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1 INTRODUCTION

1 Introduction

The following study dives into the downsides and gains of different active learning techniques
when applied to a data set composed of chirps and vocalizations from more than two hundred
species of birds and frogs. The labels of the studied files are based on expert annotations from J.F
Jetté. Thanks to his intensive work and dedication, rendering this study possible, the effects of
data augmentation as well as the influence of different hyperparameters will be tested. The main
objective being to shed light on the importance of data augmentation and the quality of samples
when building the best model possible to classify animal vocalizations.

There are multiple possibilities to obtain the representation of a signal in the time-frequency do-
main, used by convolutional neural networks. In this study the Wigner-Ville’s distribution (WVD)
will be used. While the short-time fourier transfer/spectrogram uses a fixed basis to analyze sounds,
the WVD has an adaptive basis, which gives great representations of chirps. A chirp is a signal
whose frequency varies through time, and is often found in bird vocalizations.

In order to achieve the objectives mentioned above, multiple experiments were conducted with
different Wigner-Ville representations of the samples, and varying noises (type and level) added
to the signal before hand.
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2 REPRESENTATION

2 Representation

From the expert annotations, multiple different data sets can be created. The main factor that
comes to play while building these sets is the quality of the audio recording. These were labelled
as either good, mid or bad. With the help of this criterion, species were ranked according to their
harmonic mean :

1 1 -1
1= ( )
number of good samples + 1le3 + number of samples + le=3

This indicator looks at the relative importance of a class according to two important values,
the number of different samples, necessary to get a broad overview of the class, and the quality of
these samples, important to learn well.

H rank ‘ specie ‘ number of samples | number of good samples | harmonic mean H

1 wtsp 443 235 307.1
2 pscr 465 213 292.2
3 SWSp 285 148 194.8
4 licl 266 133 177.3
5) oven 252 130 171.5
6 mawa 263 119 163.9
7 heth 231 101 140.5
8 yrwa 228 101 140.0
9 coye 225 100 138.5
10 nawa 217 97 134.1
11 alfl 200 95 128.8
12 veer 200 88 122.2
13 amre 193 87 119.9
14 phre 187 84 115.9
15 resq 165 83 110.4

TABLE 1 — Fifteen first species ranked according to their harmonic mean

Once the species were ranked according to their potential in being well classified by the model,
different sets were created.

Set 1 : First 5 classes [1...5] with the highest I, 1711 samples (859 good)
Set 2 : Next 5 classes [6...10] with the highest I, 1164 samples (518 good) (1)
Set 3 : Next 5 classes [11...15] with the highest I, 945 samples (437 good)

As explained in the introduction, the sound files are then switched from the time domain to
the time-frequency domain, obtaining a 2D representation of the signal adapted to convolution.
This switch to the time-frequency domain is done with the WVD. This distribution has many
parameters, however the one that will be experimented upon is the value of L, which changes the
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2 REPRESENTATION

frequency precision. For L. = 1, the transform will be a simple spectrogram. When L increases,
chirps will gain in precision while constant frequency time periods will be blurred.

Wigner-Ville representation for different values of L but similar window and hop

L=10
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FI1GURE 1 — Evolution of the representation of a signal for increasing values of L

Representations similar to the ones pictured above are fed to a neural network, the difference
being noise was added before the switch to the time-frequency domain. The WVD of a 10 second
signal is an image of shape (1024 x 930). The neural network chosen for all experiments is the
AlexNet model represented below. It model was tested beforehand on the AudioMNIST dataset,
consisting of 30 000 samples of 60 different people saying numbers from 0 to 10 and predicted
100% accurately on the testset.
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FI1GURE 2 — AlexNet model applied to a 1024x930 input
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3 PARAMETERS

3 Parameters

3.1 Data augmentation

Annotating sound samples for active learning proving to be costly, the use of data augmentation
leads to an automatic and fast extension of the annotated corpus, that leads to better generalization
results. This study is based on different types of data augmentation, all tripling the size of the
data set. The samples will be fed to the neural network with three distinct representations. These
three representations are created by juxtaposing noise to the original sample at different levels or
Sound to Noise Ration. The different values of SNR used for this study are SNR € {o0, 6, 12}.
The following noises were used in independent experiments :

White noise :

€ with random values in [O, 10’6/20} for a SNR of 6

xnoise[n] = Tnorm [n] + ? with

(2)

€ with random values in [0, 10_12/20] for a SNR of 12

Brown noise :

€ w/ rnd values in {0, 10_6/20]

Tnoise|l] = Tnorm[n] + cumulative sum(e) with

Pink noise :

def

for SNR=6

€ w/ rnd values in {O, 10_12/20] for SNR=12

pink_noise(size, rng, ncols=16, axis=-1):
"""Generates pink noise using the Voss-McCartney algorithm.

size: either a tuple of int or an int. If an int : number of sample to generate.
ncols: number of random sources to add.
axis: axis which contains the sound samples. Generate white noise otherwise.

