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1 INTRODUCTION

1 Introduction
The following study dives into the downsides and gains of different active learning techniques

when applied to a data set composed of chirps and vocalizations from more than two hundred
species of birds and frogs. The labels of the studied files are based on expert annotations from J.F
Jetté. Thanks to his intensive work and dedication, rendering this study possible, the effects of
data augmentation as well as the influence of different hyperparameters will be tested. The main
objective being to shed light on the importance of data augmentation and the quality of samples
when building the best model possible to classify animal vocalizations.

There are multiple possibilities to obtain the representation of a signal in the time-frequency do-
main, used by convolutional neural networks. In this study the Wigner-Ville’s distribution (WVD)
will be used. While the short-time fourier transfer/spectrogram uses a fixed basis to analyze sounds,
the WVD has an adaptive basis, which gives great representations of chirps. A chirp is a signal
whose frequency varies through time, and is often found in bird vocalizations.

In order to achieve the objectives mentioned above, multiple experiments were conducted with
different Wigner-Ville representations of the samples, and varying noises (type and level) added
to the signal before hand.
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2 REPRESENTATION

2 Representation
From the expert annotations, multiple different data sets can be created. The main factor that

comes to play while building these sets is the quality of the audio recording. These were labelled
as either good, mid or bad. With the help of this criterion, species were ranked according to their
harmonic mean :

I =
( 1
number of good samples + 1e−3 + 1

number of samples + 1e−3

)−1

This indicator looks at the relative importance of a class according to two important values,
the number of different samples, necessary to get a broad overview of the class, and the quality of
these samples, important to learn well.

rank specie number of samples number of good samples harmonic mean
1 wtsp 443 235 307.1
2 pscr 465 213 292.2
3 swsp 285 148 194.8
4 licl 266 133 177.3
5 oven 252 130 171.5
6 mawa 263 119 163.9
7 heth 231 101 140.5
8 yrwa 228 101 140.0
9 coye 225 100 138.5
10 nawa 217 97 134.1
11 alfl 200 95 128.8
12 veer 200 88 122.2
13 amre 193 87 119.9
14 phre 187 84 115.9
15 resq 165 83 110.4

Table 1 – Fifteen first species ranked according to their harmonic mean

Once the species were ranked according to their potential in being well classified by the model,
different sets were created.

Set 1 : First 5 classes [1...5] with the highest I, 1711 samples (859 good)
Set 2 : Next 5 classes [6...10] with the highest I, 1164 samples (518 good)
Set 3 : Next 5 classes [11...15] with the highest I, 945 samples (437 good)

(1)

As explained in the introduction, the sound files are then switched from the time domain to
the time-frequency domain, obtaining a 2D representation of the signal adapted to convolution.
This switch to the time-frequency domain is done with the WVD. This distribution has many
parameters, however the one that will be experimented upon is the value of L, which changes the
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2 REPRESENTATION

frequency precision. For L = 1, the transform will be a simple spectrogram. When L increases,
chirps will gain in precision while constant frequency time periods will be blurred.

Figure 1 – Evolution of the representation of a signal for increasing values of L

Representations similar to the ones pictured above are fed to a neural network, the difference
being noise was added before the switch to the time-frequency domain. The WVD of a 10 second
signal is an image of shape (1024 x 930). The neural network chosen for all experiments is the
AlexNet model represented below. It model was tested beforehand on the AudioMNIST dataset,
consisting of 30 000 samples of 60 different people saying numbers from 0 to 10 and predicted
100% accurately on the testset.

