur orientation (ligne noire percentile 90%) (Zimmer, 2005). LF=500 Hz à 3 kHz, moyenne ~188 dB; P0=10 kHz, moyenne ~192 dB; P1=20 kHz.

On en déduit alors que le niveau de perte de propagation de ce signal de cachalot est environ :

TS (à 10 kHz) = 12 dB.

Nous appliquons alors la loi de perte de propagation pour la fréquence de 20 kHz, 10 kHz et 3 kHz via la loi de propagation Thorpe Leroy (cf notamment modèle ISA et ISAT dans les travaux de Doh, et Glotin, 2014):

$$TL(r, f) = 20log_{10}(r) + \alpha(f)r$$
, en dB par km avec
$$\alpha(f) = \frac{f^2}{0.9144} \left(\frac{0.1}{1+f^2} + \frac{40}{4100+f^2}\right)$$
, f en kHz.

La Fig. 6.5 donne la loi d'atténuation dB des clics pour LF et P0, avec en abscisse la distance de la source, en ordonnée l'atténuation en dB.

Figure 6.5 : Perte de transmission en dB des clics 3 kHz (bleu), 10 kHz (rouge) et 20 kHz (vert).

En remplaçant ces pertes et les niveaux espérés des analyses précédentes, on peut estimer que le cachalot est entre 3 et 5 km de distance de BOMBYX. Afin de conforter cette estimation, nous mesurons dans la suite les élévations et rayons de détection par hypothèse de transmission linéaire des clics. Les TDoA sont observés Figs 6.6-7.

Figure 6.6 : Pulses du cachalot le 3 août 2022 à 12h09, à la seconde 168 sur voies 1, 3 et 5, ayant un retard TDoA(5,1)=110/256 ms, TDOA(3,1)=10/256 ms.

Figure 6.7 : Pulses du cachalot à la seconde 242 sur voies 1, 3 et 5, montrant TDoA(5,1)=58/256 ms et TDOA(1,3)=24/256 ms, le 3 août à 12h09.

L'hydrophone H5 étant à la verticale du point médian, entre H1 et H3, et BOMBYX étant verticale, le temps moyen de retard sur l'antenne verticale est de 105/256 ms à la seconde 168 et de 70/256 ms à la seconde 242. On en déduit le système reprenant l'élévation calculée sur les 5 hydrophones, et cet écart moyen sur l'axe vertical de hauteur H=1 212 cm inter hydrophones. Ce système converge vers une estimation du rayon de détection inférieur à l'estimation précédente, du fait de l'hypothèse de propagation rectiligne qui est trop forte. Un modèle de propagation non linéaire est en cours pour ajuster les deux méthodes.

Estimation de position du rorqual commun

On estime, par la suite, la distance du rorqual commun via la loi de propagation Thorpe Leroy et l'estimation de la perte de transmission TL :

$$TL(r, f) = 20log_{10}(r) + \alpha(f)r$$
, en dB par km avec :
$$\alpha(f) = \frac{f^2}{0.9144} \left(\frac{0.1}{1+f^2} + \frac{40}{4100+f^2}\right)$$
, f en kHz (ici f = 0.02 kHz).

La loi d'atténuation pour les pulses de rorqual (20 Hz) est donnée Fig. 6.8.

Figure 6.8 : Loi d'atténuation dB des pulses de rorqual commun (20 Hz), en abscisse la distance à la source, ordonnées atténuation en dB.

Dans l'exemple Fig. 6.8, considérant la vitesse moyenne du rorqual commun, on estime que la distance correspondant à la dynamique de défilement des détections est compatible avec une distance de l'ordre de 5 km.

7. Estimation des niveaux dB

L'estimation des niveaux dB est, soit faite par DSP (Densité Spectrale de Puissance) (Ferrari et al. 2022 étude SHOM), soit mesurée par bande de fréquence. Pour cette dernière, les signaux ont été divisés en bandes d'octaves. Pour rappel, la fréquence d'échantillonnage de BOMBYX-1 est de 50 kHz, et pour BOMBYX-2 de 128 kHz.

Pour chaque fichier, il est alors possible de tracer un calendrier des DSP en dB (niveau min, moyen, max). Les bandes de fréquence utilisées sont les bandes suivantes :

- 10 à 400 Hz, une bande supplémentaire a été estimée de 10 Hz à 800 Hz,
- 400 à 800 Hz,
- 800 à 1600 Hz,
- 1600 à 3200 Hz,
- 3150 à 6300 Hz,
- 6300 à 12500 Hz,
- 12500 à 60000 Hz.

Les niveaux dB absolus de la station KM3NeT ont été estimés suivant la méthode empirique suivante. Pour la fréquence considérée, le niveau dB brut est normé par sa moyenne, auquel on ajoute la moyenne de Wentz donnée Fig. 7.1. On en déduit ensuite les dB mean, min et max absolus par : dBMeanrelatifbande1 = moyenne({ dBrelatifbande1 sur 2020 union 2021}).

On a alors : dBMeanabsolubande1 = dBrelatifbande1 - dBMeanrelatif + 70 dB.

Figure 7.1 : Les niveaux dB de référence (d'après Wenz 1962).

PARTIE II : RÉSULTATS sur les CACHALOTS

8. Bilan des détections : calendrier de 2015 à 2023

Sur la période 2015-2018, une détection automatique de clics de cachalots suivie d'une vérification manuelle de la présence de cachalot (Poupard et al, 2022) a permis de déterminer le nombre de passages de cachalot sur BOMBYX-1. Au total, 226 passages de cachalot ont été retrouvés, certains passages étant constitués de 2 ou 3 individus, cela représente un total de 347 individus (avec recapture) (Fig. 8.1 Haut).

La recherche automatique de clics de cachalots a été effectuée par un réseau de neurones sur les enregistrements des bouées BOMBYX-2 depuis juillet 2022. Ce réseau a permis de générer les détections depuis juillet 2022 et de construire la suite du calendrier des détections (Fig. 8.1 Bas). Des vérifications manuelles ont été effectuées afin de vérifier les détections du réseau, dont quelques exemples validés sont Tab. 8.1. Le nombre d'individus pour les enregistrements de 2022-2023 est en cours d'analyse, notamment avec la détermination des IPIs.

 Table 8.1 : Exemples de fichier .wav (liens URL) incluant les détections de cachalot sur BOMBYX-2 et KM3NeT ('RUN*'). Ces fichiers sont disponibles à:

20220729_010919UTC_V12.wav	20220729_120919UTC_V12.wav	20220803_110928UTC_V12.wav
20220803_120928UTC_V12.wav	20220808_220942UTC_V12.wav	20220823_030952UTC_V12.wav
20230306_060011UTC_V12.wav	20230306_080011UTC_V12.wav	20230306_120011UTC_V12.wav
20230312_080011UTC_V12.wav	20230312_090011UTC_V12.wav	RUN7964_20200505_020101.wav
RUN7964_20200505_022901.way	RUN7964_20200505_023701.wav	RUN10000_20210522_060422.wav

http://sabiod.lis-lab.fr/pub/Pelagos2023_LIS_material/geonature/cachalotexempledetectionacoustique/

Le même réseau de neurones a été appliqué sur les données d'enregistrements de la station filaire. Il a révélé les détections positives de cachalots intégrées dans le calendrier (Fig. 8.1). Elles donnent corps aux observations de terrain des missions WhaleWay qui sont cependant sur des périodes très courtes de l'année, et démontrent le caractère indispensable de BOMBYX, seul observatoire à apporter des informations quelque soit la saison et les conditions météorologiques.

Figure 8.1 : (Haut) Nombre de cachalots détectés par jour sur les 4 années d'enregistrements (zone blanche: pas d'enregistrement) (Poupard et al. 2022). (Bas) Nombre d'enregistrements de 2 min (2020-2021 sur KM3NeT) et 5 min (2022-2023 sur BOMBYX-2) ayant au moins trois détections positives de cachalot. Les cases blanches sont les jours sans enregistrement, les grises avec enregistrement mais sans détection. Seuil de détection positive fixé à 0.5, sauf en 2022 fixé à 0.9 du fait d'un changement de gain.

9. Suivi par antenne mobile des cachalots en zone anthropisée Nord-Est Iles d'Or

La mission WhaleWay-4, réalisée du 23 septembre au 07 octobre 2023 en Méditerranée, a permis l'observation, l'identification visuelle individuelle précise (recapture), et le suivi acoustique de plusieurs cachalots (Fig.9.1 et suivantes).

Grâce à la dérogation accordée par l'AP83, notre zodiac a pu retrouver les "footprint" de chaque sonde de plusieurs individus, avec une approche lente et très respectueuse à au moins 300 m.

Ces points ont été relevés par GPS. Nous avons ainsi une base de référence pour calibrer, vérifier les estimations des défilements angulaires mesurés par nos antennes acoustique, clic à clic, à plus de 1 mile le plus souvent. Nous précisons dans la section 11 certaines trajectoires 3D issues de ces relevés acoustiques et comparées aux précédentes de 2018 (Sicié) et 2020 (Mejean) voir section 11.

Nous résumons dans cette section 9 les statistiques en deux dimensions de ces relevés, donnant des premières informations importantes pour les programmes anti-collision.

Ainsi, pour chaque jour de suivi, la carte résultant de l'effort de WhaleWay-4 faisant figurer les points d'écoute, les points d'observation et les points de sondes a été réalisée (Annexe 3). Ces cartes montrent notamment les zones de chasse privilégiées, les allers-retours effectués par les individus et le temps qu'ils passent dans ces zones (Fig. 9.2).

Lors de cette mission, nous avons passé 6 jours au niveau des canyons situés au large de Nice-Monaco, du 27 septembre au 2 octobre, zone qui semble être de grand intérêt pour les cachalots. Pendant cette période, des cachalots ont été observés tous les jours dont 14 qui ont été suivis sur plusieurs cycles de plongée (descente-chasse-remontée-respiration).

Des enregistrements acoustiques de nuit ont permis de suivre les individus sur une durée continue de 18h le 29 septembre. Ces suivis montrent que les cachalots font des allers-retours dans une zone où ils restent plusieurs heures, voire même plusieurs jours. Par exemple, le cachalot nommé Farouche est resté dans la même zone pendant 5 jours (Fig. 9.2). Ce dernier a été suivi acoustiquement sur un total de 98 heures, avec 28 points de sonde relevés au GPS d'une précision de l'ordre de 50 m. Ces observations successives ont permis de suivre l'individu et de l'enregistrer pendant 20 cycles, de 1h en moyenne. Ce suivi indique que ce cachalot a fait des aller-retours presque quotidiens dans une zone de 40 km seulement (Fig. 9.2).

Figure 9.1 : Vue générale du suivi des cachalots lors de la mission WhaleWay-4, sept-oct 2023. (Haut) Observations sud Monaco, (Bas) Iles d'Or. Le trajet du bateau est le tracé rectiligne blanc, les trajectoires potentielles des cachalots, en pointillés blancs, relient chaque point de sonde. Les zones rouges ont le plus d'observations de cachalots. Données brutes disponibles en Annexes 3 à 8.

Figure 9.2 : Compilation des trajets d'un unique cachalot, nommé Farouche. Suivi en cumulé sur 5 jours, 28 sept au 2 oct. 2023, montrant l'intérêt de l'habitat Canyon du Var pour cet individu.

Pour compléter ces éléments de comportement en zone anthropisée, les TDoAs des enregistrements positifs ont été analysés permettant de déterminer l'élévation et l'azimut des individus enregistrés sur les antennes.

Nous présentons ci-dessous le suivi du déplacement des cachalots par TDoA enregistrés lors de la mission WhaleWay-4, avec un unique individu le 27 septembre, 2 individus le 29 septembre, et jusqu'à 4 individus le 28 septembre. La méthode d'extraction et la mesure des TDoA depuis nos antennes acoustiques nous permettent de comprendre le déplacement des cachalots dans les profondeurs. Couplées aux mesures du microprocesseur en termes d'inclinaison (yaw, roll et pitch), pour connaître l'orientation des hydrophones par rapport à la source, il est possible de mesurer la direction du cachalot et ainsi prédire sa trajectoire en temps-réel depuis le bateau laboratoire à 1 ou 2 miles de distance. Cette méthode peut également être appliquée aux antennes fixes comme les bouées BOMBYX.

Figure 9.3 : Traces TDoA du cachalot ZZ-top enregistré, le 27 septembre 2023 lors de la sonde de 14h, par JASON Baguera. Début de l'enregistrement à 14h43 et fin à 15h04. Les 6 affichages représentent 6 couples d'hydrophones différents tels que t01 est le temps d'arrivée entre l'hydrophone 1 et l'hydrophone 2, t02 entre l'hydrophone 1 et l'hydrophone 3, etc.

Figure 9.4 : Track TDoA des cachalots Farouche (bleu, rouge et vert foncés) et Patte d'Ours (bleu, rouge et vert clairs) enregistrés le 29 septembre 2023 lors de la sonde de 13h13 à 14h22. Ces traces montrent qu'ils évoluent suivant les mêmes trajectoires.

Figure 9.5 : Traces TDoA de Farouche, Patte d'ours et Casnada durant la journée du 2 octobre 2023, entre 01h48 et 18h01, par JASON Baguera montrant les sondes conjointes.

Ces résultats de pistage en TDoA des individus identifiés permettent à court terme de caractériser leur rythme nycthéméral et les durées de chaque sonde, sachant qu'une piste qui s'efface est en général liée au silence (plus d'émission de clic) pendant la remontée finale en surface, puis la période de respiration en surface et le début de la sonde suivante. Il en découle une analyse plus fine des variations d'activités en milieu anthropisé, comme le développe la section suivante.

Figure 9.6 : Mesures par Baguera d'azimut et d'élévation de l'individu Survivor le 25 septembre 2023, durant 3 sondes complètes, montrant la plongée suivie de la remontée progressive.

Figure 9.7 : Suivi des mesures d'azimut et d'élévation de Farouche et Nada le 1er octobre de 14:19 à 17:19, donc durant 3 h, et plongeant ensemble durant 3 plongées (Fig. 9.9). Ces motifs démontrent la coordination de leurs sondes, même en milieu anthropisé. (marron: Nada IPI 5.05ms, bleu clair : Farouche IPI 5.14). La 3ème sonde ne montre qu'une piste de Nada, mais les deux ont sondé, Farouche est donc silencieux.

Figure 9.8 : Farouche (Gauche) et Nada (Droite) plongeant en phase, le 1er octobre 2023 à 14h54, position GPS 43.604, 7.5828333 (voir aussi Fig. 9.2) (crédit F. Sarano/Longitude 181).

Figure 9.9 : Suivi des mesures d'azimut et d'élévation de trois individus plongeant ensemble : Farouche, Casnada et Inattendu, enregistrés durant la nuit et la journée du 2 octobre 2023, de 1h12 à 18h42.

Pistage par BOMBYX-2

Cette même méthode a été appliquée aux enregistrements de BOMBYX-2. Les figures 9.10 et 9.11 donnent quelques exemples du programme GIAS anticollision cétacés/ferrys par BOMBYX-2, de 2018 à 2022, qui continue dès 2024 dans un nouveau FEDER.

Figure 9.10 : Traces TDoA d'un cachalot enregistré le 29 juillet 2022 à 01h09 par la bouée BOMBYX-2. Les clics de cachalot sont en bleu, les vrais négatifs en gris.

Figure 9.11 : (Haut) Détection et estimation en azimut. (Bas) Idem en élévation, par mesure des délais d'arrivée de chacun des clics de cachalot, le 3 août 2022. La piste d'élévation de -20° à -3° entre 150 et 250 s, montre que l'animal va faire surface car il arrête d'émettre.

10. Séparation des sources et suivi de taille par IPI

Un clic de cachalot est une impulsion produite à l'avant de la tête, au niveau du museau de singe, qui va ensuite traverser et rebondir dans l'organe acoustique du cachalot plusieurs fois et ainsi constituer les différents pulses d'un clic. L'intervalle entre ces pulses est régulier, nommé "Intervalle Inter Pulse" (IPI). Les enregistrements effectués tout au long de la mission WhaleWay-4 avec l'antenne tetra ou penta, mises à l'eau depuis le bateau, ont permis de déterminer les IPI des individus rencontrés.

Figure 10.1: (Haut) Suivi de la piste en Intervalle inter pulse dans les heures. (Bas) Histogramme des Intervalles inter pulses de la piste montrant le nombre d'individus et leur IPI. Ici Cyclone, IPI de 5,35 ms.

Figure 10.2: (Haut) Suivi de la piste en Intervalle inter pulse dans les heures. (Bas) Histogramme des intervalles inter pulse de la piste montrant le nombre d'individus et leurs IPI, ici Jupiter (5,42ms), ZZtop (5,67ms), Plune (5,56ms) et Farouche (5,12ms).

Figure 10.3 : (Haut) Suivi de la piste en IPI (Intervalle inter pulse) entre 13h00 et 17h30, le 4 octobre. (Bas) Histogramme des Intervalles inter pulse de la piste montrant le nombre d'individus et leurs IPI. Ici un groupe de 8 ou 9 individus de tailles petite à moyenne, dont certains sont des immatures (pour les IPI < 2.8 ms).

Figure 10.4 : (Haut) Suivi de la piste en Intervalle inter pulse dans les heures. (Bas) Histogramme des Intervalles inter pulse de la piste montrant le nombre d'individus et leurs IPI, ici un groupe de 4 individus dont certains sont des immatures (pour les IPI < 2.8 ms).