returns: NumPy array of shape size

if type(size) is not tuple:
size = (size,)
array = rng.rand(*size)
assert -len(size) <= axis < len(size)
axis %= len(size)
axis +=1
# the total number of changes is nrows
cols = rng.geometric(@.5, size)
cols[cols »= ncols] = @
cols = (1.%(np.arange(l,ncols).reshape((-1,) + len(size)*(1,)) == cols)).swapaxes(axis,-1)
cols[...,8] = 1.
cols = np.cumsum(cols).reshape(cols.shape).astype(int).swapaxes(axis,-1)
array = np.concatenate([array[np.newaxis],rng.rand(cols.max()+1)[cols]],axis=8).sum(8)
return array

(3)
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3.2 Hyperparameters 4 RESULTS WITH THE WIND NOISE

Wind noise :
Lnoise [n] = Tnorm [n] + 1O_SNR/2O : Windnorm (4)

with wind noise from https ://www.youtube.com/watch 7v=jSQ2sLhTevY &t=57s

While these four added noises were the only ones used, it is completely possible to add anthro-
pogenic noises such as traffic, or rain and storm noises. Both could be found in certain samples
down the road and are thus relevant data augmentation techniques for this study.

3.2 Hyperparameters

Data augmentation being the main parameter, many different experiments were done with the
same added noise, by changing the learning rate and the weight decay loss. While the ratio of
the batch size to the learning rate affects generalization, the batch size was fixed to 8 samples
for all experiments, and the learning rate varied in the interval [0.001,0.1]. The weight decay loss
varied from [0.0002,0.01]. All experiments were done relative to a control group with the following
parameters :

Learning rate : LR = 0.005

Weight decay loss : W DL = 0.0002 (5)
Batch size : BS =8

When one parameter (LR or WDL) was experimented upon, the other one was fixed.

4 Results with the wind noise

Down below are the results for the experiments with the data augmentation based on the wind
sound taken from YouTube, with the same sampling frequency as the samples. As we can see, some
parameters lead to strong overfitting and no model was able to generalize. For the experiments, only
the samples that were mentioned to be of good quality from the first five classes were considered.
For each sample, the three SNRs were fed to the neural network in the training part, and only the
original signals’ spectrograms were kept for the testing.

Bioacoustique Quebec - LIS CNRS page 7



4 RESULTS WITH THE WIND NOISE

Training accuracy for model trained with LR=0.005 and WDL=0.0002
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FIGURE 3 — Training/testing accuracy and confusion matrix for model trained with wdl = 0.0002
and Ir = 0.005

Training accuracy for model trained with LR=0.01 and WDL=0.0002 Confusion matrix on testing predictions for model trained with wind noise wdl = 0.0005, Ir = 0.005

0.55
0.50 A
0.45 A
0.40 -
0.35 A

pscr wtsp

0.30 L . . . . w
Testin§ accuracy2for model fPained withOLR=0.01 &hd wDL=6D002

0.22 A

0.20 A

0.18

0.16

0.14 -
§
3

0.12 4

swsp

licl

T
20 40 60 80 100

o

FIGURE 4 — Training/testing accuracy and confusion matrix for model trained with wdl = 0.0005
and Ir = 0.005
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4 RESULTS WITH THE WIND NOISE

Training accuracy for model trained with wdl = 0.001 and Ir = 0.005 Confusion matrix on testing predictions for model trained with wind noise wdl = 0.001, Ir = 0.005
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FIGURE 5 — Training/testing accuracy and confusion matrix for model trained with wdl = 0.001
and Ir = 0.005

Presented above are the best three experiments with wind noise, with poor results, reaching
about 30% accuracy on the testing set.
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5 RESULTS WITH WHITE NOISE

5 Results with white noise

Down below are the results for the experiments with the data augmentation with white noise
added to the signal. In most experiments, two classes are over predicted to the detriment of others.
This result is shown here were two classes (columns) are almost never outputs of the model.
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FIGURE 6 — Training/testing accuracy and confusion matrix for model trained with wdl = 0.0005

and Ir = 0.005
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FIGURE 7 — Training/testing accuracy and confusion matrix for model trained with wdl = 0.0002

and Ir = 0.005
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6 RESULTS AFTER REMOVING POTENTIALLY OVERLAPPING SAMPLES

These two experiments are the best of five experiments with different hyperparameters. Howe-
ver, once again, they did not do classify the test samples well. Some experiments here, as opposed
to the ones with the wind noise, did not lead to overfitting and the model did not learn the train
set as well.

6 Results after removing potentially overlapping samples

The presence of multiple species in the same 10s windows could explain the poor results. In this
section, we removed samples with overlapping bird calls/songs from the original 11,051 samples,
shrinking the training set to 7,601 samples. 5,018 samples present species that are found both in
xeno-canto and Quebec datasets.

In order to assess the quality of Quebec samples, a model was trained on xeno-canto and
alternatively tested on : Quebec 5,018 samples, and a set of previously unseen xeno-canto data.
Figure 9 and 10 display the two confusion matrices associated to these tests. The model training,
validation and testing curve is presented in Figure 8.