Figure 2 – AlexNet model applied to a 1024x930 input
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3 PARAMETERS

3 Parameters

3.1 Data augmentation
Annotating sound samples for active learning proving to be costly, the use of data augmentation

leads to an automatic and fast extension of the annotated corpus, that leads to better generalization
results. This study is based on different types of data augmentation, all tripling the size of the
data set. The samples will be fed to the neural network with three distinct representations. These
three representations are created by juxtaposing noise to the original sample at different levels or
Sound to Noise Ration. The different values of SNR used for this study are SNR ∈ {∞, 6, 12}.
The following noises were used in independent experiments :

White noise :

xnoise[n] = xnorm[n] + #»ε with


#»ε with random values in

[
0, 10−6/20

]
for a SNR of 6

#»ε with random values in
[
0, 10−12/20

]
for a SNR of 12

(2)

Brown noise :

xnoise[n] = xnorm[n] + cumulative sum(ε) with


#»ε w/ rnd values in

[
0, 10−6/20

]
for SNR=6

#»ε w/ rnd values in
[
0, 10−12/20

]
for SNR=12

(3)

Pink noise :
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3.2 Hyperparameters 4 RESULTS WITH THE WIND NOISE

Wind noise :
xnoise[n] = xnorm[n] + 10−SNR/20 · windnorm (4)

with wind noise from https ://www.youtube.com/watch ?v=jSQ2sLhTcvY&t=57s

While these four added noises were the only ones used, it is completely possible to add anthro-
pogenic noises such as traffic, or rain and storm noises. Both could be found in certain samples
down the road and are thus relevant data augmentation techniques for this study.

3.2 Hyperparameters
Data augmentation being the main parameter, many different experiments were done with the

same added noise, by changing the learning rate and the weight decay loss. While the ratio of
the batch size to the learning rate affects generalization, the batch size was fixed to 8 samples
for all experiments, and the learning rate varied in the interval [0.001, 0.1]. The weight decay loss
varied from [0.0002, 0.01]. All experiments were done relative to a control group with the following
parameters : 

Learning rate : LR = 0.005
Weight decay loss : WDL = 0.0002
Batch size : BS = 8

(5)

When one parameter (LR or WDL) was experimented upon, the other one was fixed.

4 Results with the wind noise
Down below are the results for the experiments with the data augmentation based on the wind

sound taken from YouTube, with the same sampling frequency as the samples. As we can see, some
parameters lead to strong overfitting and no model was able to generalize. For the experiments, only
the samples that were mentioned to be of good quality from the first five classes were considered.
For each sample, the three SNRs were fed to the neural network in the training part, and only the
original signals’ spectrograms were kept for the testing.
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4 RESULTS WITH THE WIND NOISE

Figure 3 – Training/testing accuracy and confusion matrix for model trained with wdl = 0.0002
and lr = 0.005

Figure 4 – Training/testing accuracy and confusion matrix for model trained with wdl = 0.0005
and lr = 0.005
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4 RESULTS WITH THE WIND NOISE

Figure 5 – Training/testing accuracy and confusion matrix for model trained with wdl = 0.001
and lr = 0.005

Presented above are the best three experiments with wind noise, with poor results, reaching
about 30% accuracy on the testing set.
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5 RESULTS WITH WHITE NOISE

5 Results with white noise
Down below are the results for the experiments with the data augmentation with white noise

added to the signal. In most experiments, two classes are over predicted to the detriment of others.
This result is shown here were two classes (columns) are almost never outputs of the model.

Figure 6 – Training/testing accuracy and confusion matrix for model trained with wdl = 0.0005
and lr = 0.005

Figure 7 – Training/testing accuracy and confusion matrix for model trained with wdl = 0.0002
and lr = 0.005
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6 RESULTS AFTER REMOVING POTENTIALLY OVERLAPPING SAMPLES

These two experiments are the best of five experiments with different hyperparameters. Howe-
ver, once again, they did not do classify the test samples well. Some experiments here, as opposed
to the ones with the wind noise, did not lead to overfitting and the model did not learn the train
set as well.

6 Results after removing potentially overlapping samples
The presence of multiple species in the same 10s windows could explain the poor results. In this

section, we removed samples with overlapping bird calls/songs from the original 11,051 samples,
shrinking the training set to 7,601 samples. 5,018 samples present species that are found both in
xeno-canto and Quebec datasets.