Couplée aux observations visuelles, la détermination des IPI permet de dresser les cartes d'identité précises de certains individus rencontrés (cf Annexe 5-8). D'autres individus ont également pu être identifiés, uniquement en visuel ou en acoustique, comme c'est le cas pour les immatures.

De plus, les mesures réalisées avec Baguera montrent non seulement les IPI mais aussi leurs réflexions sur la surface de la mer qui, si elles peuvent être vues comme parasites en premier

lieu, relatent une trace corrélée avec le déplacement de l'animal. Cette trace est essentiellement corrélée avec l'élévation de l'animal et donc avec sa dynamique verticale, sa vitesse de sonde Vs et de remontée Vr. La Fig. 10.5 montre ces variations d'élévation de l'individu par rapport à la surface. Du fait que les angles de cette trace sur la représentation (IPI, temps) sont constants modulo 180° (on observe trois droites symétriques), et en considérant que l'ascension et la plongée sont de même inclinaison par rapport à la surface, on peut en déduire que |Vr|=|Vs| sur toute la sonde ce qui a été vérifié chapitre 9.

Figure 10.5 : Sondes des cachalots Farouche et Patte d'ours du 29 sept. 2023 mesurées par Baguera, montrant la détection des clics directs (trace vers 5 ms) et leurs réflexions sur la surface (traces à gauche) corrélées aux variations de l'élévation du cachalot. Les données d'observation nous permettent de connaître les surfaces de ces individus, respectivement à 11h07 et 12h11 (Farouche), et 10h47 et 12h02 (Patte d'ours).

Estimation de l'âge en fonction de l'IPI

L'IPI, qui est directement lié au trajet du clic dans la tête du cachalot, est donc dépendant de la taille de la tête, par conséquent, de la taille de l'individu à son tour dépendante de l'âge de l'animal. La taille de l'individu peut être calculée grâce à l'équation suivante de Pierantonio et al (2016), calculée à partir de mesures réalisées sur des cachalots de Méditerranée (Tab. 10.1) :

L = 1.417*IPI + 4.632, avec IPI en ms et L en m.

Table 10.1 : IPI des cachalots identifiés pendant les missions Pelagos DECAV 2011 2012,Sphyrna, et WW1-2-3-4 et Sciences Participatives 1, tailles estimées suivant Pierantonio.Voir datageonature pour la table numérique (IPI cachalot 20112023 LIS UTLN.csv)

data lar aba	individu	IDI (mc)	mission	Taille (m)	data 1 ar aba	individu	IDI (mc)	mission	Taillo (m)
2011/05/06	maiviau	1P1 (IIIS) 1 99	DNDC	11 55	2022/04/05	Tanguy	3 66	THISSION TATTAT2	
2011/05/00		5.66	DNDC	12.65	2023/04/05	Truelovo	4.25	14/14/2	10.65
2011/03/19		3.00 4 E 4	DNDC	12,05	2023/04/00	Doland	4.25	14/14/2	10,05
2011/08/02		4.34 E 20	DNDC	12.26	2023/04/04	TATTAT2 1	2.7	TATTATO	0,40
2011/08/31		3.30 4.2E	DNDC	12,20	2023/04/04	VV VV31 VA/VA/22	2.27	14/14/2	9,27
2012/01/20		4.55	DNDC	11,00	2023/04/04	VV VV 52	5.30	VV VV 3	9,42
2012/01/20		4.55	DNDC	11,00	2023/05/28		5.55	SP1	12,21
2012/05/30		4.40	PNPC	10,8/	2023/05/30		4.19	SP1	10,57
2012/05/30		4.45	PNPC	10,94	2023/05/30		4.3	SPI	10,73
2012/07/10		4.86		11,52	2023/09/14		4.12	SP2	10,47
2012/08/02		4.9		11,58	2023/09/14		4.62	SP2	11,18
2012/08/02		4./8	RdV	11,41	2023/09/14		5.33	SP2	12,18
2012/09/17		4.6	RdV	11,15	2023/09/20		2.83	SP3	8,64
2012/09/17		4.66	RdV	11,24	2023/09/20	-	2.24	SP3	7,81
2012/09/23		5.72	RdV	12,74	2023/10/06	Bicorne	4.58	WW4	11,12
2012/10/06		4.44	RdV	10,92	2023/10/02	Casnada	4.26	WW4	10,67
2012/10/06		5.62	RdV	12,60	2023/09/24	Cyclone	5.35	WW4	12,21
2020/01/14	Fanny	2.0	Sphyrna	7,47	2023/09/28	Farouche	5.14	WW4	11,92
2020/01/14	Marius	2.2	Sphyrna	7,75	2023/10/02	Inattendu	5.33	WW4	12,18
2020/01/14	Felix	2.4	Sphyrna	8,03	2023/09/26	Jupiter	5.44	WW4	12,34
2020/01/14	Honore	2.5	Sphyrna	8,17	2023/10/01	Nada	5.05	WW4	11,79
2020/01/14	Norine	2.6	Sphyrna	8,32	2023/09/26	Patte_dours	5.26	WW4	12,09
2020/01/14	Cesar	2.9	Sphyrna	8,74	2023/09/25	Survivor	5.22	WW4	12,03
2022/06/12	Trinacria	3.47	WW1	9,55	2023/09/27	ZZtop	5.67	WW4	12,67
2022/06/11	Efkaristo	3.58	WW1	9,70	2023/10/04	WW41	2.1	WW4	7,61
2022/06/12	Janus	3.81	WW1	10,03	2023/10/04	WW42	2.24	WW4	7,81
2022/09/13	Meric	4.51	WW2	11,02	2023/10/04	WW43	2.58	WW4	8,29
2022/09/12	Vespucci	4.42	WW2	10,90	2023/10/04	Fleche	2.69	WW4	8,44
2022/09/12	WW21	4.53	WW2	11,05	2023/10/05	WW45	2.85	WW4	8,67
2022/09/12	WW22	5.24	WW2	12,06	2023/10/04	WW46	3.06	WW4	8,97
2022/09/21	WW23	2.12	WW2	7,64	2023/10/05	WW47	2.4	WW4	8,03
2022/09/21	WW24	2.28	WW2	7,86	2023/09/28	Plune	5.0	WW4	11,72
2022/09/21	WW25	2.42	WW2	8,06					
·		No. 10							

Les estimations de taille sont assez fiables. En revanche, si l'estimation de l'âge est fiable pour les cachalots de l'île Maurice, grâce à une étude de quinze années réalisée à l'Île Maurice et une abaque experte (Ferrari et al. 2024), ce n'est pas encore le cas pour la population de Méditerranée (Tab. 10.1).

En effet, Survivor a été identifié et photographié en 2009 (cf sa fiche d'identité en Annexe 16) comme adulte. On peut estimer qu'il avait au moins 10 ans en 2009 (version basse). Donc en 2023, il ne peut pas avoir moins de 24 ans, alors que l'estimation par Gambell indique 20 ans. Cela démontre que l'on ne peut pas utiliser le modèle de Gambell pour la population Méditerranéenne.

Evolution de la taille des cachalots sur 10 ans

La distribution des tailles des cachalots rencontrés en 2010-2011 (Glotin et al. 2012, PELAGOS DECAV), et durant les missions 2022 et 2023 (Tab. 10.2 et Annexe 11) sont comparées Fig. 10.6.

Figure 10.6 : Distribution des tailles des cachalots d'après leur IPI (Pierantonio et al. 2016). (a) Les 16 individus rencontrés autour des Iles d'Or de 2011 à 2012 (Glotin et al 2012). (b)
Individus des missions Sphyrna 2020 vers Antibes, et WW et SP en 2022. (c) WW et SP 2023 sur Nord et Sud Pelagos, Corse. (d) L'union de (a,b,c). Les tailles < 10.5 m sont des immatures mâles et femelles, à 11 m des femelles adultes ou mâles immatures, à 12.5 m des mâles adultes.

Il ressort de la Fig.10.6 que les observations réalisées au large de Toulon - Cap d'Antibes tendent à une plus grande diversité de taille des individus rencontrés, avec notamment des individus plus petits que ceux rencontrés sur les missions de 2010 et 2011 au large des Iles d'Or.

Cela pourrait être le signe d'une population en développement, avec la présence de femelles adultes et de juvéniles (individus < 10.5 m), ou bien indiquer un déplacement des groupes sociaux (femelles adultes et juvéniles) vers les côtes varoises alors qu'ils étaient plutôt signalés plus au large ou vers les Baléares par exemple. Le creux vers 9 m n'est pas interprétable à ce jour par rapport à l'ensemble du linéaire côtier français.

Mission	Date	nombre d'individus = #IPI différents.	Lieu
DECAV	de 2010 à 2011	16	Sud Iles d'Or
Sphyrna Odyssée	2020-01-14	6	Mejean
WhaleWay 1	2022-06-05 - 2022-06-18	3	Large Corse
WhaleWay 2	2022-09-12 - 2022-09-21	7	Large Corse
WhaleWay 3	2023-04-02 - 2023-04-06	6	Large cap Sicié
WhaleWay 4	2023-09-23 2023-10-07	18	Large Toulon-Cap d'Antibes
SP1	2023-05-27 - 2023-06-03	3	Large Toulon-Cap d'Antibes
SP2	2023-09-09 - 2023-09-15	3	Large Toulon-Cap d'Antibes
SP3	2023-09-16 - 2023-09-22	2	Large Toulon-Cap d'Antibes

Tableau 10.2 : Date et lieux des différents IPI intégrés dans la Fig. 10.6, pour un total de 64 cachalots différents à priori sauf si recapture(s) entre les 16 premiers et les autres.

11. Ethoacoustique 3D du cachalot et rythme nycthéméral

Etat de l'art

Les émissions sonores sont vitales aux cétacés, non seulement pour communiquer, mais également pour se repérer et pour chasser. Cette extrême dépendance acoustique les rend vulnérables aux pollutions anthropophoniques engendrées par l'explosion du trafic maritime. Les données acoustiques acquises depuis des années par les réseaux de surveillance forment un référentiel qui permettra de mesurer l'évolution concomitante de l'anthropophonie et des populations de cétacés même cryptiques. L'antenne Baguera, ou sa variante sur quille de drone, permet de calculer la dynamique et le comportement des cétacés sur la base de leurs vocalises ou clics suivant les principes de Giraudet Glotin 2006, Glotin et al 2008, Caudal et al 2010. Ses résultats avec l'antennt

Baguera ont été publiés dans Poupard et al 2019 Glotin et al. 2020. Ils sont résumés ci-dessous.

Figure 11.1 : (Gauche) Trois sondes 3D, calculées par acoustique passive depuis la surface, d'un même cachalot au cap Sicié en août 2018 (Pouard et al. 2019). (Droite) meute de 6 cachalots au large du haut-fond Méjean, vers le cap d'Antibes, le 14 janvier 2020 (Glotin et al. 2020).

Figure 11.2 : Chasse en meute de cachalots du 14 janvier 2020 durant 3h, calculée d'après les TDoA depuis l'antenne Baguera sur Sphyrna (Glotin et al 2020) de 6 cachalots au large du haut-fond Méjean, vers Monaco. Les cachalots restent centrés pendant 3h dans un même vortex, front océanique où se concentrent leurs proies. Ils alternent par trio ou duo des plongées synchrones et des phases en surface ensemble. Animation précise présentée à l'exposition du Musée d'Histoire Naturelle du Var d'avril 2023 à avril 2024, commissaires Giraudet et Glotin (disponible sur demande).

En 2020 durant les mission Sphyrna, à partir du déploiement d'antenne de type Baguera, nous avons détecté pendant 3h, 6 individus, allant de très jeunes à adultes, nommés pour l'étude Fanny

(IPI=2.0 ms), Marius (IPI=2.2 ms), Félix (IPI=2.4 ms), Honoré (IPI=2.5 ms), Norine (IPI=2.6 ms), César (IPI=2.9 ms). A chaque instant de leur trajectoire, la profondeur est indiquée à côté du nom (Figs. 11.1-2).

Les cachalots semblent construire un maillage d'émetteurs-récepteurs, distants d'environ 500 m les uns des autres, d'après le calcul sur l'équation du sonar (Glotin et al. 2020). Ils useraient pour chasser en meute d'un principe de bio-multistatisme connu en recherche sous-marine : les informations engendrées par les sonars de chacun seraient partagées par tous, chacun profitant de l'information des échos des clics émis par les autres.

Ce résultat montre également que ces cachalots restent pendant des heures dans des vortex formés par les courants, augmentant leur temps de présence sur des zones à risque de collision. Il sera donc important de coupler l'estimation des courants marins dans les alertes anti-collision.

Ethoacoustique 3D sur Mission WhaleWay-4

Les comportements de chasse ont également été suivis pendant WhaleWay-4 en septembre 2023. Le suivi de ces individus sur plusieurs sondes a permis de déterminer que la distance moyenne parcourue entre deux sondes est de 3,3 km. De plus, grâce au point GPS précis de la sonde, la profondeur de la plongée et la durée de la majorité des plongées présentées sur la carte ont pu être déterminées.

Nous montrons ici que les mesures par Baguera des vitesses angulaires ascensionnelles associées aux données comportementales telles que la vitesse de plongée et remontée, permettent de calibrer l'antenne Baguera et d'estimer les trajectoires 3D à l'instar de nos travaux précédents (Giraudet et al 2006, Glotin et al 2007, 2008 et 2020, Caudal et al 2008, Benard 2010a,b, Poupard et al 2019).

Nous illustrons ce principe sur la première sonde et le cas du 25 septembre 2023 d'après nos estimations angulaires (haut Fig. 11.3). Nous montrons alors une plongée à une vitesse de descente de 1.3m/sec à 1.5m/sec, et une ascension de vitesse similaire, entre 1.2m/sec à 1.4m/sec (Giraudet et al 2023), ce qui conforte les mesures symétriques des réflexions IPI section 10 (Fig.10.5).

Figure 11.3a : FootPrints de la piste du 25 sept 2023 de 16h à 19h (3 sondes) au sud Antibes et Nord Mejea, voir Annexe pour détail

Figure 11.3b : Estimations brutes de l'Azimuth relatif et absolu, yaw du bateau, et Elevation stabilisée par MPU du bateau, de la 1ere sonde du 25 sept 2023 16h (crédit Chavin, Giraudet).

De plus, d'après les footprints, la distance de l'antenne au cachalot au début de la plongée est de 1060 m, et à la remontée égale 1900 m.

Ces mesures se traduisent alors dans la représentation 3D de la trajectoire du 25 sept. vers 16h (Fig.11.4 bas) entre les 2 points GPS mesurés.

Figure 11.4 : Représentation brute normée de la première sonde du 25 sept au sud d'Antibes, Nord de Mejean, en 2D avec normalisation (haut rouge orienté Ouest Est Gauche droite) avec point GPS de surface, et trace bateau (haut bleue), et en 3D sans normalisation en X, Y, orienté

Est Ouest. La profondeur Z minimale est d'environ -1200 m. A noter que comme dans les trajectoires au large de Mejean (Glotin et al 2020) et de Sicié (Poupard et al 2019) nous observons que les émissions de clics débutent assez haut en descente mais s'arrêtent bas (vers -400m) dans l'ascension finale. L'animal continue donc de dériver environ 3 minutes, en silence et sans mesurer la présence de navire en surface en remontant, cf aussi l'interruption de sa trace 2D (haut rouge) avant son footprint localisé GPS. La suite de 3 longs trains de clics indiquerait 3 captures durant cette sonde. Cf annexe la carte globale avec les points GPS du 25 sept. 2023.

Figure 11.5 : Représentation brute normée de la seconde sonde du 25 sept sans normalisation en X, Y. Le Z minimal est environ de -1200 m. A noter que comme dans les trajectoires au large de Mejean (Glotin et al 2020) et de Sicié (Poupard et al 2019) nous observons que les émissions de clics débutent assez haut en descente, mais s'arrêtent bas (vers -400m) dans l'ascension finale. La suite de 4 longs trains de clics indiquerait 4 captures. Les positions en Longitude Latitude sont calculées ensuite suivant le principe de Fig. 11.4.

Il est intéressant de noter que ces sondes suivent le profil de la bathymétrie en remontant sur leur fin, et de fait la bathymétrie remonte tout au long du déplacement de l'animal (cf Fig.11.3a). L'ensemble des pistes 3D de ces mesures de fin 2023 est en calcul pour les dizaines de sondes enregistrées. Le tout est en préparation pour publication en revue et sera analysé dans la thèse de Chavin pour corrélation avec les courants.

De plus, la tortuosité moyenne des trajectoires 2D a été calculée afin de déterminer s'il existe un lien entre les paramètres des sondes, la taille estimée des individus, l'heure du jour, la profondeur, la proximité à la côte et la proximité au talus continental (Fig. 11.6). Plusieurs corrélations significatives ressortent entre ces observations terrain (on exclut bien sûr les corrélations naturelles par construction, comme IPI avec taille).

Notamment, une corrélation positive a été trouvée entre la durée d'une sonde et la distance entre les points surface d'un cycle de sonde (pearson=0.5, p-value=0). Cette corrélation, qui peut paraître évidente, est intéressante car elle signifie que la durée de la sonde n'est pas influencée par la profondeur et que les trajectoires sous-marines sont relativement rectilignes. Les cachalots pourraient plonger dans une "strate" ou un courant (voire sur une pycnocline entre 2 masses d'eau) à profondeur constante, indépendamment de la profondeur maximum du lieu. Il pourrait, par exemple, s'agir de la couche d'eau intermédiaire levantine, qui subit actuellement un profond changement (température et salinité) lié à l'augmentation de l'évaporation à cause du réchauffement climatique car elle se forme dans le bassin oriental de la Méditerranée.