Training accuracy for resnet model trained on xeno canto
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FIGURE 8 — Resnet 18 accuracies while training on xeno canto
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6 RESULTS AFTER REMOVING POTENTIALLY OVERLAPPING SAMPLES

Confusion matrix of predictions from quebec test set on model trained with xeno canto
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F1GURE 9 — Confusion matrix of xeno-canto testset. X and Y-axis are species labels.
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F1GURE 10 — Confusion matrix of Quebec testset. X and Y-axis are species labels.
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7 LEARNING THE MODEL CLASSIFICATION ABILITY

The model stopped training on xeno-canto when it reached 78% accuracy on the training set.
When testing on this model, it performed well on xeno-canto (72%) and poorly on Quebec (6.9
%). Two classes of the model are over-predicted. However, the problem lies in the model and not in
these two species because removing them from the testing set does not improve the overall score.

7 Learning the model classification ability

From the 5,018 samples from Quebec tested on the xeno-canto model, 344 were well classified.
This following section tries to understand whether the model can distinguish classifiable and not-
classifiable samples. 344 correctly classified samples and 344 incorrectly classified samples were
taken to form a new dataset to train, test and validate a new model, with the model ability to
classify the sample as new labels. In total, 4 different tests were performed on 10s samples and
1.5s samples : with and without data augmentation (white noise and wind noise), and with two
different values of weight decay loss (wdl). The first 1.5 seconds record the background noise of a
sample.

7.1 Training on full length samples

Training accuracy for Ir=0.005 and wdl=0.0002 Training accuracy for Ir=0.005 and wdl=0.001
0.8 0.8 1
0.6 0.6
o Testingiaccuracy fgrIr=0.00g,and wdl=5{.0002 7, o Testingaccuracyfpr Ir=0.0Q3 and wdlg.001 7,
0.8 0.8 4
0.6 0.6
(‘) Valid ﬁ)ccuracy f% \r=0.0056‘gnd wdl:gg}OOZ 160 6 Valldzgccuracy ﬁﬂj’ \r:O.OO%‘Dand wdl:gDOOI 160
0.6 0.6 1
0.5 4
0.5 4
0 20 40 60 80 100 0 20 40 60 80 100
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7.2 Training on background noise énlf. EARNING THE MODEL CLASSIFICATION ABILITY

Training accuracy for Ir=0.005 and wdl=0.0002 with white noise Training accuracy for Ir=0.005 and wdl=0.0002 with wind noise
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FIGURE 11 — Training, testing and validation accuracy for AlexNet model trained with different
parameters

Background noise between classifiable and not-classifiable signals are different (Figure 11).
Models without data augmentation differentiate good and bad samples for classification, reaching
80% on the testset and above 60% on the validation set for balanced classes. The two experiments
with data augmentation did not perform as well as the experiments without data augmentation.
The added noise seems to hide differences between samples.

7.2 Training on background noise only
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8 EFFECT OF WEATHER ON MODEL PERFORMANCE

Training accuracy for Ir=0.005 and wdl=0.0002 with wind noise
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FIGURE 12 — Training, testing and validation accuracy for AlexNet model trained with different
parameters on first 1.5 seconds of signal

Similarly as in the previous experiment, this model is able to sort classifiable and not-classifiable
samples (Figure 12). However, the model did not perform well on the validation set. Although
background noise is a decisive factor to distinguish classifiable and not-classifiable samples, it is
not the only one. Other differences, if not in the background noise, are related to bird vocalizations,
and are not present in this experiment.

8 Effect of weather on model performance

The previous section established that the model can distinguish classifiable from not-classifiable
samples. Therefore, finding out the conditions that enable the model to correctly classify is essen-
tial. The conditions leading to mostly wrong predictions will be excluded from Quebec dataset
to feed classifiable samples to the model. Here, we investigated the correlation between weather
conditions and the model performance.

Weather conditions are extracted from hourly meteorological data originating from the closest
weather station to each sampling site (Table 2).

TABLE 2 — Corresponding weather stations and sampling sites (and their latitude and longitude).

Weather station
Inukjuak (ECCC)
Inukjuak (ECCC)

Parc national des Pingualuit (ECCCQC)
Kuujjuarapik
Aux Feuilles
Kuujjuaq A (NavCAN)
Kuujjuaq A (NavCAN)
Kuujjuaq A (NavCAN)
Kuujjuaq A (NavCAN)
Kangigsualujjuaq A (NavCAN)

Sampling sites | Latitude | Longitude
057 _156__HO1 | 58.51665 | -77.99432
057_156_TO01 | 58.49209 | -78.08743
057_182_TO01 | 61.31273 | -73.66665
073 137 _F02 | 55.29361 | -77.69222
080_175_TO01 | 58.646671 | -69.997047
086_180_HO1 | 58.05207 | -68.53668
086_ 180 HO2 | 58.34573 | -68.35947
086_180_TO01 | 58.05353 | -68.5117

086_180_T02 | 58.20953 | -68.3735

090_189_HO1 | 58.73125 | -66.01998
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8 EFFECT OF WEATHER ON MODEL PERFORMANCE