In order to assess the quality of Quebec samples, a model was trained on xeno-canto and
alternatively tested on : Quebec 5,018 samples, and a set of previously unseen xeno-canto data.
Figure 9 and 10 display the two confusion matrices associated to these tests. The model training,
validation and testing curve is presented in Figure 8.

Figure 8 – Resnet 18 accuracies while training on xeno canto
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6 RESULTS AFTER REMOVING POTENTIALLY OVERLAPPING SAMPLES

Figure 9 – Confusion matrix of xeno-canto testset. X and Y-axis are species labels.

Figure 10 – Confusion matrix of Quebec testset. X and Y-axis are species labels.
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7 LEARNING THE MODEL CLASSIFICATION ABILITY

The model stopped training on xeno-canto when it reached 78% accuracy on the training set.
When testing on this model, it performed well on xeno-canto (72%) and poorly on Quebec (6.9
%). Two classes of the model are over-predicted. However, the problem lies in the model and not in
these two species because removing them from the testing set does not improve the overall score.

7 Learning the model classification ability
From the 5,018 samples from Quebec tested on the xeno-canto model, 344 were well classified.

This following section tries to understand whether the model can distinguish classifiable and not-
classifiable samples. 344 correctly classified samples and 344 incorrectly classified samples were
taken to form a new dataset to train, test and validate a new model, with the model ability to
classify the sample as new labels. In total, 4 different tests were performed on 10s samples and
1.5s samples : with and without data augmentation (white noise and wind noise), and with two
different values of weight decay loss (wdl). The first 1.5 seconds record the background noise of a
sample.

7.1 Training on full length samples

Bioacoustique Quebec - LIS CNRS page 13



7.2 Training on background noise only7 LEARNING THE MODEL CLASSIFICATION ABILITY

Figure 11 – Training, testing and validation accuracy for AlexNet model trained with different
parameters

Background noise between classifiable and not-classifiable signals are different (Figure 11).
Models without data augmentation differentiate good and bad samples for classification, reaching
80% on the testset and above 60% on the validation set for balanced classes. The two experiments
with data augmentation did not perform as well as the experiments without data augmentation.
The added noise seems to hide differences between samples.

7.2 Training on background noise only
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8 EFFECT OF WEATHER ON MODEL PERFORMANCE

Figure 12 – Training, testing and validation accuracy for AlexNet model trained with different
parameters on first 1.5 seconds of signal

Similarly as in the previous experiment, this model is able to sort classifiable and not-classifiable
samples (Figure 12). However, the model did not perform well on the validation set. Although
background noise is a decisive factor to distinguish classifiable and not-classifiable samples, it is
not the only one. Other differences, if not in the background noise, are related to bird vocalizations,
and are not present in this experiment.

8 Effect of weather on model performance
The previous section established that the model can distinguish classifiable from not-classifiable

samples. Therefore, finding out the conditions that enable the model to correctly classify is essen-
tial. The conditions leading to mostly wrong predictions will be excluded from Quebec dataset
to feed classifiable samples to the model. Here, we investigated the correlation between weather
conditions and the model performance.

Weather conditions are extracted from hourly meteorological data originating from the closest
weather station to each sampling site (Table 2).

Table 2 – Corresponding weather stations and sampling sites (and their latitude and longitude).

Sampling sites Latitude Longitude Weather station
057_156_H01 58.51665 -77.99432 Inukjuak (ECCC)
057_156_T01 58.49209 -78.08743 Inukjuak (ECCC)
057_182_T01 61.31273 -73.66665 Parc national des Pingualuit (ECCC)
073_137_F02 55.29361 -77.69222 Kuujjuarapik
080_175_T01 58.646671 -69.997047 Aux Feuilles
086_180_H01 58.05207 -68.53668 Kuujjuaq A (NavCAN)
086_180_H02 58.34573 -68.35947 Kuujjuaq A (NavCAN)
086_180_T01 58.05353 -68.5117 Kuujjuaq A (NavCAN)
086_180_T02 58.20953 -68.3735 Kuujjuaq A (NavCAN)
090_189_H01 58.73125 -66.01998 Kangiqsualujjuaq A (NavCAN)
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8 EFFECT OF WEATHER ON MODEL PERFORMANCE