Figure 11.6 : Scatter plot entre les différents paramètres étudiés, et la distribution de probabilité de chacune dans la diagonale estimée par des gaussiennes.

L'heure semble également influencer les cycles des cachalots. Lorsque l'heure s'écarte du midi solaire (14h00 heure locale), des corrélations importantes sont trouvées (Fig. 11.7). Les cachalots semblent modifier leur profil de sonde au cours de la journée. Ainsi, plus on s'éloigne du midi solaire, plus les plongées sont courtes en distance (pearson = -0.39, p-value = 0.005) et en durée (pearson = -0.26, p-value = 0.065) et le déplacement lent (les individus diminuent leur vitesse) (pearson = -0.35, p-value = 0.012).

Figure 11.7 : Relation entre l'écart à l'heure solaire et la distance parcourue lors d'une sonde.

Les premières et dernières sondes, les plus éloignées du midi solaire, pourraient ainsi être plus propices pour les collisions. En effet, si les individus effectuent des plongées courtes en temps, cela signifie que les apparitions en surface vont être plus nombreuses, conduisant à un ratio plus important de temps en surface.

En ce qui concerne les rythmes des plongées, chaque cycle entre deux sondes dure en moyenne 68 minutes, (calculé sur 63 cycles de 12 individus, minimum : 49 minutes, maximum : 86 minutes). Sachant que les individus sont en surface pour respirer pendant une dizaine de minutes, qu'ils arrêtent d'émettre des sons environ 5 minutes avant de faire surface et reprennent environ 1 minute après avoir plongé, les cachalots ne sont pas détectables acoustiquement pendant environ 15 à 18 minutes dans chaque cycle (Fig. 11.8).

Les autres paramètres étudiés, notamment la distance à la côte et au talus continental, ne sont pas significativement corrélés aux paramètres des sondes.

Figure 11.8 : Histogramme de tous les cycles mesurées (63) durant la mission WhaleWay-4, comprenant en moyenne 40 souffles, 12 s par souffle, soit 10 min de respiration environ.

La tendance des horaires favorables aux détections acoustiques sur BOMBYX-1 a été retrouvée sur BOMBYX-2 en 2023. Sur une base journalière, il y a deux fois plus de détections acoustiques le jour (matin et après midi, soit de 7h-18h), que pendant les périodes de nuit (soir et nuit, soit de 19h à 6h) (Fig. 11.9). C'est une tendance à considérer dans les systèmes anticollision par acoustique.

Figure 11.9 : (Gauche) Tendance par tranche horaire des détections sur BOMBYX-1 de 2015 à 2018. (Droite) Idem sur BOMBYX-2 en 2023.

Une estimation de la présence de cachalots dans une zone similaire a été réalisée et a montré un taux de détection plus élevé pendant les heures de jour (André et al. 2017). Il est possible, comme le présente l'étude BOMBYX-1 dans laquelle le pic d'activité acoustique des cachalots est centré sur le milieu de journée, au plus loin des pics anthropophoniques (Fig. 16.1), que les cachalots se rapprochent des bords des falaises et canyons (donc dans la zone de détection des bouées BOMBYX) pendant la journée pour se nourrir en évitant ainsi les pics de bruits des ferries de

l'aube et de la soirée. Et/ou il est possible que les cachalots suivent le rythme circadien, étant actifs et chassant la journée, et inactifs au repos (silencieux) la nuit.

Pendant cette mission, les cachalots observés se trouvaient principalement dans deux zones très anthropisées : une au Sud de Nice-Monaco d'environ 60 km de long sur 10 km de large, située entre 7 km et 25 km des côtes, et une zone située de 7 km à 20 km au large de Port-cros couvrant 20 km sur 10 km (Fig. 9.1) identique à celle des détections acoustiques de cachalots dans le projet Pelagos DECAV (Glotin et al 2012).

Les canyons au Sud de Nice semblent être une zone particulièrement appréciée par les cachalots qui y passent plusieurs heures, voire jours, pour chasser (Fig. 9.2). Les individus observés dans cette zone seraient des mâles adultes ou subadultes (comme l'indique leur IPI, trop grand pour une femelle). Plusieurs lignes de ferries, au départ quotidien de Nice, traversent cette zone. Plusieurs lignes reliant l'Italie au Maroc et à l'Espagne passent également au sud de cette zone. Bien que les observations n'aient pas été étendues au Sud, notamment car les observations ne conduisent pas à des détections dans cette direction, ces lignes représentent des bandes difficiles à exploiter pour les cachalots car elles sont exposées aux collisions avec les navires, réduisant leur zone de chasse.

Le recouvrement entre zone de chasse et lignes de ferries est également constaté sur la deuxième zone de suivi qui se trouve au sud de Port-cros. Les deux jours d'observation ont conduit au suivi d'un grand nombre d'individus, environ une quinzaine (respectivement 8 ou 9 puis 6). Il s'agit ici de femelles adultes (l'une d'elles est confirmée par photo-identification) et/ou de juvéniles comme le suggère l'analyse des IPI (les IPI trouvés sont relativement petits, il ne peut donc s'agir de mâles adultes). Sachant que les groupes sociaux de cachalots sont constitués de femelles adultes et de leurs jeunes, il semble que les individus rencontrés au Sud de Port-cros forment un groupe social.

Ces zones, particulièrement importantes pour l'alimentation des cachalots, mais également lieu de vie et potentiellement de reproduction, sont traversées quotidiennement par des ferries reliant la Corse et le continent. Il existe donc dans ces zones un risque de collision important.

PARTIE III: DÉTECTION d'AUTRES ODONTOCÈTES

12. Détection d'autres odontocètes dans Stochaedes

Les antennes Rascass et Rayol ont été placées à proximité du canyon de Stochaedes et ont permis de détecter différentes espèces de cétacés. Il n'y a pas eu de détection de rorqual. En revanche, un cachalot a été détecté sur la station Rayol, le 4 mars 2022 (Fig. 12.1). Nous retrouvons sa faible trace sur Rascass. Cela démontre l'intérêt de station fixe à bas coût pour le suivi des passages des cétacés dans Stochaedes. A court terme, nous poserons donc une station fixe sur la plage du Rayol en convention avec le jardin du Rayol.

D'autre part, le détecteur IA de sifflements de dauphins Ceta-CNN, développé par notre équipe, a été passé sur tous nos enregistrements de Rascass et Rayol. L'ensemble des détections résultantes ont été manuellement vérifiés. Il en résulte plusieurs passages de dauphins (Figs. 12.2-10).

Il n'y a pas de détection de cétacés à Rascass, sur un total de ~113 h d'enregistrement en 2021 et ~20 h en 2022 (site peu propice, dans bruit de récif). Mais sur Rayol, il y a 2 détections de sifflements en 2021 sur un total de d'environ 85 h, et 3 détections en 2022 sur environ 28 h d'enregistrements.

Figure 12.1 : Mesures de l'antenne Stochaedes Rayol le 4 mars 2022, montrant un passage de cachalot vers 15:34, d'IPI environ 2.5 ms. (Bas) En temps, sur les 5 hydrophones. (Haut) En temps-fréquence.

Figure 12.2 : Spectrogramme représentant des sifflements de delphinidés (08/08/2021 à 00:54).

Figure 12.3 : Spectrogramme représentant des sifflements de delphinidés (08/08/2021 à 03:05).

Figure 12.4 Vocalise d'odontocète sur Rayol, croissant de 6 kHz à 15 kHz, durée de 0.7 s le 04 mars 2022 à 19:03.

Figure 12.5 : Vocalise d'un odontocète sur Rayol, le 02 mars 2022 à 23:09.

Figure 12.6 : Vocalise d'odontocètes sur Rayol, le 02 mars 2022 à 23:15.

Des trains de clics sont détectés au Rayol, possibles Tursiops truncatus, le 8 août 2021 à 0:54:

Figure 12.7 : Trains de clics détectés entrelacés de 2 ou 3 dauphins sur station Rayol le 8 Août 2021 à 0:54. On mesure un ICI de 0,1 s environ pour les plus grands ICI.

Figure 12.8 : Zoom sur un clic de dauphin (probable Tt) de notre station Rayol posée environ par -7m, et son rebond surface, le 8 Août 2021 à 0:54.

Ces résultats montrent qu'il est possible de détecter, mais aussi de dénombrer, le passage d'odontocètes par une antenne simple avec 3 ou 4 hydrophones. Une station pérenne est donc en cours de pose à la suite de cette étude dans Stochaedes Rayol et Rascass, mettant en œuvre le savoir faire développé durant ce projet PELAGOS, notamment dans le cadre du projet ETHAC Région Sud.

Figure 12.9 : Détection d'un clic d'odontocète, 0,1 ms de long, 3 battements, fréquence centroïde vers 40 kHz mais déjà dans l'antialiasing et perte en dB (signal du 8 août 2021 à 00:54).

Figure 12.10 : Exemple des 6 TDoAs du train de clics de delphinidés du 08/08/2021 à 00:54. Il y a au moins 2 individus, cf les deux pistes dans le cadran en bas à gauche.

PARTIE IV : RÉSULTATS sur RORQUALS COMMUNS

13. Bilan des détections : calendrier 2009-2023

Les données acquises par KM3NeT au niveau d'un fort trafic maritime ont été couplées aux données de BOMBYX-1 et BOMBYX-2 pour la détection des rorquals communs (Fig. 13.1 et Tab. 13.1).

Figure 13.1: Exemple de pulse de rorqual commun enregistré l'été 2022 par BOMBYX-2 (temps, amplitude), entre min 18.5 et 20.5.

 Table 13.1 : Exemples de fichier avec URL des détections de rorquals communs disponibles sur :

 http://sabiod.lis-lab.fr/pub/Pelagos2023_LIS_material/geonature/rorqualexempledetectionacoustique

20220807_060937UTC_V12.wav	20220811_080942UTC_V12.wav
20220812_130944UTC_V12.wav	20220823_050946UTC_V12.wav
20221202_160006UTC_V12.wav	20221205_130006UTC_V12.wav

Sur la période 2015-2018, les détections semblaient montrer une activité de chant accrue en automne pour les pulses à 20 Hz. Pendant la campagne de BOMBYX-2, cette tendance est difficile à confirmer ou infirmer. En effet, aucune détection de rorqual commun n'a été relevée dans les enregistrements de novembre 2022, mais en 2023 le taux de détection le plus élevé était fin septembre.

Figure 13.2 : Nombre de trains de pulses de rorqual commun détectés normalisés par le nombre d'heures d'écoute sur Boussole en 2008-2009 (Laran et Glotin et al 2011) et BOMBYX-1 de 2015 à 2018 (Best et al 2022) et KM3NeT de 2020 à 2021, et BOMBYX-2 de 2022 à 2023. Les cases blanches correspondent aux jours sans enregistrement, les cases grises aux jours sans détection (seuil de détection positive= 0.75 en 2022, =0.45 en 2023, échantillons de 5s).

14. Défilements de rorquals communs

Nous complétons cette analyse par l'estimation et l'observation de perte dB de pulses de rorqual commun. BOMBYX mesure leur atténuation en dB de l'ordre de 7 dB, c'est-à-dire un niveau acoustique divisé par 2. Il s'agit donc ici d'une trajectoire à grande vélocité radiale, un animal qui se déplace vers le large, donc avec un fort risque de croiser le rail maritime (Fig. 14.1). A l'inverse, BOMBYX mesure leur gain de + 2 dB, c'est-à-dire un niveau acoustique multiplié par racine de 2 environ. Il s'agit donc ici d'une trajectoire à faible vitesse radiale, c'est un dire un animal qui vient vers l'antenne mais en tangente par rapport au disque de détection de BOMBYX-2 (Fig. 14.2). Ce n'est pas un cas à fort risque de collision.

Figure 14.1 : Mesure du déplacement d'un rorqual commun sur 3 minutes, et 10 pulses de rorqual émis, montrant le défilement de l'animal avec la perte en dB, et la variation faible en TDoA indiquant une trajectoire linéaire (exemple du 29 juillet 2022 BOMBYX-2) (crédit H. Glotin).

Figure 14.2 : Déplacement non rectiligne d'un rorqual commun sur 3 minutes, avec ses 8 pulses, enregistré le 23 août 2022 sur BOMBYX-2, Monaco (crédit H. Glotin).

15. Trajectoires 2D de rorquals communs Sud Iles d'Or

Nous avons appliqué nos processus IA de détection de pulse de rorqual commun puis les corrélations sur nos données du KM3NeT enregistrées aux printemps 2020 et 2021 (en 2022 et 2023 les lignes de jonctions étaient en panne). Les résultats (Fig.15.1-4) (Best et al. 2022) tendent à montrer un déplacement préférentiel des rorquals communs au dessus de la station KM3NeT (point blanc), du SE vers NW. D'autres trajectoires sont en calcul sur 2021. Ces résultats sont la preuve de concept de la qualité des processus sur les données KM3NeT que nous intégrons donc dans nos systèmes de prévention anti-collision cétacé-trafic joints à BOMBYX-2.

Figure 15.1 : Situation générale de la station KM3NeT (point blanc), cablée en fibre optique vers Toulon, avec points de trajectoire d'un rorqual commun, le temps s'écoulant en couleur du bleu 0:00 vers le jaune 23:59 (color bar), pour le 1er mai 2020 (crédit P. Best).

Figure 15.2 : Zoom sur des exemples de trajectoires 2D de rorqual commun calculées sur les trois hydrophones de KM3NeT, le 29 avril 2020. KM3NeT est le point blanc *(crédit P. Best).*

Figure 15.3 : Zoom sur des exemples de trajectoires 2D de rorqual commun calculées sur les trois hydrophones de KM3NeT, le 1er mai 2020. KM3NeT est le point blanc (*crédit P. Best*).

Figure 15.4 : Zoom sur des exemples de trajectoires 2D de rorqual commun calculées sur les trois hydrophones de KM3NeT, le 2 mai 2020. KM3NeT est le point blanc (crédit P. Best).

PARTIE V : PAYSAGES ACOUSTIQUES

16. Anthropophonie autour des Îles d'Or

Les bruits anthropiques ont une influence négative sur les mammifères marins. Ils pourraient affecter leur comportement et de nombreux processus vitaux (orientation, communication). Cette influence dépend de nombreuses caractéristiques acoustiques dont l'intensité, la largeur de bande ou la durée de l'exposition. Nous avons comparé l'évolution du niveau de pression acoustique en fonction de la présence/absence de cachalots sur BOMBYX-1. Les résultats ont montré une différence significative entre les amplitudes lors de la présence/absence des cachalots. On montre les distributions des amplitudes mesurées, pour les périodes avec et sans cachalot, pour l'octave 12.8 kHz (cette fréquence a été choisie car elle se situe approximativement au centre des émissions acoustiques du cachalot). Ces résultats montrent que, lorsque le niveau de bruit anthropique (bateau) est plus faible, les cachalots sont présents. En d'autres termes, les cachalots sont statistiquement moins présents dans les environnements plus bruyants. La Fig. 16.1, à droite, en apporte une preuve supplémentaire: à 04h00 et à 21h00 (pics de bruit des ferries), la présence de cachalots est la plus faible. A noter que l'achat en cours de la base de données des AIS sur cette période affinera l'analyse, ferry par ferry.

Figure 16.1 : (Gauche) Distribution de l'amplitude de l'octave 12 Hz à 800 Hz en fonction de la présence/absence de cachalots. (Droite) Superposition des amplitudes anthropiques (bleues) pour l'octave 12 Hz à 800 Hz, avec la probabilité de présence des cachalots (rouge) (Poupard et al. 2021).

On donne dans la suite les niveaux dB mesurés dans la plaine abyssale (par -2500 m) par nos systèmes KM3NeT (Fig. 16.2). Ils indiquent la même tendance anthropophonique de pic de 01:00 à 04:00 et de 19:00 à 21:00 que celle retrouvée dans la zone Iles d'Or, en basse et moyenne fréquence. Nous avons montré dans les chapitres précédents la baisse d'activité des cachalots en émission et en vitesse dans les heures éloignées du midi solaire. Nous pouvons alors penser à une adaptation des cachalots : ceux-ci se mettent au repos pendant les périodes de plus fortes anthropophonies, et présentent les vitesses et activité de chasse les plus importantes pendant les puits relatifs de silence, centrés sur le midi solaire qui, d'après les mesures, est la période la moins impactée par le bruit de navigation. Cela dit, les variations d'amplitude au large (Fig. 16.2

Haut) sont 4 fois moindre qu'au niveau du tombant pour BOMBYX-1 (Fig. 16.1), et le niveau moyen inférieur de 4 dB. La densité de passage des navires est inférieure dans le secteur KM3NeT et la profondeur de la mesure (-2500 m de colonne d'eau entre le navire et l'hydrophone) atténue le niveau par perte de propagation acoustique. Toutefois, ces pics ne sont pas mesurés sur les stations Stoechades, ni BOMBYX-2 Monaco qui n'est pas sur une zone portuaire de ferry. Ceci conforte le fait que ces pics sur BOMBYX-1 et KM3NeT sont induits par le passage de ferries.