090_189 T01 | 58.72503 | -66.00285 Kangigsualujjuaq A (NavCAN)
099 088 FO01 | 48.14553 | -79.27893 -

099 088 HO1 | 48.10778 | -79.51675 -

105 101 FO1 | 49.10239 | -76.99387 Quévillon (SOPFEU)

105 101 _HO1 | 48.8313 | -77.12239 Quévillon (SOPFEU)
111_115_FO01 | 49.83417 | -74.37779 | Chibougamau-Chapais (ECCC et NavCAN)
111_115_HO1 | 49.843 -74.3822 | Chibougamau-Chapais (ECCC et NavCAN)
122 092 FO01 | 46.77018 | -75.46088 -

122 092 HO1 | 46.87738 | -75.56468 Mont-Saint-Miichel

122 092 HO02 | 46.78965 | -75.47688 Mont-Saint-Miichel

124 086 FO01 | 46.08892 | -75.83353 Barrage Rapides-des-Cedres
124 086 HO1 | 45.91049 | -76.04464 Lac-Sainte-Marie (FADQ)

124 086 HO02 | 45.97708 | -75.93081 Lac-Sainte-Marie (FADQ)
127 116 HO02 | 48.75341 | -72.05228 Chute-du-Diable (Rio Tinto)
128 089 FO01 | 45.98357 | -75.16566 -

128 089 HO1 | 46.00082 | -75.17989 -

128 089 HO02 | 45.96686 | -75.16729 -

129 094 HO1 | 46.41719 | -74.40726 -

129 123 _F01 | 49.11631 | -70.60315 Onatchiway (ECCCQ)

129 123 HO1 | 49.00715 | -70.66965 Onatchiway (ECCC)

130 086 F01 | 45.60086 | -75.12686 -

131 120 FO01 | 48.58144 | -70.90059 Falardeau

131 120 FO02 | 48.60349 | -70.82977 Falardeau

131 120 HO1 | 48.57225 | -70.86144 Falardeau

132 116 FO1 | 48.21545 | -71.26847 Chicoutimi

132 116 _HO1 | 48.21511 | -71.27799 Chicoutimi

135 104 FO1 | 46.79467 | -72.30312 Lac-aux-sables

135 104 HO1 | 46.80876 | -72.29919 Lac-aux-sables

136095 FO01 | 45.94968 | -73.43805 L’Assomption (ECCC)
136095 HO1 | 45.99033 | -73.29996 L’Assomption (ECCC)
136116 _TO01 | 47.66656 | -70.7793 La-Galette

137 107 _FO01 | 46.95814 | -71.69524 Dunford (SOPFEU)

137 107 HO1 | 46.87663 | -71.66492 Sainte-Catherine-de-la-Jacques-Cartier
137 107 _HO2 | 46.86802 | -71.67593 Sainte-Catherine-de-la-Jacques-Cartier
137 107 _HO3 | 46.73119 | -71.43624 Québec)\ Jean-Lesage Intl (ECCC)
137 110 HO1 | 47.11555 | -71.36092 Parc national de la Jacques-Cartier
137 110 HO2 | 47.45812 | -71.24557 L’Etape (ECCC)

137 111 FO1 | 47.30817 | -71.16354 Forét Montmorency

137 111 HO1 | 47.25727 | -71.16294 Forét Montmorency
137_144 F01 | 50.20795 | -66.67467 Pointe-Noire-CS (ECCC)

137 144 HO1 | 50.19985 | -66.56328 Pointe-Noire-CS (ECCC)
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8.1 weather and overall model peSortiBhdeéC'T OF WEATHER ON MODEL PERFORMANCE

138 093 FO01 45.537 -73.31895 -
138 093 HO1 | 45.54361 | -73.31133 -
139 087 FO1 | 45.03273 | -73.78258 Hemmingford-Four-Winds

139 087 _HO1 | 45.00642 | -73.81944 Hemmingford-Four-Winds
139_087_HO02 | 45.02227 | -73.89027 Hemmingford-Four-Winds
139_103_FO01 | 46.2486 | -71.95004 Lemieux (ECCC)
139_103_HO1 | 46.39063 | -71.81608 Fortierville
139_103_HO02 | 46.65885 | -71.83463 Deschambault

141 108 FO1 | 46.67234 | -71.03031 Beauséjour
141108 HO1 | 46.78227 | -71.03661 Lauzon

142 091 FO1 | 45.02226 | -73.06106 -
142091 HO02 | 45.02898 | -73.07446 -

142 111 FO1 | 46.71082 | -70.70377 Armagh-2

142 111 HO1 | 46.8895 -70.43522 Notre-Dame-du-Rosaire
142 111 HO2 | 46.8705 -70.47272 Notre-Dame-du-Rosaire
145 102 FO1 45.859 -71.18744 Barrage Jules-Allard
145 102 HO1 | 45.96444 | -71.13774 Barrage Jules-Allard
145 102 _HO2 | 45.84158 | -71.17387 Barrage Jules-Allard
145 141 FO01 | 48.93628 | -66.04865 Mont-Ernest-Laflamme (7)
145 141 HO1 | 49.09083 | -66.03606 Petit-Mont-Saint-Anne (?7)
146133 FO01 | 48.36166 -67.0126 Marguerite