090_189_T01 58.72503 -66.00285 Kangiqsualujjuaq A (NavCAN)
099_088_F01 48.14553 -79.27893 -
099_088_H01 48.10778 -79.51675 -
105_101_F01 49.10239 -76.99387 Quévillon (SOPFEU)
105_101_H01 48.8313 -77.12239 Quévillon (SOPFEU)
111_115_F01 49.83417 -74.37779 Chibougamau-Chapais (ECCC et NavCAN)
111_115_H01 49.843 -74.3822 Chibougamau-Chapais (ECCC et NavCAN)
122_092_F01 46.77018 -75.46088 -
122_092_H01 46.87738 -75.56468 Mont-Saint-Miichel
122_092_H02 46.78965 -75.47688 Mont-Saint-Miichel
124_086_F01 46.08892 -75.83353 Barrage Rapides-des-Cèdres
124_086_H01 45.91049 -76.04464 Lac-Sainte-Marie (FADQ)
124_086_H02 45.97708 -75.93081 Lac-Sainte-Marie (FADQ)
127_116_H02 48.75341 -72.05228 Chute-du-Diable (Rio Tinto)
128_089_F01 45.98357 -75.16566 -
128_089_H01 46.00082 -75.17989 -
128_089_H02 45.96686 -75.16729 -
129_094_H01 46.41719 -74.40726 -
129_123_F01 49.11631 -70.60315 Onatchiway (ECCC)
129_123_H01 49.00715 -70.66965 Onatchiway (ECCC)
130_086_F01 45.60086 -75.12686 -
131_120_F01 48.58144 -70.90059 Falardeau
131_120_F02 48.60349 -70.82977 Falardeau
131_120_H01 48.57225 -70.86144 Falardeau
132_116_F01 48.21545 -71.26847 Chicoutimi
132_116_H01 48.21511 -71.27799 Chicoutimi
135_104_F01 46.79467 -72.30312 Lac-aux-sables
135_104_H01 46.80876 -72.29919 Lac-aux-sables
136_095_F01 45.94968 -73.43805 L’Assomption (ECCC)
136_095_H01 45.99033 -73.29996 L’Assomption (ECCC)
136_116_T01 47.66656 -70.7793 La-Galette
137_107_F01 46.95814 -71.69524 Dunford (SOPFEU)
137_107_H01 46.87663 -71.66492 Sainte-Catherine-de-la-Jacques-Cartier
137_107_H02 46.86802 -71.67593 Sainte-Catherine-de-la-Jacques-Cartier
137_107_H03 46.73119 -71.43624 Québec\Jean-Lesage Intl (ECCC)
137_110_H01 47.11555 -71.36092 Parc national de la Jacques-Cartier
137_110_H02 47.45812 -71.24557 L’Étape (ECCC)
137_111_F01 47.30817 -71.16354 Forêt Montmorency
137_111_H01 47.25727 -71.16294 Forêt Montmorency
137_144_F01 50.20795 -66.67467 Pointe-Noire-CS (ECCC)
137_144_H01 50.19985 -66.56328 Pointe-Noire-CS (ECCC)
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8.1 weather and overall model performance8 EFFECT OF WEATHER ON MODEL PERFORMANCE