Figure 16.2 : Moyenne du niveau dB dans la plaine abyssale, 20 km au Sud des Iles d'Or, via KM3NeT, au fil des heures UTC (=heure locale -2), d'une journée moyenne en mai 2020 et mai 2021, nuit (gris) vs jour (clair), écart-type (bleu) sur différentes plage de fréquence. (Haut) bande 10 Hz, 800 Hz. (Bas) bande 6,3 kHz 12,5 kHz. Cela montre la caractéristique d'un trafic maritime polluant un large spectre fréquentiel et à horaires récurrents.

Figure 16.3 : Niveau dB médian par jour (abscisse) et par heure (en ligne, en UTC), entre les fréquences 10 Hz à 800 Hz par KM3NeT dans la plaine abyssale par -2500 m, environ 20 km au Sud des Iles d'Or, en été, (Haut) en 2020 avec deux pics +4.5 dB à 1:00 et 21:00 UTC. (Bas) En 2021, montrant des différences de +0.5 dB en moyenne, et donc une évolution significative de l'anthropophonie en une année.

Dans les deux cas on note deux traces, vers 04:00 et 02:00, large de 3h, avec des pics à 60 dB par -2500 m, ce qui correspond aux pics plus intenses relevés aux mêmes heures par BOMBYX-1 :

des perturbations anthropiques de surface, le passage des ferries rentrant ou sortant du port de Toulon. Cette pression structure à long terme le paysage acoustique et les grands cétacés s'y adaptent probablement avec des horaires de chasse dans la plage temporelle la plus longue entre ces deux traces de bruit, c'est à dire entre 05:00 et 20:00, plage de 15h sans pression anthropophonique continue (Fig. 16.1).

Figure 16.4 : Niveau dB médian par jour sur la bande de fréquence 6300 à 12,5 kHz dans la plaine abyssale 20 km au Sud des îles d'Or par notre observatoire KM3NeT, en 2020 (Haut) et 2021 (Bas).

Les Figs. 16.3-.4 démontrent un bruit constant dans les basses et moyennes fréquences auquel s'ajoutent les passages de bateaux vers 04:00 et 21:00, heures locales. On note que les cachalots sont moins détectés au Sud des Iles d'Or à ces heures (Poupard et al 2022). Les bateaux forment aussi parfois des traces de plusieurs heures. Ces interférences peuvent localement perturber les activités des rorquals et des cachalots, notamment leur coordination de chasse durant lesquelles ils conserveraient un contact acoustique entre eux jusqu'à au moins 500 m de distance (Glotin et al 2020).

17. Paysage acoustique dans Stochaedes

Dans cette section, nous comparons le niveau de bruit basse fréquence 16 Hz à 400 Hz entre les stations Rascass et Rayol, puis en moyenne fréquence de 6,3 kHz à 12,5 kHz.

Figure 17.1 : Niveau dB médian sur la bande 10 Hz à 800 Hz, du 19 juillet au 11 août 2021, à Rascass. On constate une augmentation du bruit en journée avec un pic de +3 dB à 13h, probablement liée à des nuisances anthropiques (bruit de moteur, passage de bateaux), mais aucune trace de ferry, c'est à dire pas de pics vers 20:00 ni début matinée comme sur BX1 ou *KM3NeT*.

Figure 17.2 : Niveaux dB médian de la bande 10 Hz à 800 Hz, à Rayol du 19 juillet au 22 août 2021 montrant un pic de +6 dB à 11h par rapport à la nuit, ce qui double le niveau anthropophonique. Idem pas de bruit de ferry.

La comparaison des motifs dB horaires Fig. 17.1 vs 17.2, montre des passages de bateaux plus ponctuels et plus forts en pic à Rayol qu'à Rascass, avec +4 dB le jour comparé à la nuit, et peu de signaux de récif ce qui est cohérent avec la nature des côtes : Rayol est un banc de sable, Rascass un récif. La partie suivante propose la même analyse mais sur les niveaux moyens de 6,3 kHz à 12,5 kHz, comparés entre Rascass et Rayol.

Figure 17.3 : Niveau dB médian sur la bande 6.3 kHz à 12.5 kHz, du 19 juillet au 11 août 2021 pour Rascass. On constate un plateau de bruit de 21:00 à 5:00, probablement lié à l'activité du plancton et des récifs plus actifs la nuit. Toujours pas de bruit de ferry. La chute des bruits le 2 août est corrélée à la température, cf infra.

Figure 17.4 : Niveau médian de bruit sur la bande 6.3 kHz à 12.5 kHz pour Rayol, du 19 juillet au 22 août 2021, montrant une structure moyenne proche de celle de Rascass, et avec une tendance identique à une atténuation de signaux à partir du 14 août 2021, sans doute le même phénomène global de refroidissement sur la zone.

On mesure qu'à partir du 2 août le niveau de bruit sur la bande de fréquence 6.3 kHz à 12.5 kHz sur Rascass diminue de 4 dB en moyenne. En comparant ces résultats avec les données de température de la station de Port-Cros à cette même période, on observe une chute des températures en surface. Cette diminution est également observée durant la nuit, cette dernière n'est pas dûe à une variation de fréquentation anthropique. Ainsi, l'hypothèse la plus probable est que cette chute de la température a eu pour impact de réduire l'activité de la vie benthique. L'étude des niveaux de bruits permet donc le suivi de l'activité du récif. Cette hypothèse de variation d'activité récifale est appuyée par le fait que, pour les enregistrements faits à une autre période de l'année (mars 2022), l'augmentation de l'activité commence plus tôt et termine plus tard (cf Annexe).

Figure 17.5 : Évolution de la température de l'eau à (Gauche) différentes profondeurs, et (Droite) anomalies de température de l'eau en 2021 à la station Port-Cros (crédit <u>https://t-mednet.org/visualize-data/temperature</u>)

18. Anthropophonie sur BOMBYX-2, Sud Monaco

Les niveaux de bruits ont été analysés sur BOMBYX-2 en été 2022 (Figs. 18.1-6), montrant des niveaux inférieurs qu'au Sud des Iles d'Or.

Figure 18.1: Niveau de bruit sur BOMBYX-2 Monaco sur la bande 10 Hz à 800 Hz de l'été 2022. Un énorme dôme de bruit de +10 dB par rapport à la nuit est centré à midi.

Figure 18.2 : Niveau de bruit médian sur la bande 10 Hz à 800 Hz de l'hiver 2022 2023, avec des évènements de ragage d'une manille de la ligne de mouillage : les pistes rouges longues. Et des pics à 6h relatifs à la sortie des bateaux et leur retour en deux vagues à 14:00 et 19:00.

Figure 18.3 : Niveau de bruit médian sur la bande 10 Hz à 800 Hz du début 2023 montrant que l'écoute pour rorqual commun est propice sauf lors d'évènements de ragage d'une manille de la ligne de mouillage (analyse confirmée par communication du CIRA). Ce petit défaut de la ligne de mouillage est corrigé.

Figure 18.4 : Niveau de bruit médian horaire sur la bande 6300 Hz à 12500 Hz de l'été 2022 de BOMBYX-2 Monaco, montrant clairement une pollution acoustique de +10 dB environ en moyenne, voire +20 dB pour certains bateaux entre 9:00 et 19:00, par rapport à la nuit relativement silencieuse vers 35 dB en moyenne.

Figure 18.5 : Niveau de bruit médian sur la bande 6.3 kHz à 12. 5 kHz de l'hiver 2022 (11 nov. au 7 déc.) montrant un niveau faible de l'ordre de 55 dB la nuit et des passages aléatoires anthropophoniques de +10 à +20 dB.

Figure 18.6: Niveau dB médian sur la bande 6.3 kHz à 12.5 kHz de début 2023 sur BOMBYX-2 Monaco, montrant un niveau faible de l'ordre de 55 dB la nuit et des passages anthropophoniques aléatoires le jour surtout de +10 à +20 dB.

Ces diagrammes dB par heures indiquent que les niveaux de bruits sont propices à la détection du cachalot sur ce site, et montrent des activités anthropiques fortes entre 10:00 et 18:00 en été dans les bandes basse et moyenne fréquence de la mégafaune, autour de 200 Hz et 10 kHz. Les niveaux en automne et hiver sont eux moindres, modulo des bruits de ragage en basse fréquence (BF) qui devraient demander plus d'investigations, pouvant nuire à la détection de cétacés BF (rorqual).

Figure 18.7 : Niveau dB médian par heure sur plusieurs mois d'enregistrements des différentes stations pour la bande de fréquence 10 à 400 Hz (Haut), et 6 500 à 12 500 Hz (Bas).

Dans les basses et moyennes fréquences, un niveau de +10dB voire +20dB est observé sur Bombyx2 en été 2022 par rapport à toutes les autres stations montrant l'effet des activités estivales. Deux pics de bruit en nuit et matin sont visibles sur KM3Net, correspondant probablement aux passages des ferries. Ces mesures démontrent la variabilité anthropophonique des milieux et donc la forte adaptation requise par la mégafaune pour y chasser.

PARTIE VI : DISCUSSION et CONCLUSION

19. Bilan des détections de cachalots en zone anthropisée

Ce rapport montre plusieurs méthodes de suivi en antennes filaires ou en dérive, et en bouée fixe, chacune permettant une estimation du déplacement des cétacés, voire de leur position 2D, et des niveaux dB. Ces résultats démontrent l'efficacité de méthodes innovantes pour le suivi des cétacés en milieu anthropisé. Elles apportent des connaissances nouvelles pour réduire le risque de collision avec les navires.

Importance des observations mobiles

Les observatoires et les missions WhaleWay ont observé à différentes échelles les activités des cachalots. La mission WhaleWay-4, réalisée en septembre 2023, a fourni des résultats riches en informations cruciales pour mieux comprendre les déplacements de cette espèce emblématique et proposer des mesures de conservation face à l'augmentation des activités anthropiques, notamment du trafic maritime. Les enregistrements acoustiques des différentes antennes, couplés à la photo-identification, devraient lever une partie du voile sur un pan de la vie des cachalots dans la nuit des profondeurs, jamais révélé à ce jour.

La mission WhaleWay-4 a été réalisée pendant 15 jours, de septembre/octobre 2023, autour de la pleine lune (nuit du 29 septembre). Les cachalots se sont alimentés sur une zone relativement limitée, au large de Nice-Monaco et au sud de Port-cros/Ile du Levant, le long des tombants des canyons au-dessus de fonds d'en moyenne 1600 m. Au total, 20 individus ont pu être identifiés visuellement dont 12 ont été suivis sur plus de 2 cycles de plongée consécutifs et être ainsi caractérisés acoustiquement.

L'IPI (Interval Inter Pulse) est une caractéristique acoustique proportionnelle à la taille du cachalot. Elle permet de distinguer les mâles adultes des femelles adultes grâce à l'importance du dimorphisme sexuel de cette espèce. Ainsi, seuls les cachalots mâles adultes sont suffisamment grands pour avoir un IPI supérieur à 4 ms. Les individus rencontrés au cours de l'expédition étaient donc tous des mâles puisque leur IPI respectif était largement supérieur à 4 ms. En revanche, les 4 et 5 octobre, les groupes observés étaient composés de juvéniles et de femelles adultes dont les IPI étaient tous inférieurs à 3,5 ms. La photo-identification a permis d'identifier, le 5 octobre, un mâle immature ainsi qu'une femelle adulte (cale sur la dorsale). La présence de juvéniles et de femelles adultes au même endroit suggère qu'il s'agit de groupes sociaux pour ces 2 journées.

La plupart des observations ont conduit au suivi simultané de plusieurs individus. Certains individus effectuaient des actions coordonnées, notamment des nages parallèles, des sondes ainsi que des émissions vocales synchronisées. Ce type de comportement, relativement fréquent dans les groupes sociaux, est moins documenté chez les mâles. Cette observation inédite suggère des interactions sociales complexes, notamment la possibilité de comportements de chasse coopérative, très peu documentée. En outre, cette coordination démontre une communication

efficace, une structuration et une synchronisation des déplacements, et ce, même en milieu fortement anthropisé alors qu'un certain désordre pourrait être attendu au vu des perturbations. En ce qui concerne le trafic maritime, cette mission a montré que les zones de vie des cachalots sont traversées par les rails de passage de ferries reliant le continent, la Corse et l'Italie.

Figure 19.1 : Carte des principaux axes de ferries reliant la Corse et le continent et passant à proximité de la côte et localisation précise des sondes des cachalots observés pendant la mission WhaleWay-4 de deux semaines, en automne 2023 (une couleur par individu) (crédit Géoportail).

Les paramètres des sondes (durée et profondeur) ne sont pas influencés par la proximité à la côte, au talus continental ou à Monaco. La chasse est indispensable à la survie des cachalots qui poursuivent des plongées répétées, même à proximité du trafic maritime, si leurs proies se trouvent dans cette zone. Le risque de collision est donc très élevé dans ces zones.

Les efforts déployés lors de cette mission doivent être poursuivis afin de confirmer les résultats obtenus.

Pour les cachalots, au vu des résultats de détections sur BOMBYX-2 et des observations effectuées sur WhaleWay, il apparaît que le protocole d'enregistrement ne soit pas optimal. Connaissant les caractéristiques des cycles des cachalots rencontrés pendant WhaleWay, soit un cycle moyen de 68 min (minimum : 49 min, maximum : 86 min) avec 15 à 18 min d'arrêt des émissions sonores, les individus sont détectables entre 30 et 50 min par cycle (annexe A.8). Sachant qu'entre deux sondes, les cachalots se déplacent d'environ 3,3 km et que la majorité des

observations ont été faites dans un rayon de 25 km de BOMBYX, des enregistrements plus réguliers seraient pertinents pour augmenter les chances de détection. Ces observations nous permettent de définir le protocole optimal d'enregistrement sur BOMBYX afin d'augmenter les chances de détection et de recapture pour un suivi des individus.

20. Bilan des détections de rorquals communs

Les stations BOMBYX-1 et BOMBYX-2 constituent des corpus de référence pour l'étude des passages des rorquals communs au Sud des îles d'Or et au Nord Pelagos.

La station acoustique filaire KM3NeT, implantée à une profondeur de -2450 m au large de Hyères, a joué un rôle essentiel dans l'évaluation des niveaux de bruit en profondeur. Les résultats obtenus révèlent des niveaux de bruit significatifs, particulièrement dans la bande des basses fréquences (10 Hz à 600 Hz). Ces épisodes de bruit, persistant sur une durée de trois heures avec un niveau sonore de 70 dB, correspondent aux traces laissées par le trafic maritime, illustrant ainsi l'influence considérable de ces activités dans la zone d'étude. Grâce à l'application de techniques d'intelligence artificielle pour la détection des pulses émis par les rorquals communs, nous avons identifié des individus au printemps 2020 et 2021. Nous avons mis en lumière un déplacement préférentiel des rorquals communs au-dessus de la station, avec une orientation générale du NW vers le SE, comme indiqué dans les travaux de Best et al. (2022).

Des investigations supplémentaires sont en cours pour explorer d'autres trajectoires observées en 2021. Il convient de souligner que les rorquals communs émettent des pulses autour de 20 Hz, une fréquence qui coïncide avec la bande où un niveau de bruit élevé sur plusieurs heures a été enregistré. Cette pollution sonore ambiante pourrait ainsi compromettre les activités de communication des rorquals communs, induisant notamment un masquage acoustique. Le masquage acoustique se manifeste lorsque le bruit ambiant recouvre ou masque les signaux acoustiques émis par les animaux dans la même bande de fréquence. Sachant que les rorquals communs utilisent cette plage de fréquence pour leur communication, la présence constante d'une pollution sonore élevée peut entraver la détection de ces signaux, tant par les rorquals communs que par d'autres espèces marines.

Renforcement par apprentissage IA de la fonction d'alerte anti-collision

Depuis l'été 2022, cet observatoire GIAS est déployé avec les 2 premières bouées sur Monaco. En effet, le syndicat des pêches de Cap Martin demanda des contraintes par la suite non compatibles avec le fonctionnement de BOMBYX-2. Aussi la seconde bouée BOMBYX est en rotation avec la première bouée comme indiqué sur la carte.

Cette configuration de couplage des deux bouées a un intérêt pour le perfectionnement de l'apprentissage IA embarqué de la bouée pour affiner et confirmer l'estimation de la distance de l'animal.

En effet, les mesures jointes de deux bouées permettent d'une part un maintien par rotation de maintenance plus rapide pour le changement des batteries et un perfectionnement d'une bouée lorsque l'autre est à l'eau. Le déploiement est ensuite conjoint avec les deux bouées en opération simultanément. C'est-à-dire que les angles d'arrivée des sources en azimut, estimés par les bouées BX1 et BX2 sont croisés pour estimer la position de la source (Fig. 20.1).

Figure 20.1 : Illustration du croisement de deux azimut estimés, l'un par BOMBYX-21, et l'autre par BOMBYX-22. Ces deux azimuts se croisent, donnant une estimation précise de la position de l'animal et sa distance R2* et R1*.

Dès lors, l'estimateur de distance après plusieurs de ces estimations est entraîné pour estimer R1* avec la bouée BOMBYX-21 seule, et R2* avec BOMBYX-22 seule.

21. Vers le système d'alerte anticollision BOMBYX

Une observation préoccupante résultant de cette mission est la présence des cachalots dans des zones à fort trafic maritime, en particulier les itinéraires empruntés par les ferries continent-Corse. Cette proximité expose tous les individus suivis aux risques de collision potentielle avec les navires, posant ainsi une menace sérieuse pour leur sécurité. Cette situation devient particulièrement critique pour les groupes de cachalots, car elle met en péril la vie des juvéniles qui les accompagnent. Les jeunes cachalots, ne plongeant pas aussi profondément ni aussi longtemps que les adultes, sont plus exposés aux dangers des collisions avec les navires.