146 133 HO1 | 48.48845 | -67.04545 Marguerite

146 133 HO02 | 48.48683 | -67.11034 Marguerite

148 101 _FO1 | 45.45978 | -70.99964 La Patrie

148 101 HO1 | 45.447226 | -70.886072 La Patrie

149 142 F01 | 48.98756 | -65.49925 -
149 142 HO1 | 48.93254 | -65.32671 -
149 142 HO02 | 48.94138 | -65.38064 -

8.1 weather and overall model performance

Air water content, extreme temperature and rain can impact the recording quality long before
the measurement. Therefore averaged data on the last 12 and 24 hours before the recording are
processed along with weather data at the recording time. Using recordings made in the first week
of May, June, July and August of each year in every site for which weather data are available, the
correlation between prediction accuracy and weather data was computed. A standard PCA was
performed on the data (Figure 14 and 15). Bad prediction accuracy on Quebec dataset mostly
occurs for medium to high wind speed, medium temperatures, low rainfall values, and at low
latitudes. However, the prediction success arrow does not seem to strongly correlate with presented
axes, indicating other explaining parameters for the poor prediction accuracy of the model on
Quebec dataset.

Bioacoustique Quebec - LIS CNRS page 17



8.1

weather and overall model pefforiikhteC'T OF WEATHER ON MODEL PERFORMANCE

Dim2 (12.1%)

FIGURE 14 — Main axes of data variation in a two-dimensional plane and data projection with
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13 — Correlation matrix between prediction success and weather data
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correct (1) and wrong (0) prediction with weather data 4 h before recording
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8.1 weather and overall model peSortiBhdeéC'T OF WEATHER ON MODEL PERFORMANCE

wind average wind velocity (m/s) over the hour

temp average temperature (°C) over the span of the hour

prec average precipitation (mm) over the span of the hour

result | average score of the model on all samples of a recording (1 - 100% correct, 0 - 0% correct)

TABLE 3 — Explicit legend for the following graphs.

Variables - PCA Individuals - PCA
4

| VVIT_MAX

i | | - | i

0
Dim1 (48 4%) Dim1 (48 4%)

FIGURE 15 — Main axes of data variation in a two-dimensional plane and data projection with
correct (1) and wrong (0) prediction with weather data 8 h before recording

These global results show no clear correlation between weather and predictions. The following
subsections take a closer look over a 24h time period at the model performance and the weather,
with the y-axis using a symmetrical log scale. Here is the legend for every graph :
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8.2  Wind speed 8 EFFECT OF WEATHER ON MODEL PERFORMANCE

8.2 Wind speed

In Figure 16, the result is the log of the mean of predictions (1 for correct, 0 for incorrect) for
every hour in a recording site. A 24h span is too narrow to see any tendency.

137_107_F01_20170602_ 137_107_FO01_20170604_
107 A
— wind — wind
— temp — temp
— prec — prec
— result — result
10° 1
10° 4
0 5 10 15 20 0 5 10 15 20

FIGURE 16 — Wind speed (km/h) and model performance for two specific dates in one site

8.3 Precipitation

137 107 HO1 20170608 137 107 HO1 20170610

10! 1
o \/\

10° 1 10°

— wind — wind
— temp — temp
— prec — prec
04— result ®g g0 " —0_ o+ — nesult.\o*.—'—-—.___.—./.\g
T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20
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8.4 Temperature 8 FEFFECT OF WEATHER ON MODEL PERFORMANCE

137 107 HO2 20170602 137 107 HO2 20170604

10° m
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109

109
— wind — wind
— temp — temp
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04— resuItH_._._.——-—’—'_’_'_’_._.—\._c o — nesult,_{._.\
T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20

FIGURE 17 — Precipitation (mm) and model performance on four specific dates in one site

8.4 Temperature
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101 | \/— 10] ] \/—
— wind — wind
— temp — temp
— prec — prec
— result — result
10° 1 10°
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9 INFLUENCE OF RECORDING SITES ON THE PREDICTION ACCURACY

10" 1
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I

— wind
— temp
— prec
— result

10° 1 10° -

/

(I) 5 lID ll5 2‘0 6 5 lb 15 26
FIGURE 18 — Temperature (°C) and model performance on six specific dates in one site

The model performance does not seem to correlate to weather data. However, it looks like rain
lowers a sample probability of being correctly classified. Wind does not seem to have a major impact
on the AlexNet model, but the direction of the wind is not known and might be an important
factor. The temperature does not vary enough throughout a given day to see a clear influence.