138_093_F01 45.537 -73.31895 -
138_093_H01 45.54361 -73.31133 -
139_087_F01 45.03273 -73.78258 Hemmingford-Four-Winds
139_087_H01 45.00642 -73.81944 Hemmingford-Four-Winds
139_087_H02 45.02227 -73.89027 Hemmingford-Four-Winds
139_103_F01 46.2486 -71.95004 Lemieux (ECCC)
139_103_H01 46.39063 -71.81608 Fortierville
139_103_H02 46.65885 -71.83463 Deschambault
141_108_F01 46.67234 -71.03031 Beauséjour
141_108_H01 46.78227 -71.03661 Lauzon
142_091_F01 45.02226 -73.06106 -
142_091_H02 45.02898 -73.07446 -
142_111_F01 46.71082 -70.70377 Armagh-2
142_111_H01 46.8895 -70.43522 Notre-Dame-du-Rosaire
142_111_H02 46.8705 -70.47272 Notre-Dame-du-Rosaire
145_102_F01 45.859 -71.18744 Barrage Jules-Allard
145_102_H01 45.96444 -71.13774 Barrage Jules-Allard
145_102_H02 45.84158 -71.17387 Barrage Jules-Allard
145_141_F01 48.93628 -66.04865 Mont-Ernest-Laflamme ( ?)
145_141_H01 49.09083 -66.03606 Petit-Mont-Saint-Anne ( ?)
146_133_F01 48.36166 -67.0126 Marguerite
146_133_H01 48.48845 -67.04545 Marguerite
146_133_H02 48.48683 -67.11034 Marguerite
148_101_F01 45.45978 -70.99964 La Patrie
148_101_H01 45.447226 -70.886072 La Patrie
149_142_F01 48.98756 -65.49925 -
149_142_H01 48.93254 -65.32671 -
149_142_H02 48.94138 -65.38064 -

8.1 weather and overall model performance
Air water content, extreme temperature and rain can impact the recording quality long before

the measurement. Therefore averaged data on the last 12 and 24 hours before the recording are
processed along with weather data at the recording time. Using recordings made in the first week
of May, June, July and August of each year in every site for which weather data are available, the
correlation between prediction accuracy and weather data was computed. A standard PCA was
performed on the data (Figure 14 and 15). Bad prediction accuracy on Quebec dataset mostly
occurs for medium to high wind speed, medium temperatures, low rainfall values, and at low
latitudes. However, the prediction success arrow does not seem to strongly correlate with presented
axes, indicating other explaining parameters for the poor prediction accuracy of the model on
Quebec dataset.
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8.1 weather and overall model performance8 EFFECT OF WEATHER ON MODEL PERFORMANCE

Figure 13 – Correlation matrix between prediction success and weather data

Figure 14 – Main axes of data variation in a two-dimensional plane and data projection with
correct (1) and wrong (0) prediction with weather data 4 h before recording
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8.1 weather and overall model performance8 EFFECT OF WEATHER ON MODEL PERFORMANCE

wind average wind velocity (m/s) over the hour
temp average temperature (°C) over the span of the hour
prec average precipitation (mm) over the span of the hour
result average score of the model on all samples of a recording (1 - 100% correct, 0 - 0% correct)

Table 3 – Explicit legend for the following graphs.

Figure 15 – Main axes of data variation in a two-dimensional plane and data projection with
correct (1) and wrong (0) prediction with weather data 8 h before recording

These global results show no clear correlation between weather and predictions. The following
subsections take a closer look over a 24h time period at the model performance and the weather,
with the y-axis using a symmetrical log scale. Here is the legend for every graph :

Bioacoustique Quebec - LIS CNRS page 19



8.2 Wind speed 8 EFFECT OF WEATHER ON MODEL PERFORMANCE

8.2 Wind speed
In Figure 16, the result is the log of the mean of predictions (1 for correct, 0 for incorrect) for

every hour in a recording site. A 24h span is too narrow to see any tendency.