En conclusion, le dispositif Bombyx a montré pour la première fois la présence de cachalot tout au long de l'année sur le littoral PACA. Cette présence n'aurait pu être démontrée par des missions en mer, notamment en hiver, due aux contraintes environnementales. Cependant, les missions en mer sont également essentielles et permettent d'apporter des informations plus précises. La mission WhaleWay a démontré que le suivi détaillé des cachalots en Méditerranée, intégrant diverses méthodes d'observation, offre des perspectives essentielles pour éclairer les stratégies de conservation. Les informations recueillies ne se limitent pas à une simple compréhension des comportements biologiques, mais soulignent également la nécessité de prendre des mesures concrètes pour atténuer les impacts du trafic maritime sur cette espèce emblématique. Il devient impératif d'intégrer ces données dans des initiatives plus vastes de gestion marine, assurant ainsi un avenir durable pour les cachalots dans la Méditerranée.

Possibles déploiements du réseau BOMBYX

Les différentes méthodes déployées et analysées lors de cette étude ont montré que le nord du sanctuaire Pelagos représente une zone particulièrement occupée par la mégafaune marine. Le projet européen Biodiversa EUROPAM a été accepté et financera 3 autres bouées BOMBYX-2 en 2023/2024 en Méditerranée (et 3 entre Açores et Norvège).

Bouée # (site) (transmission)	Position GPS	Profondeur corps mort
Bx1 (Porquerolles) (4G)	42°57'49"N 6°15'20"E	-90m
Bx2 (Cap Corse) (4G)	42°48'15"N 9°31'19"E	-65m
Bx3 (Sicié) (4G)	43°01'11"N 5°49'34"E	-100m
Bx4 (Pampelonne) (4G)	43°13'16"N 6°47'00"E	-128m
Bx5 (Cap Martin) (4G)	43°43'41"N 7°30'36"E	-170m
Bx6 (Ile Rousse) (4G)	42°41'06"N 8°47'59"E	-190m
Bx7 (Antibes) (4G)	43°32'29"N 7°09'58"E	-140m
Bx8 (Ajaccio) (4G)	41°42'49"N 8°37'38"E	-100m
Bx9 (Banc Bagaud) (Iridium)	43°02'32"N 6°38'23"E	-115m
Bx10 (Mont Méjean) (Iridium)	43°23'55"N 7°08'44"E	-350m
Bx11 (Cassis) (4G)	43°08'47"N 5°30'08"E	-115m
Bx12 (Vieux-Port)	41°38'06"N 9°27'00"E	-90m

Table 21.1: positions idéales des bouées BOMBYX-2

Figure 21.1 : Cartes de positionnement idéal des bouées BOMBYX avec leur rayon d'écoute estimé à un maximum de 20 km.

Figure 21.2 : Illustrations en carte dynamique 3D des détections depuis les détections DECAV 2011 (<u>http://sabiod.lis-lab.fr/gias/</u>) de l'observatoire idéal du projet. Le rayon de détection à haut RSB est de 10 km et à moyen RSB de 20 km (rouge et jaune).

Elaboration d'une alerte automatique de risque de collision

Les bouées GIAS BOMBYX-2.1 et BOMBYX-2.2 construisent maintenant des corpus bien plus riches car, avec 5 hydrophones, elles capturent les informations de défilement en azimut, élévation De plus, avec apprentissage IA en cours, elles permettront d'estimer la distance et l'erreur d'estimation de la distance.

Les rapports d'alerte sont produits par chaque bouée et reçus au laboratoire depuis les deux bouées BOMBYX-2. Puis les signaux confirmés sont présentés sur une carte en ligne pour les autorités, qui sera affinée, et qui pour la fin du projet, est sous la forme présentée dans la section suivante.

Logs each 5 minutes rec, 10 Mo :				
	20220120_000310010_V12.Wdv	100	0.00000000	
	20220728_000918UTC_V12.wav	160	0.3529639	
Ein/Dhy log	20220728_000918UTC_V12.wav	165	0.017730286	
FILI/FILY.IUg	20220728_000918UTC_V12.wav	170	0.343511	
t1 p1	20220728_000918UTC_V12.wav	175	0.03539723	
ιτρι	20220728_000918UTC_V12.wav	180	0.08584233	
+2 -2	20220728_000918UTC_V12.wav	185	0.917102	
ιΖ μΖ	20220728_000918UTC_V12.wav	190	0.07624311	
	20220728_000918UTC_V12.wav	195	0.9999893	
	20220728_000918UTC_V12.wav	200	0.99990165	
	20220728_000918UTC_V12.wav	205	0.9406052	
th ph	20220728_000918UTC_V12.wav	210	0.9485358	
· •	20220728_000918UTC_V12.wav	215	0.5486088	

Figure 21.3: Exemple de rapport de décision / alerte, généré par la carte QHB automatiquement, et envoyé par 4G au laboratoire avec échantillons de son pour calculs plus précis. Une cartographie a été développée par notre équipe dans GIAS en superposant en temps réel à la fois les AIS des bateaux et l'état de mer qui sont les deux contextes de jugement de l'alerte collision avec la présence des cétacés. En cas de présence de cétacés dans un rayon de 25 km, on estime le cap et la distance de l'animal. En cas de faible détection, au-delà de 25 km, on met en vigilance BOMBYX-2 pour une écoute plus longue.

Figure 21.4 : Schéma général du système BOMBYX d'alerte anti-collision.

Figure 21.5 : Le site web de l'interface avec <u>http://sabiod.lis-lab.fr/pub/GIASFEDER.html</u> superposant en temps réel, à la fois les AIS des bateaux et l'état de mer, qui sont les deux contextes de jugement de l'alerte collision avec la présence des cétacés.

Figure 21.6: Exemple d'estimation de position d'un rorqual commun le 29 juillet 2022 et son déplacement <u>http://sabiod.lis-lab.fr/pub/GIASFEDER.html</u>

Le processus complet (Figs. 21.4-6) conduit à l'interface disponible en ligne <u>http://sabiod.lis-lab.fr/pub/GIASFEDER.html</u> qui présente à la fois les AIS des bateaux (type, position, vitesse et direction) et l'état de mer. Plus la mer est forte, plus le risque de collision est grand du fait de la visibilité réduite des bateaux sur les cétacés, et le bruit des bateaux probablement un peu masqué dans le bruit ambiant et probablement moins bien perçu par les cétacés. L'intégration de ces flux d'information est en cours en carte locale dynamique de probabilité de risque de collision.

22. Vers un modèle éthoacoustique de la mégafaune en fonction du trafic

La synthèse des observations des cétacés en milieu anthropophonique de ce rapport dresse un bilan comparé de la pollution anthropophonique de nature stationnaire et transitoire, ainsi que des importantes variations de son intensité (niveau dB) en fonction du trafic, heures et des sites.

Ce rapport montre d'autre part que les protocoles - BOMBYX-1, 2, antennes mobiles et KM3NeT / LSPM - permettent de rendre compte des déplacements des cétacés dans l'espace et le temps, ainsi que de l'évolution des structures sociales.

Il en ressort une certaine fidélité de grands cétacés à des sites de prédilection, même soumis à de fortes pressions anthropophoniques. Cette fidélité se traduit notamment par des passages (denses) de nombreux rorquals communs qui suivent presque toujours les mêmes trajectoires sur le site de

KM3NeT, donc relativement prédictibles, et dont nous pourrions estimer les raisons et l'influence du trafic maritime sur ces trajectoires.

Quant aux cachalots, ils conservent leur structure sociale, la cohérence de leur chasse en groupe, même dans les zones fortement anthropisées. Cependant nous avons montré qu'ils adaptent leur présence en évitant les heures de pression anthropophonique stationnaire maximum. Ceci montre la capacité d'apprentissage tant des cétacés, que de la possibilité de modéliser des comportements.

Nous proposons alors de croiser l'ensemble de nos observations de comportements de nages dans des milieux soumis à différentes pressions anthropiques pour construire un modèle éthoacoustique de la dynamique de nage des cétacés en fonction du trafic maritime. Ce modèle serait un apport précieux pour la prévention des collisions et la définition des réglementations à venir. En effet, il s'agit ici, par espèce, et par habitat de déterminer les niveaux dB par fréquence et durée d'exposition susceptibles d'interférer avec la forme de nage, la durée, la forme de remontée des sondes et direction relative par rapport au trafic maritime des grands cétacés dans ces habitats.

L'approche proposée ici rejoint (Tinbergen, 1963) qui pose les bases en éthologie, sous la forme de quatre questions que nous pouvons maintenant travailler par nos corpus et modèles pour anticiper le comportement des grands cétacés face au trafic maritime :

- 1. Fonction (ou adaptation) : Pourquoi l'animal exécute-t-il un comportement ? De quelle manière ce comportement augmente-t-il sa survie et sa reproduction ? Cela inclut, entre autres, l'éducation des jeunes pour augmenter leurs chances de survie, la migration vers des habitats plus riches en nourriture, la fuite ou l'évitement de danger anthropique.
- 2. Evolution (ou phylogénie) : Comment ce comportement a-t-il évolué ? Quel a été l'impact de la sélection sur l'évolution de ces comportements au cours du temps évolutif? Ce problème est généralement résolu par l'approche comparative, où le comportement en question est comparé entre des espèces étroitement apparentées.
- 3. Causalité (ou mécanisme) : Qu'est-ce qui cause le comportement ? Quels stimuli ou mécanismes physiologiques suscitent le comportement ?
- 4. Développement (ou ontogenèse) : Comment le comportement s'est-il développé au cours de la vie de l'individu ? De quelle manière a-t-il été influencé par l'expérience et l'apprentissage ?

Les questions 1 et 2 donneraient des explications ultimes ou évolutives. Ce sont des réponses qui s'inscrivent dans une perspective plus longue et tentent d'expliquer pourquoi et comment le comportement a évolué.

En revanche, les questions 3 et 4 donneraient des réponses qui s'intéressent aux raisons mécaniques à court termes pour lesquelles un comportement est exprimé.

Nous proposons donc à moyen terme et dans la continuité de ce mémoire d'étudier ces quatre questions sur les grands cétacés en contexte anthropisé versus non anthropisé. Il faut travailler en effet conjointement ces 4 questions pour obtenir une compréhension complète des coûts, des avantages et des contraintes qui façonnent un comportement donné.

Pour cela, nous travaillerons aussi sur nos corpus de grands cétacés en milieu faiblement anthropisé notamment hors saison de pêche en Arctique. Il s'agit de notre observatoire Valhallab en Arctique enregistrant en continu depuis 2 ans (novembre 2022) rorquals communs ainsi que des cachalots depuis novembre 2023 (Glotin et al. 2023, Glotin et al. 2024, Poupard et al. 2024). Et en second lieu, sur nos observations éthoacoustiques des cachalots établies depuis dix ans en zone faiblement anthropisée au Nord Ouest de l'Ile Maurice (Ferrari et al 2024) bien que les cachalots soient présents dans la zone portuaire. A noter que ce site présente aussi un intérêt de modélisation des comportements en pression anthropique croissante depuis la fin du covid qui est très importante du fait de l'augmentation des whale watchers 'sauvages'. Une évolution des comportements des cachalots sous pression croissante du whale watching peut donc être attendue, historique difficile à reconstruire en Méditerranée.

Cette perspective consiste donc en une exploitation fine de l'anthropophonie et de la biophonie de la mégafaune et se décompose en ces étapes :

a) Récolter (achat sur les bases) des AIS historiques sur ces zones d'écoute (Pelagos Nord, ValhallaB, NO Maurice),

b) Récolter éventuellement des photos satellites dans ces même zones pour compléter les connaissances sur les passages de bateau sans AIS, en collaboration avec l'ESA,

c) Etablir la trajectoire des bateaux repérés par (a) et (b),

d) Etablir la trajectoire de ces mêmes bateaux par acoustique (azimuth sur BOMBYX-1 et BOMBYX-2 et autres),

e) En déduire par (c+d) la signature acoustique de ces bateaux,

f) Etablir par PAM sur BOMBYX-1,2 Baguera et autre, l'azimuth et si possible élévation et rayon, la dynamique de nage de la mégafaune observée / entendue dans une zone faiblement versus fortement anthropisée,

g) Corréler (e) avec (f) dans le cas fortement anthropisé pour modéliser les dynamiques de nage de la mégafaune dans la zone de trafic versus celle relativement peu anthropisée.

Plusieurs missions de terrain dans Pelagos sont envisagées durant cette étude, notamment sur les programmes BOMBYX-2,3 en pose par le projet Marittimo SEAsteMAR FEDER 2024-2027, le programme WhaleWay, prévus de 2024 à 2027.

23. Conclusion générale

Dans ce rapport des méthodes d'analyse des comportements des cétacés dans des habitats variés et leurs résultats associés, qui seront complétés avec les missions WW5 et les bouées BOMBYX-1,2, et KM3NeT. La surveillance acoustique passive (écoute des vocalises, biosonars ou clics sans interférence avec les cétacés), permet de bien échantillonner les différents groupes d'animaux, individu par individu. Les systèmes de suivi des différents taxons sont maintenant pratiquement opérationnels, seuls la numérisation et le traitement des masses de données bioacoustiques posent encore quelques questions. Pour suivre l'évolution de la biodiversité en milieux ouverts peu accessibles ou peu échantillonnés - ici le vaste volume de l'océan -, les enregistrements sonores sur de larges bandes de fréquence au cours de longues séries temporelles constituent, à ce jour, la meilleure méthode, pour ne pas dire la seule. Les données acoustiques ainsi recueillies permettent de mesurer l'évolution concomitante de l'anthropophonie et des populations de cétacés, même cryptiques.

Notre objectif à moyen termes est d'équiper, à faible coût, les zones à étudier d'un réseau de capteurs "intelligents", connectés, de faible consommation et éventuellement synchronisés. Couplé à des représentations du signal apprises par des algorithmes d'IA, ce réseau a pour ambition de détecter, localiser, quantifier et classer des taxons d'animaux qui vocalisent, sans les perturber. Ce système permet d'améliorer nos connaissances sur les milieux marins, notamment aux abords des falaises ou dans les canyons profonds proches des côtes anthropisées. Des fronts océaniques s'y forment (mouvements verticaux de la colonne d'eau), créant des dynamiques complexes qui alimentent la chaîne trophique, du plancton aux super-prédateurs, dont les mammifères marins.

Notre étude, basée sur plusieurs méthodes de suivi en filaire, en dérive, ou en bouée fixe, démontre son efficacité pour suivre la mégafaune marine. Les différentes stations apportent des estimations de trajectoires, 2D voire 3D des cétacés, qui peuvent être couplées au niveau sonore apportant ainsi des solutions pour le suivi anthropique et les programmes anti collision. Les données collectées peuvent aussi être analysées en termes d'éthoacoustique (comportement inféré par l'acoustique), et de suivi de répertoire vocaux pour l'étude des populations.

Avec le développement d'une instrumentation de précision, des objets connectés (*Internet des objets*) et de l'intelligence artificielle, plusieurs questions se posent. Où et quand déployer les capteurs ? Et pour quelle performance ? Pour y répondre, nous avons choisi de simuler intégralement le système : de la génération des trajectoires d'animaux marins, intégrant des contraintes cinématiques et comportementales, jusqu'à la chaîne « classification, détection, localisation », en passant par la modélisation de la propagation acoustique. Ce *Jeu sérieux* génère des scénarios réalistes et admissibles de trajectoires et propagations acoustiques. Il est une pierre angulaire du développement de nos méthodes et un socle pour le déploiement optimal de nos observatoires. En effet, il est difficile de constituer des bases de données acoustiques marines réelles en quantité suffisante pour des approches IA. Les algorithmes développés sont donc

destinés à augmenter la masse de données, à améliorer l'apprentissage de leur représentation, et à perfectionner l'apprentissage de lois physiques en acoustique sous-marine.

De plus, l'apprentissage de représentations Temps-Fréquence (TF) est central dans ces recherches, car les signaux bioacoustiques sont de haute résolution. La majorité des réseaux de neurones n'observent pas directement la série temporelle des données acoustiques, mais plutôt une représentation adaptée. Pour obtenir une meilleure optimisation de la représentation TF, nous avons associé la distribution de Wigner-Ville à l'IA. Notre approche permet de mieux discriminer les différentes sources par leur contenu informationnel en temps et en fréquence. Cette approche permet de débruiter le signal et donc de mieux localiser et classifier les animaux. Elle nous a permis de développer le premier modèle de reconnaissance automatique des sons transitoires bioacoustiques sous-marins, à partir de leur forme d'onde. Ce modèle est utilisé par l'Agence Française de la Biodiversité pour étudier les cétacés de l'Arc Antillais. Nous surveillons également les traces d'effets Doppler, voire micro-Doppler, qui seraient utilisés par les cétacés pour leur prédation.

Dans Poupard M., Best P., Morgan J., Pavan H., Glotin, 2023, nous avons analysé les répertoires vocaliques des Globicéphales de Pelagos Nord versus la zone de Gibraltar. Cette première étude sera étendue sur les signaux que nous avons enregistrés sur les zones anthropisées en 2023 pour déterminer si les clans sont sédentaires sur ces zones ou subissent des pressions impliquant leur déplacement. Les complexités des voisement et des biosonars de la mégafaune en Méditerranée sont en étude dans notre centre CIAN (Fig. 23.1 et 23.2), en lien avec les habitats.