9 Influence of recording sites on the prediction accuracy

The model performs differently between sites (Figure 19). However, this distribution can be ap-
proximated by a Gaussian curve. Therefore, the site does not seem to play a role on the model per-
formance. The model fails to correctly identify samples from several sites, namely 122092 HO02,
105 101 _FO01, 111 _115 FO01, 057 182 TO01, and 136095 HO1. No correlation between these
sites and the number of samples available for each of them has been noticed.
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9 INFLUENCE OF RECORDING SITES ON THE PREDICTION ACCURACY

density

]
i

I

DI 1ID 2ID SID
prediction accuracy averaged per site (%)

0.0

FIGURE 19 — Distribution of prediction accuracy per site (average in %)

We investigated the potential link between geographic coordinates and prediction accuracy
(Figure 20, 21, 22).
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9 INFLUENCE OF RECORDING SITES ON THE PREDICTION ACCURACY

Prediction accuracy per site (%)

A 0 100

N

F1GURE 20 — Prediction accuracy per localization
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9 INFLUENCE OF RECORDING SITES ON THE PREDICTION ACCURACY

Prediction accuracy per site (%)

Ao 75
N

FI1GURE 21 — Prediction accuracy per localization
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10 ADDITION OF ABIOTIC SOUNDS

[ &)

30
Prediction accuracy per site (%)
A 0 25 50 km
| I
N

FIGURE 22 — Prediction accuracy per localization

The maps on Figure 20, 21, 22 show that recorders located in the same site but in different
habitats present contrasted results. Well-predicted sites in one habitat are often next to poorly-
predicted sites. In a further section, confusion matrices per site will be presented.

10 Addition of abiotic sounds

The train set is modified by adding different wind noises extracted from the Quebec recordings
to the xeno-canto set. This addition of abiotic sounds could help mitigate the differences in re-
cording and weather conditions between xeno-canto and Quebec data. The 5 most present classes
(wtsp, swsp, oven, mawa, heth) in the Quebec dataset were used for this experiment. The model
is trained on xeno-canto recordings of these species that last less than 2 minutes, and tested on
non overlapping samples from the Quebec dataset, then on xeno-canto recordings of these species
that last in between 2 and 4 minutes (Table 1). Wind noise is classified in three categories of
intensity following the expert’s annotations. Categories and wind samples are randomly added to
xeno-canto data.

Bioacoustique Quebec - LIS CNRS page 26



10 ADDITION OF ABIOTIC SOUNDS

100

count
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FIGURE 23 — Distribution of windspeed (km/h) in top 5 Quebec data

In the top 5 Quebec dataset, recordings are made mainly in low-intensity wind (<10 km/h)
conditions (Figure 23). Sites with more than 10 samples are selected for further analysis (Table 4).

Down below are the results of the experiment with abiotic wind added to the xeno-canto train
set (right) compared to the experiment where the model was trained on untouched samples. There
was no data augmentation so the train set and the two test sets were identical. The results show
that the model performed slightly better when it had seen abiotic wind in the train set.
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10 ADDITION OF ABIOTIC SOUNDS

site count
073 137 FO02 10
136095 HO1 10
137 144 HO1 10
145 141 HO1 10
146 133 HO1 10
142 111 HO1 11
146 133 HO02 11
122 092 HO1 13
142 111 HO2 16
148 101 FO1 30
137 107 HO1 41
137 107 FO1 42
137 107 _HO2 44
148 101 HO1 50

TABLE 4 — number of samples per selected sites in top 5 Quebec dataset

training accuracy without abiotic wind training accuracy with abiotic wind randomly added

0.7 4
0.8
0.6 1

06 | 051
0.41
041 0.3

0.2

0 10 20 3 40 50 50 i 0 10 0 30 40 60
testing accuracy on xeno test set ‘esting accuracy on xeno tesPset

0.35 4

0.30 4
0.25 1
0.25 4
0.20
0.20 {
0.15 4 0.15 4

0.10 0.10

0.05 0.05 1

T T T T T T T T T T y T T T T
0 10 2 30 40 5f 60 70 0 10 2 30 40 0 60
teang accuracy on quebec [Pataset tescbng acclracy on quebec daftabase

0.30
0.28
0.26
0.244 0.24 4

0.22 4 0.22 1

FIGURE 24 — AlexNet default model trained on xeno dataset and tested on quebec and xeno test
sets

Here is the confusion matrix for the quebec test set :
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11 OCTAVE ANALYSIS

Confusion matrix of predictions for the quebec dataset

a - 15e+02
H

mawa oven SWsp

heth

F1GURE 25 — Confusion matrix for the quebec test set

Although weather and background noise in general seem to account for a part of the poor
model accuracy, this section experiments show that these sound characteristics taken as such are
not enough to improve prediction accuracy. At this stage, we are unable to take into account
weather data in the model but as the model improves, we will come back to these experiments to
eventually remove bad quality recordings from the testing dataset.

11 Octave analysis

In order to differentiate background noise in different sites, we performed an octave analysis
on all recorded samples. This yields a measure of acoustic energy per band of frequencies (Figure
26). Octave analysis divides a recording into increasing band of frequencies in which the central
frequency is doubled is each octave (i.e. : the first band goes from f1 to 2*f1, the second from 2*f1
to 4*f1, and so on). The first band starts around 100 Hz and the last band ends around 16 000 Hz.
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11 OCTAVE ANALYSIS
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FIGURE 26 — Confusion matrix for the quebec test set

time

However, no correlation between energy in specific octaves and prediction accuracy is found in

309 samples from different sites of the year 2018 (Figure 27).
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11 OCTAVE ANALYSIS
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FIGURE 27 — Confusion matrix for the quebec test set

The difference between the probability attributed by the model to a species and the maximum
probability shows the distance between good and bad predictions. We represented this result for

each of the 309 samples in 4 categories of energy per octave band (Figure 28). There is no clear
tendency.
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FIGURE 28 — Pmax-Ptarget for each octave band (oct 1 to oct8). The closer the probability is to
0, the closer is the prediction to the correct species
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12 DISTANCE FROM THE CORRECT PREDICTION PER SITE AND PER SPECIE

12 distance from the correct prediction per site and per
specie
Beside results from octave analysis, we also looked at the difference between good and bad

predictions per habitat for 43 species out of 75, a choice made by experts’ recommendations based
on the ecological relevance of these species (Figure 29, 30, 35).
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FIGURE 29 — Average difference between Pmax and Ptarget per forest sites
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F1GURE 30 — Average difference between Pmax and Ptarget per wetlands sites
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13 MODIFICATION OF THE POOLING FUNCTION
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FIGURE 31 — Average difference between Pmax and Ptarget per tundra sites

There seems to be no species or site that recurrently yields poor predictions. The number of
species in tundric sites is reduced compared to other environments. These sites were thought to
be more prone to bad predictions because of the adverse weather conditions and the openness of
the habitat.

13 Modification of the pooling function

If a 10 s recording sample is mostly made up of background noise, the resulting maximum
probability will be the sum of randomly attributed species because the focus is not on the actual
animal vocalization. We randomly sampled 6 recordings to see whether the cutting of samples to
the exact bird vocalization would improve the probability to predict the correct species (Figure
32). There seems to be no significant effect on these random samples. However, when listening to
these samples, they are either very low or seem to present multiple birds singing at the same time.
This requires further investigation.
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14 ENTROPY ANALYSIS
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sample [ cutwaviie [l funwavfie sample [ cutwaviie [l funwaviie

F1GURE 32 — Outputs of the model for six random samples. The highest positive value is the
species attributed to a sample by the model.

14 Entropy Analysis

In this following subsection, all experiments are conducted on the output of the last layer of
the resnet model, a vector assigning to each class a probability that the sample belongs to that
specific class. Additionally, instead of forwarding the 10 second sample in the model, the sample
was divided into four 3s sections with a 1s overlap (0s-3s, 2s-5s, 4s-7s, 6s-9s). This results from the
fact that several birds sing on a 10sec interval. Smaller interval enable to isolate single species of
birds. The result was for each sample a (4x43) matrix.
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14 ENTROPY ANALYSIS

Mean and std values for max class i in sample labeled i

0.8 1
0.6

0.4 1

| |ihimﬂ

=]

| i

JoGag o Trg o sz<zisssiwgcanTlazzsad
O vV v oo E wow BT Z v o ] [=n =
B3YZ82: 08352855283 SCRLEEQEEREE

NAWA

COYE 1
TEWA
GCKI
DEJU
NOFL
AMRO
CSWA
OSFL 4
sosp
SAVS -

FIGURE 33 — Mean value of the correct label in the 4 sections (blue), and mean of the standard
)

deviations for each section (bars

The correct label has a high probability in the last layer of the resnet model (Figure 33).
The predicted class is the class with the highest probability in the time section and with the

lowest value of entropy (Figure 34).
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14 ENTROPY ANALYSIS

Confusion matrix for prediction with the lowest entropy on 43 species
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F1GURE 34 — Confusion matrix for predictions based on the section with the lowest entropy

The strongest classes are selected (Figure 33). All classes averaging over 0.15 (potential values
are between 0 and 1) for the correct classes were chosen, creating a dataset of (4x43) matrices
belonging to 21 classes. A small model with 3 fully connected layers and some dropout was trained

on 75% of this new dataset.
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15 TRANSFER LEARNING

FIGURE 35 — Accuracies for model trained on the output of the resnet model and on the

Accuracy was also computed on each 3 sec interval. This analysis reveals that accuracy is
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higher for tests made on the 4-7 sec interval of 10 sec samples.
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H interval (s) ‘ accuracy ‘ best species selected from this interval accuracy for best species
0-3 ™% CAGO, MAWA, OVEN 25%
2-5 11% BAWW, CAGO, MAWA ,OVEN 26%
4-7 25% BAWW, CAGO, OVEN,SOSP,TEWA , WTSP 42%
6-9 14% CAGO, MAWA ,OVEN,SOSP,WTSP 26%

A pooling function taking into account the hierarchy in intervals accuracy could be applied.
However, this effect likely stems from the window selection around the time given by J.-F. Jetté

TABLE 5 — accuracy for 4 intervals in 10sec samples

at which the identified species produces a vocalization.