Figure 23.1: Exemple de vocalises de globicéphales vers Marseille en 2020. Le spectre de 20 kHz de largeur est complexe. Ces formes pourraient porter une information clanique qui pourrait être identifiée par IA (cf le premier répertoire de ces formes pour la Méditerranée (Poupard et al 2024). Cette approche permettrait de suivre les populations sous pressions anthropiques/ climatiques.

Figure 23.2: Exemple de clics de globicéphale vu au large de Marseille en 2023. Les clics sont représentés par la distribution de pseudo Wigner-Ville à l'échelle de 1/10 ms, afin d'observer les micros variations spectrales du signal émis (crédit Deloustal Paris Paiement Glotin).

Afin de diminuer l'effet de l'anthropophonie et le risque de collision, nous préconisons dans un proche avenir, d'installer des systèmes de veille acoustique intelligente placés en subsurface, en offline ou online suivant les autorisations. Ainsi ce réseau BOMBYX permet l'étude d'habitat pour l'élaboration de stratégies long terme. Il permettra de déterminer par connaissances fondamentales acquises par BOMBYX, de définir par les faits des zones de présence privilégiées qui seraient mises en protection forte et dans lesquelles la navigation serait réglementée (diminution de la vitesse en dessous de 10 nœuds). Il s'agira notamment dans les prochains mois d'élaborer une stratégie anti collision cétacé-trafic maritime dans la ZMPV ouverte par l'OMI il y a quelques mois, entre Pelagos et Barcelone.

En conclusion, ce rapport démontre des méthodes fiables et peu coûteuses d'étude des milieux et de la mégafaune, son comportement, et ainsi de donner des recommandations objectives. *In fine* il sera possible de réguler par habitat les vitesses et passages des ferries. Il s'agira en effet d'un paradigme à dimension spatio-temporelle, réduction de vitesse dans l'habitat identifié, par saison notamment suivant les activités des cétacés : chasse repos socialisation différence

saison notamment, suivant les activités des cétacés : chasse, repos, socialisation, différence suivant les compositions de groupe juvéniles et femelles versus mâles. Cette stratégie requiert des connaissances, ce sur quoi nos programmes de recherche se concentrent.

24. Diffusion et valorisation

Présentations en conférence de ce projet

Les résultats de ce rapport ont été présentés en tout ou partie dans les communications suivantes:

Au Workshop du FEDER GIAS 2022: https://docs.google.com/presentation/d/1BZ1ltKNC4KEDv-fDKii6ZoiA5U1xQdZoKTCAJswJm3 4/edit?usp=sharing

Aux Conseils Nationaux Scientific Pelagos de 2021 (Ajaccio), 2022 (Cavalaire), et 2023 (Ajaccio): <u>http://sabiod.lis-lab.fr/pub/BOMBYX-2_wkp_et_CNSPELAGOS_Glotin_202211.pdf</u>

A l'inauguration du KM3NeT : Best P., Marxer R., Paris S., Glotin H., 2023 : Probing the Fin Whale Song Evolution, KM3NeT inauguration, CPPM, Marseille <u>http://sabiod.lis-lab.fr/pub/Fin Whale Song KM3Env inauguration2023.pdf</u>

Dans le documentaire "La bioacoustique des cachalots", reportage CNRS 2020: <u>https://www.youtube.com/watch?v=g3xXM_tycCU</u>

Dans le reportage JT de France 2 de Juin 2021 : Extrait de l'émission <u>13h15, le samedi</u> diffusée sur France2 le 19/06/2021, <u>http://sabiod.lis-lab.fr/media/13h15.le.samedi.Fr2.20210619.mp4</u>

Plusieurs des résultats de ce rapport ont été présentés dans l'exposition "Plongée sonore avec les cétacés", 2023, Exposition du Musée d'Histoire Naturelle du Var d'Avril 2023 à Avril 2024, Giraudet et Glotin commissaires de l'exposition, http://sabiod.lis-lab.fr/media/19-20_20230505_480p.mp4

Souffle de vie, par Live Together, Monaco TV, 2023, https://sabiod.lis-lab.fr

Pelagos, par Decouverte du Vivant, France Télevision, 2023

"Le jour des baleines", série *La Méditerranée révélée*, Arte 2023, 44 min, réalisée par T Ragobert, Eclectic production.

WhaleWay-3 avec WeExplore, 2023, https://www.youtube.com/watch?v=81G2CbizzxI

Film "Silence en Méditerranée", 52 min, par J. Granjeon, 2022, http://sabiod.lis-lab.fr/media/silence_en_mediterranee_extrait.mp4

France Inter : Plongée aux côtés des cachalots [Audio], La Chronique Environnementale du 10 août 2021, interview de Glotin par Camille Crosnier, France Inter http://sabiod.lis-lab.fr/media/18099-10.08.2021-ITEMA_22743883-2021F29364S0222.mp3

Conférence Scène Nationale Chateauvallon, Mai 2024, Glotin, Un monde sans travail?

Comment les nouvelles technologies et l'intelligence artificielle reconfigurent le marché du travail

Conférence 'Submeetings', St Raphaël, Glotin, Mai 2024

Valorisation au Collège de France et l'Education Nationale en programme national de mathématiques des lycées

Plusieurs fichiers d'enregistrements de rorquals de cette étude ont été sélectionnés pour participer directement au programme <u>http://mathadata.fr</u> des mathématiques pour le lycée que nous élaborons en collaboration avec l'équipe de Stéphane Mallat, Professeur au Collège de France, mandaté par la ministre de l'éducation nationale pour lancer un programme d'enseignement de mathématiques dans tous les lycées de France.

MathAData s'inscrit dans une démarche où l'abstraction mathématique émerge aussi de l'expérimentation numérique, en algèbre, analyse, statistiques, géométrie, topologie ou informatique. Les limites sont celles de l'imagination des participants. MathAData fera partie suivant le programme du ministère de l'éducation d'un nouveau programme d'enseignement des mathématiques au lycée via des challenges d'IA afin de redynamiser les mathématiques au lycée.

En l'occurrence il s'agira des signaux que Bombyx2 a permis d'acquérir ces dernières années. Par statistique simple, les lycéens seront conduits à analyser et classer ces signaux durant les défis posés en première et terminale sur quelques heures par an.

Ce programme sera publié en classe des lycées français dès la rentrée de septembre 2024.

ANNEXES

A1. Sensibilité des hydrophones SQ26 et C57

Figure A1.1 : Réponse de l'hydrophone utilisé (SQ26) sur Antenne JASON (4 x SQ26) et en un exemplaire sur BOMBYX-2.

Figure A1.2. : sensibilité de l'hydrophone C57 de Cetacean Research qui équipe BOMBYX-2 et Baguera, haute fréquence C57.

Linear Frequency Range (±3dB) [kHz]	0.015 to 45
Usable Frequency Range (+3/-12dB) [kHz]	0.008 to 100
Transducer Sensitivity* [dB, re 1V/ µPa]	-187
Preamplifier Gain [dB]	20 / 33
Effective Sensitivity* [dB, re 1V/µPa]	-167 / -154
SPL Equiv. Self Noise at 1kHz [dB, re 1µPa/√Hz]	46 (Sea State Zero)
Power Requirement [Vdc]	5 to 32
RMS Overload Acoustic Pressure [dB, re 1µPa]	171 to 188 / 158 to 175
Maximum Operating Depth [m]	370
Operating Temperature Range [°C]	-40 to 60
Output Impedance [Ω]	10
Dimensions [mm]	116 L x 25 dia.

Table A1.1. : Spécifications de l'hydrophone C57

A2. Estimation dB absolus

Script générique du calcul dB voltage_hydro = 3.3 / 2 gain_hydro = 20*np.log10(1) #sensibility hydro : SQ26 -> -169, CR3 -> -207, C75 ->-200, C57 -> -187 sensibility_hydro = -169 sig = sig + 20*np.log10(voltage_hydro) - gain_hydro - sensibility_hydro

A3. Suivis compilés des cachalots enregistrés depuis le bateau WW-4

Figure A3.1 : Traces des cachalots lors de la mission WhaleWay-4 sept. 2023. (Haut) Les observations au bord du Canyon du Var, (Bas) Vers Iles d'Or. La courbe colorée représente le trajet du bateau de la mission en fonction du temps en heure, avec bleu=début de mission à 0, et rouge=fin de mission après 170h. Les segments symbolisent les jambes des pistes des cachalots entre chacune de leurs positions en surface.

0 - 4,3 4,3 - 8,5 8,5 - 12,8 12,8 - 17,1 17,1 - 21,3 21,3 - 25,6 25,6 - 29,9 29,9 - 34,1 34,1 - 38,4 38,4 - 42,7 42,7 - 46,9 46,9 - 51,2

51,2 - 55,4 55,4 - 59,7 59,7 - 64 64 - 68,2

68,2 - 72,5

72,5 - 76,8 76,8 - 81 81 - 85,3 85,3 - 89,6 93,8 - 93,8 93,8 - 98,1 98,1 - 102,4 102,4 - 106,6 106,6 - 110,9 110,9 - 115,1 115,1 - 119,4 119,4 - 123,7 123,7 - 127,9 127,9 - 132,2 132,2 - 136,5

136,5 - 140,7 140,7 - 145 145 - 149,3 149,3 - 153,5 153,5 - 157,8 157,8 - 162,1 162,1 - 166,3 166,3 - 170,6

A4. Suivis journaliers des cachalots pendant WW-4

Figure A4.1 : (Haut) Suivi réalisé le 25 septembre 2023 pendant la mission WhaleWay-4. (Bas) Zoom sur le suivi d'un individu, tracé en vert.

Figure A4.2: (Haut) Suivi réalisé le 26 septembre 2023 pendant la mission WhaleWay-4 (Bas) Zoom sur le suivi de deux individus: Patte d'ours en rouge, et Jupiter en rose.

Figure A4.3 : (Haut) Suivi réalisé le 27 septembre 2023 pendant la mission WhaleWay. (Bas) Zoom sur le suivi d'un individu: ZZ-top, en vert.

Figure A4.4: (Haut) Suivi réalisé le 28 septembre 2023 pendant la mission WhaleWay. (Bas) Zoom sur le suivi de quatre individus: Jupiter, Farouche, Plune et ZZ-top.

Figure A4.5 : (Haut) Suivi réalisé le 30 septembre 2023 pendant la mission WhaleWay-4. (Bas) Zoom sur le suivi de deux individus: Patte d'Ours et Farouche.

Figure A4.6: (Haut) Suivi réalisé le 01 octobre 2023 pendant la mission WhaleWay (Bas) Zoom sur le suivi de deux individus: Farouche et Nada.

Figure A4.7: (Haut) Suivi réalisé le 02 octobre 2023 pendant la mission WhaleWay. (Bas) Zoom sur le suivi de deux individus.

Figure A4.8: (Haut) Suivi réalisé le 04 octobre 2023 pendant la mission WhaleWay-4., (Bas) Zoom sur le suivi de plusieurs individus.

Figure A4.9: Suivi réalisé le 05 octobre 2023 pendant la mission WhaleWay-4.

Figure A4.10 : Suivi réalisé le 06 octobre 2023 pendant la mission WhaleWay-4. (Heures locales).

A5. IPI par les antennes mobiles Tétra et Penta à WW-4 de 2023/09/23 à 2023/10/07

Figure : (Haut) Suivi de la piste en Intervalle inter pulse dans les heures locales (Bas) Histogramme des Intervalles inter pulse de la piste montrant le nombre d'individus et leur IPI, ici Survivor.

Figure : (Haut) Suivi de la piste en Intervalle inter pulse dans les heures locales. (Bas) Histogramme des Intervalles inter pulse de la piste montrant le nombre d'individus et leur IPI, ici Patte d'ours et Jupiter.

Figure : (Haut) Suivi de la piste en Intervalle inter pulse dans les heures locales. (Bas) Histogramme des Intervalles inter pulse de la piste montrant le nombre d'individus et leur IPI, ici Patte d'ours et Farouche et Jupiter.

Figure : (Haut) Suivi de la piste en Intervalle inter pulse dans les heures locales. (Bas) histogramme des Intervalles inter pulse de la piste montrant le nombre d'individus et leur IPI, ici Patte d'ours et Farouche.

Figure : (Haut) Suivi de la piste en Intervalle inter pulse dans les heures locales. (Bas) Histogramme des Intervalles inter pulse de la piste montrant le nombre d'individus et leur IPI, ici Nada et Farouche.

2023/10/01

Figure : (Haut) Suivi de la piste en Intervalle inter pulse dans les heures (Bas) Histogramme des Intervalles inter pulse de la piste montrant le nombre d'individus et leur IPI, ici Bicorne.

A6. IPI sur Baguera WW-4 du 2023/09/23 au 2023/10/07

Quelques mesures de Baguera sont données ci-dessous pour comparaison avec les mesures de Penta données dans les sections précédentes. La similitude des traces montre la consistance des ces estimations IPI.

Figure : Suivi de la piste en Intervalle inter pulse (abscisse, ms), par heure locale (ordonnée).

Figure : Suivi de la piste en Intervalle inter pulse (abscisse, ms), par heure locale (ordonnée).

Figure : Suivi de la piste en Intervalle inter pulse (abscisse, ms), par heure locale (ordonnée).

Figure : Suivi de la piste en Intervalle inter pulse (abscisse, ms), par heure locale (ordonnée).

4 IPI (ms) 5

6

7

2

ż

i

ò

8

Figure : Suivi de la piste en Intervalle inter pulse (abscisse, ms), par heure locale (ordonnée).

Figure : Suivi de la piste en Intervalle inter pulse (abscisse, ms), par heure locale (ordonnée).

Figure : Suivi de la piste en Intervalle inter pulse (abscisse, ms), par heure locale (ordonnée).

Figure : Suivi de la piste en Intervalle inter pulse (abscisse, ms), par heure locale (ordonnée).

Figure : Suivi de la piste en Intervalle inter pulse (abscisse, ms), par heure locale (ordonnée).

A7. Cycles de plongée des individus lors de la mission WhaleWay-4

	08h00	09h00	10h00	11h00	12h00	13h00	14h00	15h00	16h00	17h00	18h00	19h00
28/09/2023 HeureSonde		FAROUCHE		FAROUCHE	12h54	13h45	14h56	ISh56	16h52	TAROUCHE	18h44	FAROUCHE
durée-cycle						51 minutes	71 minutes	60 minutes	56 minutes	55 minutes	57 minutes	
29/09/2023				111-07	101.11	124.12	1.45.22	15420			1.01.20	101.22
HeureSonde				11h07	12h11	13h13	14h23	15h28			18h30	19h23
30/09/2023					04 minutes		/ o minuces	os minaces				55 mildees
HeureSonde						13h13	14h09	15h14	16h20			
duree-cycle 01/10/2023							56 minutes	65 mintes	66 minutes			
HeureSonde							14h54	15h57	16h53		18h49	
durée-cycle								63 minutes	56 minutes			
HeureSonde	08h48	09h44	10h48	11h54	12h53	14h54						
durée-cycle		56 minutes	64 minutes	66 minutes	59 minutes							
					FADOLICUE			Min - El nein	max. 70 min			
					FAROUCHE	20 SUNDES	20 CTCLES	MIN: 51MIN	max: 76 min	moy: 60 min		
26/09/2023		PATTE OURS		PATTE OURS		PATTE OURS	14614	PATTE OURS		PATTE OURS		PATTE OURS
durée-cvcle				111150		70 minutes	68 minutes	72 minutes				
29/09/2023												
HeureSonde	08h20		10h47	>>>>>>>>	12h02	13h17	14h35	15h57			18h08	19h07
30/09/2023					75 minutes	75 minutes	70 minutes	oz minutes				55 minutes
HeureSonde								15h10	16h18			
durée-cycle									68 minutes			
					PATTE OURS	14 SONDES	9 CYLCES	Min : 59 min i	nax: 82 min n	noy :72 min		
27/09/2023		ZZTOP		ZZTOP		ZZTOP		ZZTOP		ZZTOP		ZZTOP
HeureSonde			10h48	11h50	>>>>>>>>>>	13h01	14h15	15h20	16h36	17h48	18h54	
durée-cycle				62 minutes		71 minutes	74 minutes	65 minutes	76 minutes	72 minutes	66 minutes	
					ZZTOP	8 SONDES	7 CYCLES	min: 62 min	max: 76 min	moy : 69,4		
	08n00	09n00	10000	1100	12000	13000	1400	15000	16000	1/n00	18000	19000
24/09/2023		CYCLONE		CYCLONE		CYCLONE		CYCLONE		CYCLONE		CYCLONE
HeureSonde			10h28	11h39	12h42	13h49	14h38	15h45	16h45	17h52		
duree-cycle				/ Innuces	05 minutes	or minutes	45 minutes	or minutes	oo minutes	or minutes		
					CYCLONE	8 SONDES	7 CYCLES	min : 49 min	max: 71 min	moy: 63,4		
25/09/2023		SURVIVOR		SURVIVOR		SURVIVOR		SURVIVOR		SURVIVOR		SURVIVOR
HeureSonde									16h07	17h08	18h14	19h09
durée-cycle									may: 66 min	61 minutes	66 minutes	55 minutes
					JORVIVOR	4 JONDES	5 CICLES			1110y . 00,7		
26/09/2023		JUPITER		JUPITER		JUPITER		JUPITER		JUPITER		JUPITER
HeureSonde durée-cycle	08H31	86 minutes	>>>>>>>>	77 minutes								
28/09/2023							14h01		16h18			
					JUPITER	5 SONDES	2 CYCLES	min: 77 min	max: 86 min	moy: 81,5		
01/10/2022								NADA				
HeureSonde		NADA		NADA		NADA	14H54	15H54	>>>>>>>>	17H10	18h14	19H19
durée-cycle								60 minutes		76 minutes	64 minutes	65 minutes
					NADA	5 SONDES	4 CYCLES	min: 60 min	max: 76 min	mov: 66.25		
02/10/2023			10445	CASNADA	12041	CASNADA	14034	CASNADA		CASNADA		CASNADA
durée-cycle	001140	56 minutes	61 minutes		121141		141134					
									may 61 min	mout EQ E		
					CASNADA	5 SONDES	2 CICLES	min: 56 min	max: or min	moy: 58,5		
06/10/2023	08h00	09h00	10h00	11h00 BICOBNE	12h00	13h00 BICOBNE	14h00	15h00	16h00	17h00	18h00	19h00
HeureSonde		Dicorate		11H47	12H56	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	14H05	15H13	16H28	17H34		Dicoluit
durée-cycle					69 minutes		69 minutes	68 minutes	75 minutes	66 minutes		
					BICORNE	6 SONDES	5 CYCLES	min: 66 min	max: 75 min	moy: 69,8		
U4/10/2023 HeureSonde		GALAXIE		GALAXIE		GALAXIE	14H14	GALAXIE		GALAXIE		GALAXIE
durée-cycle							56 minutes					
						2 JONDES	I CICLE					
05/10/2023		TIC		TIC		TIC		TIC		TIC		TIC
durée-cvcle				11H52	<i>>>>>>></i> >>>	76 minutes	84 minutes			1/H34		
				 	HC	4 SONDES	Z CYCLES	min: 76 min	max: 84 min	moy: 80		
05/10/2023		PAPILLON		PAPILLON		PAPILLON		PAPILLON		PAPILLON		PAPILLON
HeureSonde				11H52				15H31	16H21			
auree-cycle									55 millutes			
					PAPILLON	3 SONDES	1 CYCLE					
05/10/2023		TAC		TAC		TAC		TAC		TAC		TAC
HeureSonde				11H52	TAC	2 SONDES	14H41					
05/10/2023		SIRIUS		SIRIUS		SIRIUS		SIRIUS		SIRIUS		SIRIUS
HeureSonde					SIRIUS	13H08	14H33					
		1		1	SINUS	2 JONDES	1	1			1	