15 Transfer Learning

Result vectors from the resnet model are fed into a new model composed of fully connected
layers. This experiment was inspired by the promising and interesting analysis of the probability
vectors in the previous subsection. Bird vocalizations last on average 3.7 seconds. The new matrix
of results was composed of 4s signals every 0.5 seconds in the 10s window. Encouraging results on

Quebec dataset are observed (Figure 36).
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15.1 'Training for different locations 15 TRANSFER LEARNING

H learning rate batch size
16 32 | 64 | 128 | 256
0.1 0.089 0.08
0.01 0.35 | 0.37 | 0.07 0.32
0.001 0.62 | 0.57 | 0.56
0.0001 0.58 | 0.49 height

training accuracy

0.6

0.4

0.2

T T . . T
20 40 60 80 100
testing accuracy

o

0.6

0.5 1

0.4 1

0.3 4

0.2 1

0.1

T T T T T
20 40 60 80 100
valid accuracy

o

0.6

0.5 1

0.4

0.3 4

0.2 9

ll) ZID 4‘0 6b Bb lEIPD
F1GURE 36 — Training, Testing, Validation accuracies for wdl=0.002, Ir=0.001, bs = 64, 43 species

Different parameters were tested on the same training set to compare results (wdl = 0.005, 80
epochs).

15.1 Training for different locations

In order to verify the model validity and try to improve its validity, three similar models
were trained for different locations. The first one, NH, is composed of every recording from wet
environments above the 46.7° latitude, the second one, SH, is composed of wet environments below
the 46.7° latitude. The last model, called 'other’; was trained on every other sample. Nordic wetland
model training set is to small to draw conclusions on it.
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15.2 'Training for different days 15 TRANSFER LEARNING
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F1GURE 37 — Training, Testing, Validation accuracies for wdl=0.002, 1r=0.001, bs = 64, 43
species on SH
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FI1GURE 38 — Training, Testing, Validation accuracies for wdl=0.002, Ir=0.001, bs = 64, 43
species on other

Figure 37 and 42 show lower prediction accuracy than in Figure 36. This is due to an identi-
fication of the background noise in the added layer. Training and testing sets were not properly
separated. However, we plan to separate them by taking different days on the same sites.

15.2 Training for different days

Another way to split the data up to increase the difference between the trainset and the
testset and thus the model’s ability to generalize is to create different sets for different days. In
this subsection the training set is made up of the even days of the month, and the test set and
validation sets of the odd days of the month. Multiple experiments were made but down below is
the one with the best scores.
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15.2 'Training for different days 15 TRANSFER LEARNING

In order to obtain these scores, every sample was filtered with a band pass filter (400Hz, 9kHz),
and the trainset was complexified by overlapping different 10s samples one over another to create
new background noises and choruses.
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FI1GURE 39 — Training, Testing, Validation accuracies for filtered samples, trained on even days
and tested on odd days of the month

Down below are the three confusion matrices associated with the above experiment, but split

into each type of environment.
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15.2 'Training for different days 15 TRANSFER LEARNING

Confusion matrix for the 43 best species for bog environment
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F1GURE 40 — Confusion matrix for test set and validation set samples from the bog environment
on model that performed best on test set
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Confusion matrix for the 43 best species for forest environment
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F1GURE 41 — Confusion matrix for test set and validation set samples from the forest
environment on model that performed best on test set
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16 CONCLUSION

Confusion matrix for the 43 best species for wetland
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FI1GURE 42 — Confusion matrix for test set and validation set samples from the humid
environment on model that best performed on the test set

The model better classifies unseen data from the forest environment with an accuracy of 17%.
For samples from the wet environment, the model has an accuracy of 13%, this is maybe due to
the presence of frogs or choruses on the recordings. The model struggles with samples from the
bog environment, with an accuracy of 8% that could be explain by the heavy influence of the wind
and climate conditions on the quality of the recordings.

16 Conclusion

These experiments show that data augmentation fails to make the model generalize. This failure
to generalize can have many roots - amount of samples, quality of samples, uniformity of samples,
mislabeling of samples, incorrect time-frequency representation of the signal, etc. However, the
model and python script were previously tested and corrected, furthermore, the five classes used
contained more than 100 samples each which should be enough for some, if not good, generalization.
It can then be concluded that the samples themselves, the 10 second signals, are the main root
of the problem. Some samples contain multiple species at once, some species have many different
calls, some resembling other species’ vocalizations, which makes it difficult for both humans and
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16 CONCLUSION

neural networks to differentiate the classes. The possible influence of the weather conditions was
analyzed but led to inconclusive results.

In this report, many different ideas and methods were tested. Future perspectives lie in the
detection and suppression of chorus, the detection of good quality recordings that can accurately
be predicted by the CNN; and in the creation of distinct testing sets (grouped by sites, month) to
avoid background noise identification.

Identification of real-world recordings of birds is not an easy task but our various attempts
at it let us better understand where the difficulties lie. Every experiment brings us closer to an
efficient classification tool.
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