ATTENTION : Les individus qui n'ont été vus qu'une seule fois , ou ceux dont les sondes sont trop éloignés dans le temps, n'ont pas été retenus da PLUNE, FLÈCHE, MARS, CABOTIN, LEPEINTRE, INATTENDU.

A8. Niveau dB Max sur KM3NeT

Figure A8.1 : idem, niveau dB maximum par jour sur la bande de fréquence 10 Hz à 800 Hz sur la station KM3NeT en 2020 (Haut) et 2021 (Bas) en UTC. Les niveaux maximums sont centrés comme déjà montrés sur 3h à 4h et 21h à 22h (ferries), plus quelques passages de bateaux (carreaux de haute intensité).

Figure A8.2 : Niveaux dB maximum par jour et heure UTC sur la bande de fréquence 6300 Hz à 12500 Hz sur la station KM3NeT en 2020 (Haut) et 2021 (Bas). On note que les perturbations de dB maximum (bandes de 03:00 à 04:00, et de 21:00 à 22:00 locales) sont moins présentes qu'en figure précédente probablement car ces fréquences sont plus directives que les BF de 10 Hz à 400 Hz et donc correspondent à des passages de ferrys plus localisés au-dessus des hydrophones de KM3NeT.

A9. Effets dB de l'activité récifale sur les stations Stochaedes

Sur Rascass l'activité récifale est appuyée par le fait que pour les enregistrements faits à une autre période de l'année (mars 2022), l'augmentation de l'activité commence plus tôt et se termine plus tard.

Figure A9.1: Niveau de bruit sur la bande 10 Hz à 400 Hz sur la station Rascass en mars 2022.

Figure A9.2: Niveau de bruit sur la bande 6300 Hz à 12500 Hz.

A10. IPI des autres missions 2022 2023

A11. Etude expérimentale des émissions de JetSki

En complément sur le protocole d'étude anthropophonique des JetSki en Mai 2022, Golf de St Tropez, voir le rapport sur la page publication du site de CIAN / publication (<u>https://cian.lis-lab.fr</u>)

A12. Données techniques de la station KM3Net

DG1330 Hydrophone The DG1330 is a digital omnidirectional hydrophone, a professional tool specifically designed and produced for the Km3Net project, where our hydrophone was selected by INFN to record acoustic signals at depths of up to 3500m. Two channels with different gain Very low self noise on both channels Wide frequency range High sensitivity, high dynamic range 24Bit, up to 216 kHz sample rate External 25MHz digital clock input or internal clock AES/EBU interface Customizable This new version of Colmar digital hydrophone has been engineered with similar electronics and performances from the original DG0330 but employs different mechanical solutions to ensure an increase in performance and reliability. Apart from the AC-Ground copper ring, the external POMC jacket has no external metallic parts to avoid any issue associated with galvanic corrosion, thus permitting very long term deployments. The internal stainless steel core guarantees at the same time resistance against hydrostatic pressure, making the DG1330 an hydrophone suited for ultra deep applications. The sensor consists of a spherical omnidirectional piezo-ceramic element, interfaced to an analogue board that splits the signal in two channels with different gains (+46 dB and +26dB respectively). The two analogue signals are then sampled by a stereo 24bit ADC (Analog to Digital Converter) and converted into AES protocol using a DIT (Digital Interface Transmitter).

The time latency of the hydrophone electronics (including 4 m of cable) has been measured using a dedicated setup and its value is 50.65 \pm 0.25 μ s for the low gain channel and 50.71 \pm 0.25 μ s for the high gain channel.

The electronic card is protected by the internal stainless steel core and, differently to the previous version of the digital DG0330 hydrophone, it can be substituted if necessary.

> CO.L.MAR. S.r.I. via delle Pianazze, 74 - 19136 La Spezia (Italy) Tel +39 0187 982590 Fax 943461 P.I.00742150113 e-mail colmar@colmaritalia.it www.colmaritalia.it

DG1330 Hydrophone

Working band:	5-90.000 Hz					
High pass filter on preamplifier :	700 Hz (on demand)					
CH1 output sensitivity:	-156dB re 1V / uPa @ 5kHz					
CH2 output sensitivity:	-176 dB re 1V / uPa @ 5kHz					
Directivity :	Spherical - Omnidirectional					
Max working depth :	3500 m					
Gain @5kHz:	46 dB (CH1), 26dB (CH2					
Equivalent input acoustic noise @5kHz:	34 dB re 1uPa / sqrtHz					
Input impedance:	10 MOhm					
Supply voltage range:	9 -18 Vdc					
Current consumption:	100mA @ 12 Vdc					
Output:	AES3 protocol					
Weight in air:	1600 gr with 4m cable					
Body construction:	POMC (stainless steel inner core)					
Dimensions:	330 x 52 mm					

CO.L.MAR. S.r.I. via delle Pianazze, 74 - 19136 La Spezia (Italy) Tel +39 0187 982590 Fax 943461 P.I.00742150113 e-mail colmar@colmaritalia.it www.colmaritalia.it

A13. Script de calcul dB et calendriers Bombyx, KM3NeT et Stochaedes

A des fins de réplicabilité, ci-joints le script Python du calcul des calendriers dB consignés dans ce rapport

```
import matplotlib.pyplot as plt
import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import scipy as scp
import argparse
def create_directory(directory):
  try:
    os.makedirs(directory, exist ok=True)
  except Exception as e:
    print(f'Error creating directory { directory }: {e}')
    try:
      os.makedirs('figures_dB')
     except Exception:
      print('result will be saved in figures_dB')
      directory = 'figures_dB/'
  return (directory)
```

```
def process dataframe(df):
  df['sess'] = os.path.splitext(os.path.basename(filename))[0]
  df['path'] = df['fn'].apply(os.path.dirname)
  df['fn'] = df['fn'].apply(os.path.basename)
  df['date'] = pd.to_datetime(df['fn'].str.extract(r'(\d{8}_\d{6})')[0], format='%Y%m%d_%H%M%S')
  return df.sort_values('date').dropna()[40:-40]
def calculate frequencies(df, freqs0):
  fs = df['fs'].iloc[0]
  freqs = (freqs0 / (fs // 2) * 16385).astype(int)
  dict_freqs = {i: freq for i, freq in enumerate(freqs)}
  return dict freqs
def calculate dsp values(df, dict freqs, alpha=1e-18):
  for i in range(len(freqs0)):
     import ipdb; ipdb.set trace()
     band name = fmin dsp band \{i\}'
     df[band_name] = df['dsp_file'].apply(lambda x: np.min(x[dict_freqs[i]]) + alpha)
     band name = f mean dsp band \{i\}'
     df[band name] = df['dsp file'].apply(lambda x: np.mean(x[dict freqs[i]]) + alpha)
     band name = f max dsp band \{i\}'
     df[band name] = df['dsp_file'].apply(lambda x: np.max(x[dict_freqs[i]]) + alpha)
     band name = f median dsp band \{i\}'
     df[band name] = df['dsp file'].apply(lambda x: np.max(x[dict freqs[i]]) + alpha)
  return df
def plot band evolution(grp, i, save dir, freqs0, freq type):
  grad = np.linspace(
     grp.groupby([grp.date.dt.strftime('%Y-%m-%d'),
grp.date.dt.strftime('%H:00')])[f'{freq type} dsp band {i}'].mean().min(),
     grp.groupby([grp.date.dt.strftime('%Y-%m-%d'),
grp.date.dt.strftime('%H:00')])[f'{freq_type}_dsp_band_{i}'].mean().max()
  ).reshape(1, -1)
  fig, ((ax, ax hour), (ax day, ax legend)) = plt.subplots(2, 2, figsize=(20, 10),
                                      gridspec kw={'width ratios': [6, 1], 'height ratios': [4, 1], 'left': 0.1, 'right': 0.9,
'bottom': 0.1, 'top': 0.9, 'wspace': 0.15, 'hspace': 0.15})
  ax.imshow(
     grp.groupby([grp.date.dt.strftime('%Y-%m-%d'),
grp.date.dt.strftime('%H:00')])[f'{freq type} dsp band {i}'].mean()
       .rename axis(index=['day', 'hour'])
       .unstack(level=0),
    cmap='jet', aspect='auto'
  )
  ax hour.plot(grp.groupby([grp.date.dt.strftime('%H:00')])[f {freq type} dsp band {i}'].median(),
           grp.groupby([grp.date.dt.strftime('%H:00')])[f'{freq type} dsp band {i}'].median().index)
```

```
ax legend.imshow(grad, cmap='jet', aspect=10,
            vmin=(grp.groupby([grp.date.dt.strftime('%Y-%m-%d'), grp.date.dt.strftime('%H:00')])[
                   f'{freq type} dsp band {i}'].median()).min(),
            vmax=(grp.groupby([grp.date.dt.strftime('%Y-%m-%d'), grp.date.dt.strftime('%H:00')])[
                   f {freq type} dsp band {i}'].median()).max())
  ax legend.get yaxis().set visible(False)
  ax legend.set xticks([0, 25, 50],
               labels=[round(grad[0].min()), round((grad[0].max() - grad[0].min()) / 2 + grad[0].min()),
                    round(grad[0].max())])
  ax day.plot(grp.groupby([grp.date.dt.strftime('%Y-%m-%d')])[f {freq type} dsp band {i}'].median())
  ax day.set xticks(np.arange(len(
pd.to datetime(grp.groupby([grp.date.dt.strftime('%Y-%m-%d')])[f {freq type} dsp band {i}].median().index.tolist())
       .strftime('%d-%m'))),
             pd.to datetime(
                grp.groupby([grp.date.dt.strftime('%Y-%m-%d')])[f {freq type} dsp band {i}'].median().index.tolist())
              .strftime('%d-%m'))
  ax day.set ylabel('dB')
  ax.set ylabel('hour')
  ax day.set xlabel('day')
  types la = ['top', 'bottom', 'left', 'right']
  ax.set xticks([])
  ax day.tick params(axis='x', rotation=90)
  for t in types la:
     ax day.spines[t].set visible(False)
     ax hour.spines[t].set visible(False)
  ax hour.invert yaxis()
  ax hour.set xlabel('dB')
  ax hour.grid(alpha=.5)
  ax day.grid(alpha=.5)
  freq = freqs0[i]
  fig.suptitle(f {project} {freq type} dsp {df.date.dt.year.iloc[0]} {freq[0]}-{freq[1]} Hz')
  plt.tight layout(pad=0.5)
  plt.savefig(f' {save dir} {project} evolution db {freq type} {df.date.dt.year.iloc[0]} band {i}.jpg'',
bbox inches='tight')
def optimize code(df, save dir, freqs0, project, freq type):
  band 2 = [0, 1]
  for i in band 2:
     for s, grp in df.groupby(df['sess']):
       plot band evolution(grp, i, save dir, freqs0, freq type)
def argument_to_list(freqs):
  ranges = freqs.split(';')
  freqs = [list(map(int, range .split(':'))) for range in ranges]
  return np.array(freqs)
if name == " main ":
```

parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Put your dsp .pkl file to get the dB calendar plot')

parser.add_argument('input', type=str, help='File that contains DSP')
```
parser.add argument("--project", type=str, default=None, help="Name of the project")
  parser.add argument('--freqs', type=str, help='List the different frequency range you want to look like : ex. 10:400;
6500:12500', default='10:400 ; 6500:12500')
  parser.add_argument('--volt', type=float, help='Voltage hydro', default=3.3)
  parser.add_argument('--gain', type=float, help='Gain hydro', default=1)
  parser.add argument('--sensitivity', type=float, help='Sensitivity hydro', default=-169)
  args = parser.parse args()
  freqs0 = argument to list(args.freqs)
  filename = args.input
  project = args.project
  save dir = os.path.join(os.path.dirname(filename), 'figures dB')
  save_dir = create_directory(save_dir)
  print('Load the pkl file')
  try :
     df = pd.read pickle(filename)
  except Exception:
     df = pd.read csv(filename)
  processed df = process dataframe(df)
  dict freqs = calculate frequencies(processed df, freqs0)
  processed df = calculate dsp values(processed df, dict freqs, freqs0)
  print(f'len df after processing = \{len(processed df['fs'].unique())\}'')
  assert len(processed df['fs'].unique()) == 1, "Error: Multiple Sample Rates in Audio."
  import ipdb;ipdb.set trace()
  df = df.dropna(subset=['dsp file'])
  df['max dsp band 0'] = df['dsp file'].apply(lambda x: np.max(x[dict freqs[0][0]:dict freqs[0][1]]))
  df]'max dsp band 1'] = df]'dsp file'].apply(lambda x: np.max(x[dict freqs[1][0]:dict freqs[1][1]]))
  df'min dsp band 0'] = df['dsp file'].apply(lambda x: np.min(x[dict freqs[0][0]:dict freqs[0][1]]))
  df]'min dsp band 1'] = df['dsp file'].apply(lambda x: np.min(x[dict freqs[1][0]:dict freqs[1][1]]))
  dff'mean dsp band 0'] = dff'dsp file'].apply(lambda x: np.mean(x[dict freqs[0][0]:dict freqs[0][1]]))
  df['mean_dsp_band_1'] = df['dsp_file'].apply(lambda x: np.mean(x[dict_freqs[1][0]:dict_freqs[1][1]]))
  df['median dsp band 0'] = df['dsp file'].apply(lambda x: np.mean(x[dict freqs[0][0]:dict freqs[0][1]]))
  df['median dsp band 1'] = df['dsp file'].apply(lambda x: np.mean(x[dict freqs[1][0]:dict freqs[1][1]]))
  df = df[df.max dsp band 0>0]
  alpha = 1 * 10 * - 18
  df['min_dsp_band_0'] = df['min_dsp_band_0'] + alpha
  df['min_dsp_band_1'] = df['min_dsp_band_1'] + alpha
  df['mean dsp band 0'] = df['mean dsp band 0'] + alpha
  df['mean dsp band 1'] = df['mean dsp band 1'] + alpha
  df['max dsp band 0'] = df['max dsp band 0'] + alpha
  df['max dsp band 1'] = df['max dsp band 1'] + alpha
  df['median dsp band 0'] = df['median dsp band 0'] + alpha
```

```
df['median_dsp_band_1'] = df['median_dsp_band_1'] + alpha
```

columns_to_adjust = ['min_dsp_band_0', 'min_dsp_band_1', 'mean_dsp_band_0', 'mean_dsp_band_1', 'max_dsp_band_0', 'max_dsp_band_1', 'median_dsp_band_0', 'median_dsp_band_1']

```
df[columns_to_adjust] = 10 * np.log10(df[columns_to_adjust])
```

```
gain = 20*np.log10(args.gain)
voltage = 20*np.log10(args.volt/2)
```

for column in columns_to_adjust:
 if column in df.columns:
 df[column] = df[column] + voltage - gain - args.sensitivity
 else:
 print(f"Column '{column}' does not exist in the DataFrame.")

```
optimize_code(df, save_dir, freqs0, project, 'min')
optimize_code(df, save_dir, freqs0, project, 'max')
optimize_code(df, save_dir, freqs0, project, 'median')
```

```
print(f'Saved to : {save_dir}')
```

```
Paramètres bombyx 1
voltage_hydro = 5 /2
gain_hydro = 20*np.log10(10)
sensibility_hydro = -169
```

```
Paramètres bombyx-2
voltage_hydro = 3.3 /2
gain_hydro = 20*np.log10(10)
sensibility_hydro = -169
```

```
Paramètres bombyx-2 été 2022
voltage_hydro = 3.3 /2
gain_hydro = 20*np.log10(1)
sensibility_hydro = -169
```

A14. Fiches d'identité de cachalot réalisées par Longitude 181 / WhaleWay

Ci-jointes les fiches d'identité élaborées par Longitude 181 et al. dont le catalogue compte aujourd'hui 36 individus identifiés dans le cadre du programme WhaleWay. Elles combinent, pour la première fois pour les cachalots, la photo-identification et la stratégie de reconnaissance par bioacoustique, par 'IPI' notamment calculés par P. Giraudet et al., ainsi que l'historique des recaptures.

Le croisement de ces méthodes, basé sur une reconnaissance individuelle à la fois visuelle et sonore, conduira à moyen terme à une meilleure compréhension de l'évolution des structures sociales (possibilité de différencier mâle adulte et femelle adulte par l'IPI) et un meilleur suivi des populations, par la modélisation de la fonction de croissance des IPIs qui est nécessaire à l'identification acoustique sans photo-identification.

Voir méthode des fiches d'identités dans Sarano V. et al 2022, et 'Missions WhaleWay2023' Sarano V. et al 2023¹.

Voir le catalogue complet des fiches Méditerranées dans les données géonature de ce rapport (Annexe 15) ou dans <u>https://cian.lis-lab.fr</u> ou le site de Longitude181.

¹ https://www.longitude181.org/pdf/cachalots/Rapport missions WhaleWay1 2 3-Longitude181 LIS CIAN.pdf

Figure A14.1 : Exemple de fiche d'identité créée par Longitude 181 à partir des observations des missions WhaleWay. Ces fiches intègrent les recaptures, c'est-à-dire les observations déjà faites les années précédentes par d'autres équipes, ce qui permet de dresser l'historique de chaque individu.

Figure A14.2 : Fiche d'identité du cachalot Farouche qui a été revu 5 jours de suite, chaque fois en compagnie d'un autre individu, lui aussi identifié.

A15. Autres données en format Géonature

Les tables numériques en format Géonature, les données brutes de détection de cachalots sur WhaleWay-4, et des photos de ce rapport sont disponibles à : <u>http://sabiod.org/pub/Pelagos2023_LIS_material</u> et en identique à: <u>https://cian.lis-lab.fr</u> section publications.

BIBLIOGRAPHIE

Bibliographie générale :

Abeille, Chamroukhi, Doh, Dufour, Giraudet, Halkias, Glotin, Prévot, Rabouy, Razik, (2012), Détection et classification sur transect audio-visuel de populations de cétacés du nord Pelagos - Iles d'Or (DECAV), Pelagos Research Report, LIS DYNI

Abeille, Doh, Giraudet, Glotin, Prévot, Rabouy, (2014), Estimation robuste par acoustique passive de l'intervalle-Inter-Pulse des clics de Physeter macrocephalus : méthode et application sur le Parc national de Port-Cros, in J. of the Scientific Reports of Port-Cros national Park, V28

André, ..., Glotin, ..., et al., (2017), Sperm whale long-range echolocation sounds revealed by ANTARES a deep-sea neutrino telescope, In J. Scientific Report, Nature Ed., 7, 1–12

Balestriero, Cosentino, Glotin, Baraniuk, 2018), Spline filters for end-to-end deep learning, International Conference on Machine Learning, 364-373

Balestriero, Roger, Glotin, Baraniuk, (2018), Semi-Supervised Learning via New Deep Network Inversion, arXiv preprint arXiv:1711.04313

Balestriero R., Glotin H., Baraniuk R., (2021), Super-résolution interprétable via une représentation de séries temporelles apprise, int. conf. Apprentissage automatique mathématique et scientifique, <u>https://arxiv.org/abs/2006.07713</u>

Barchasz V., Gies V., Marzetti S., Glotin H., (2020), JASON High Blue ultra high velocity recording : a big data Caribbean biodiversity survey, in int. conf. Forum Acusticum, https://hal.archives-ouvertes.fr/hal-03230835/document

Barchasz V., ..., Glotin H., (2020), A novel low-power high speed DAQ for long time biodiversity survey, in int. conf. Forum Acusticum, http://sabiod.univ-tln.fr/pub/QualiHighBlue_DAQ_FA2020.pdf

Best, Glotin et al., (2020), Rapport Abyssound, FUI, Modèle d'impacts anthropophoniques sur la mégafaune, Rapport recherche DCNS, IFREMER, LMA, LIS

Best, P., Marxer R., Paris S. and Glotin H, (2022), Temporal evolution of the Mediterranean fin whale song, Scientific reports, <u>https://doi.org/10.1038/s41598-022-15379-0</u>

Best P., Marxer R., Paris S., Glotin H., (2023), Probing the Fin Whale Song Evolution, KM3NeT inauguration, KM3NeT inauguration, CNRS http://sabiod.lis-lab.fr/pub/Fin_Whale_Song_KM3Env_inauguration2023.pdf

David, Di-Meglio, Monestiez, (2019), Sperm whale ship strikes in the Pelagos Sanctuary and adjacent waters: assessing and mapping collision risks in summer. J of Cetacean Research and

Management. 18. 135-147

Ferrari M., Trinh-Hafner M., Sarano F., Sarano V., Heuzet, Prudhomme, Giraudet P., Glotin H., (2024), Age and interpulse interval relation from newborn to adult sperm whale off Mauritius, Scientific Report, Nature Springer Ed.

Ferrari M., Glotin H., (2022), Mesure du bruit ambiant sous-marin par la bouée stéréophonique BOMBYX au Sud du Parc National Port-Cros de 2015 à 2018, RR CNRS SHOM http://sabiod.lis-lab.fr/pub/BOMBYX CNRSLIS RR202210 Mesure bruit ambiant Toulon 2015 2018.pdf

Ferrari, (2020), Biosonar du cachalot, modèle et analyse, Phd Thesis, dir Glotin et Asch

Ferrari M., Glotin H., Marxer, Asch, (2020), Docc10 : Ensemble de données en libre accès d'études transitoires sur les mammifères marins et classification de réseau neuronal convolutif de bout en bout, Int. Conf. sur les réseaux de neurones IJCNN https://hal.archives-ouvertes.fr/hal-02866091/document

Gambell R., (1972), Sperm whales off Durban. Discov. Reports 35 199–3582

Giraudet, Glotin, (2024), Correlational and stochastic Inter Pulse Interval fine estimation of the click of sperm whale, RR LIS CNRS

Glotin H., Poupard M., Best P., Ferrari M. (2021a), Observations Stéréophoniques sur 4 ans de la Bouée BOMBYX au Sud du Parc National de Port-Cros : Mégafaune et pollution anthropophonique. LOT 1 : Le cas du cachalot,

http://sabiod.lis-lab.fr/pub/BOMBYX/RAPPORT ENGIE LOT1 cachalot CNRS BOMBYX.pdf

Glotin H., Poupard M., Best P., Ferrari M., (2021b), Observations Stéréophoniques sur 4 ans de la Bouée BOMBYX au Sud du Parc National de Port-Cros : Mégafaune et pollution anthropophonique. LOT 2 : Le cas du rorqual et du globicéphale http://sabiod.lis-lab.fr/pub/BOMBYX/RAPPORT_ENGIE_LOT2_rorqual_CNRS_BOMBYX.pdf

Glotin, Enfon, Balestriero, Mishchenko, Prevot, Razik, Paris, Patris, (2016), Détection et mesure du cachalot et bruits anthropiques sur les signaux monophoniques d'Antares [DECAN], LIS DYNI, Pelagos Research Report

Glotin, Giraudet, Ricard, Malige, Patris, Roger, Prévot, Poupard,..., (2018), Visées Aériennes de Mammifères marins jointes aux Observations acoustiques Sous-marines de BOMBYX et ANTARES : nouveaux modèles en suivis et lois allométriques du Physeter macrocephalus [VAMOS], LIS DYNI, Pelagos Research Report,

https://www.sanctuaire-pelagos.org/fr/tous-les-telechargements/etudes-scientifiques-studi-scientifici-studies/etudes-francaises/789-14-037-vamos

Glotin, LeCun, Artieres, Mallat, (2013), Neural information processing scaled for bioacoustics, from neurons to big data, NIPS Workshop

Glotin H., Spong P., Symonds H., Roger, Balestriero, Ferrari, et al., (2018), Deep learning for ethoacoustical mapping: application to a single Cachalot long term recording on joint observatories in Vancouver Island, The Journal of the Acoustical Society of America 144 (3), 1776-1777

Glotin et al, (2024), Rapport MITI CNRS ADAPREDAT : Etude bioacoustique de l'adaptation de cétacés Arctiques http://sabiod.lis-lab.fr/pub/ADAPREDAT/ADAPT-VIVANT-202403_ADAPREDAT_FJORD3D_GLOTINetla.pdf

Ham G. S., Lahaye E., Rosso M., Moulins A., Hines E. et Tepsich P., (2021), Predicting summer fin whale distribution in the Pelagos Sanctuary (north-western Mediterranean Sea) to identify dynamic whale-vessel collision risk areas, Aquatic conserv: Mar. Freshw. Ecosyst. 1-21.

Joly A., Goëau, Glotin, Spampinato, Bonnet, Vellinga, et al., (2017), Lab overview: multimedia species identification challenges, Int. C. of the Cross-Language Ev. Forum

Nugraha, Liutkus, Vincent, (2016), Multichannel audio source separation with deep neural networks, IEEE/ACM Trans on Audio, Speech, Language Proc 24, 9, 1652–1664

Pace et al., (2008), Behaviour of a social unit of sperm whales (Physeter macrocephalus) entangled in a driftnet off Capo Palinuro (Southern Tyrrhenian Sea, Italy), Article in IWC Journal of Cetacean Research and Management

Pavan G., Hayward T.J., Borsani J.F., Priano M., Manghi M., Fossati C. and Gordon J., (2000), Time patterns of sperm whale codas recorded in the Mediterranean Sea 1985-1996. J. Acoust. Soc. Am. 107(6): 3487-95

Pernille, Cláudia, Mark, Teglberg, (2020), The long-range echo scene of the sperm whale, in biosonarBiol. Lett.1620200134 <u>http://doi.org/10.1098/rsbl.2020.0134</u>

Poupard M., Best P., Morgan J., Pavan G., Glotin H., (2023), A first vocal repertoire and bioacoustics analyses in Globicephala melas (long-finned pilot whale) from Mediterranean Sea, Submitted in Royal Society Biology Proc.

Poupard M., Ferrari, Best, Glotin, (2021), Passive acoustic monitoring of sperm whales and anthropogenic noise using stereophonic recordings in the Mediterranean North West Pelagos Sanctuary, Scientific Report Nature Springer

Poupard M., Ferrari M., Best P., Glotin H., (2022), Passive acoustic monitoring of sperm whales and anthropogenic noise using stereophonic recordings in the Mediterranean Sea, North West Pelagos Sanctuary, in Scientific reports <u>https://doi.org/10.1038/s41598-022-05917-1</u>

Poupard, Chavin, Best, Girardet, Glotin, (2024), Bioacoustic Interspecific interactions in Arctic Fjord, submitted in int J. Marine Mammals

Richard, Virtanen, Bello, Ono, Glotin, (2017), Introduction to the special section on sound scene and event analysis, IEEE/ACM Trans on Audio, Speech, and Language Proc 25 (6)

Roch M., Scott Lindeneau, Gurisht Singh Aurora, Kaitlin E. Fraser, John A. Hildebrand, Glotin H., Simone Baumann-Pickering, (2021), Using context to train time-domain echolocation click detectors, The Journal of the Acoustical Society of America 149, 3301-3310 https://asa.scitation.org/doi/pdf/10.1121/10.0004992

Sarano Véronique, Sarano François, Girardet Justine, Preud'homme Axel, Vitry Hugues, Heuzey René, Sarano Marion, Delfour Fabienne, Glotin Hervé, Adam Olivier, Madon Bénédicte & Jung Jean-Luc (2022), Underwater photo-identification of sperm whales (Physeter macrocephalus) off Mauritius, Marine Biology Research, DOI: 10.1080/17451000.2022.2040737

Sarano Véronique et François Sarano, (2023), Programme La Voix des Cachalots WhaleWay, Rapport 2023, Longitude 181, Centre International d'Acoutique Naturelle, https://www.longitude181.org/pdf/cachalots/Rapport_missions_WhaleWay1_2_3-Longitude181_LIS_CIAN.pdf

Sèbe, Kontovas Christos, Pendleton, (2019), A decision-making framework to reduce the risk of collisions between ships and whales Marine Policy, in Elsevier, 109

Sèbe, Kontovas Christos, Pendleton, (2021), Using choice experiment designs to evaluate mitigation solutions to reduce whale-ship collisions Marine Policy, Elsevier, 124, pp.104368

Silvia, Arcangeli, Mussi, Vivaldi, Ledon, Lagorio, Giacomini, Pavan, Ardizzone, (2018), Habitat suitability modeling in different sperm whale social groups, J of Wildlife Management 82, 5

Tinbergen N., (1963), On aims and methods of ethology, Zeitschrift für Tierpsychologie 20:410-433

Zimmer W. M. X., Peter L. Tyack, Mark P. Johnson, and Peter T. Madsen, (2005), Three-dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis, The journal of the Acoustical Society of America

Bibliographie relative à la trajectographie :

F. Bénard, H Glotin, (2010) Automatic indexing for content analysis of whale recordings and xml representation, in EURASIP Journal on advances in Signal Processing (5)

F. Bénard-Caudal, P Giraudet, H Glotin, (2010), Whale 3D monitoring using astrophysic NEMO ONDE two meters wide platform with state optimal filtering by Rao-Blackwell Monte Carlo data association, in Applied acoustics 71 (11)

F. Bénard, H Glotin, (2009) Whales localization using a large array: performance relative to cramer-rao bounds and confidence regions. In e-Business and Telecommunications Springer-Verlag, Berlin Heidelberg

F. Benard, H Glotin, (2009) Sperm whales records indexation using passive acoustics localization, in Seventh International Workshop on Content-Based Multimedia Indexing

F. Bénard, H Glotin, P Giraudet (2011), Highly defined whale group tracking by passive acoustic stochastic matched filter, in Advances in Sound Localization, in Intech Ed.

F. Caudal, H Glotin (2008), High level automatic structuration of ocean passive data: From click sequence modulations to whale behavior analyses, in New Trends for Environmental Monitoring Using Passive Systems, 1-7

F. Caudal, H Glotin, (2008) Multiple real-time 3d tracking of simultaneous clicking whales using hydrophone array and linear sound speed profile, IEEE International Conference on Acoustics, Speech and Signal, 14

F. Caudal, H Glotin, (2008) Accuracy Analyses of Passive Tracking of Several Clicking Sperm Whales-A Case of Complex Sources Binding, in SIGMAP, 55-62, 3

P. Giraudet, Glotin, (2008), Real-time 3D tracking of whales by echo-robust precise TDOA estimates with a widely-spaced hydrophone array, in Applied Acoustics 67 (11-12), 1106-1117

P. Giraudet, H Glotin, (2006) Echo-robust and real-time 3d tracking of marine mammals using their transient calls recorded by hydrophones array, in IEEE International Conference on Acoustics Speech and Signal Processing

Giraudet, Chavin, Glotin, (2023) Test de trajectographie WW4 de Baguera, RR. LIS DYNI

Glotin, Giraudet, Caudal, (2014), Real-time robust method for determining the trajectory of one or more cetaceans by means of passive acoustics, US Patent 8,638,641, EU, CA

H. Glotin, F Caudal, P Giraudet (2008) Whales cocktail party: a real-time tracking of multiple whales, in International Journal Canadian Acoustics 36 (1)

H. Glotin, Thellier, N. Best, P., Poupard, M., Ferrari, M., Viera, S., Giés, V., Oger, M., Giraudet, P., Mercier, M., Donzé, G., Campana, M., Chevallier, J., Malige, F., Patris, J., Prévot, J.M., Cosentino, P., Prévot d'Alvise, N., Ourmières, Y., Barchasz, V., Lehir, A., Marzetti, S., Sarano, F., Benveniste, J., Gaillard, S., de Varenne, F., (2020) Sphyrna-Odyssey 2019-2020, Rapport I: Découvertes Ethoacoustiques de Chasses en Meute de Cachalots en Abysse & Impacts en Mer du Confinement COVID19, <u>http://sabiod.org/pub/SO1.pdf</u>, 197p, EdM, FPA2, CNRS LIS Ed

S. Laran, M. Castellote, F. Caudal, Monnin, Glotin (2008), Suivi Acoustique des cétacés au nord du sanctuaire Pelagos, contrat Pelagos 08.048.83400

M. Poupard, M. Ferrari, J. Schlüter, R. Marxer, P. Giraudet, V. Barchasz, V. Gies, G. Pavan, H. Glotin (2019), Real-time passive acoustic 3d tracking of deep diving cetacean by small non-uniform mobile surface antenna, in ICASSP IEEE Int. Conf. on Acoustics, Speech and Sig. Proc.