Figure 16 – Wind speed (km/h) and model performance for two specific dates in one site

8.3 Precipitation
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8.4 Temperature 8 EFFECT OF WEATHER ON MODEL PERFORMANCE

Figure 17 – Precipitation (mm) and model performance on four specific dates in one site

8.4 Temperature
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9 INFLUENCE OF RECORDING SITES ON THE PREDICTION ACCURACY

Figure 18 – Temperature (°C) and model performance on six specific dates in one site

The model performance does not seem to correlate to weather data. However, it looks like rain
lowers a sample probability of being correctly classified. Wind does not seem to have a major impact
on the AlexNet model, but the direction of the wind is not known and might be an important
factor. The temperature does not vary enough throughout a given day to see a clear influence.

9 Influence of recording sites on the prediction accuracy
The model performs differently between sites (Figure 19). However, this distribution can be ap-

proximated by a Gaussian curve. Therefore, the site does not seem to play a role on the model per-
formance. The model fails to correctly identify samples from several sites, namely 122_092_H02,
105_101_F01, 111_115_F01, 057_182_T01, and 136_095_H01. No correlation between these
sites and the number of samples available for each of them has been noticed.
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9 INFLUENCE OF RECORDING SITES ON THE PREDICTION ACCURACY

Figure 19 – Distribution of prediction accuracy per site (average in %)

We investigated the potential link between geographic coordinates and prediction accuracy
(Figure 20, 21, 22).
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9 INFLUENCE OF RECORDING SITES ON THE PREDICTION ACCURACY

Figure 20 – Prediction accuracy per localization
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9 INFLUENCE OF RECORDING SITES ON THE PREDICTION ACCURACY

Figure 21 – Prediction accuracy per localization
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10 ADDITION OF ABIOTIC SOUNDS

Figure 22 – Prediction accuracy per localization

The maps on Figure 20, 21, 22 show that recorders located in the same site but in different
habitats present contrasted results. Well-predicted sites in one habitat are often next to poorly-
predicted sites. In a further section, confusion matrices per site will be presented.

10 Addition of abiotic sounds
The train set is modified by adding different wind noises extracted from the Quebec recordings

to the xeno-canto set. This addition of abiotic sounds could help mitigate the differences in re-
cording and weather conditions between xeno-canto and Quebec data. The 5 most present classes
(wtsp, swsp, oven, mawa, heth) in the Quebec dataset were used for this experiment. The model
is trained on xeno-canto recordings of these species that last less than 2 minutes, and tested on
non overlapping samples from the Quebec dataset, then on xeno-canto recordings of these species
that last in between 2 and 4 minutes (Table 1). Wind noise is classified in three categories of
intensity following the expert’s annotations. Categories and wind samples are randomly added to
xeno-canto data.
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10 ADDITION OF ABIOTIC SOUNDS

Figure 23 – Distribution of windspeed (km/h) in top 5 Quebec data

In the top 5 Quebec dataset, recordings are made mainly in low-intensity wind (<10 km/h)
conditions (Figure 23). Sites with more than 10 samples are selected for further analysis (Table 4).

Down below are the results of the experiment with abiotic wind added to the xeno-canto train
set (right) compared to the experiment where the model was trained on untouched samples. There
was no data augmentation so the train set and the two test sets were identical. The results show
that the model performed slightly better when it had seen abiotic wind in the train set.
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10 ADDITION OF ABIOTIC SOUNDS

site count
073_137_F02 10
136_095_H01 10
137_144_H01 10
145_141_H01 10
146_133_H01 10
142_111_H01 11
146_133_H02 11
122_092_H01 13
142_111_H02 16
148_101_F01 30
137_107_H01 41
137_107_F01 42
137_107_H02 44
148_101_H01 50

Table 4 – number of samples per selected sites in top 5 Quebec dataset

Figure 24 – AlexNet default model trained on xeno dataset and tested on quebec and xeno test
sets

Here is the confusion matrix for the quebec test set :
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11 OCTAVE ANALYSIS

Figure 25 – Confusion matrix for the quebec test set

Although weather and background noise in general seem to account for a part of the poor
model accuracy, this section experiments show that these sound characteristics taken as such are
not enough to improve prediction accuracy. At this stage, we are unable to take into account
weather data in the model but as the model improves, we will come back to these experiments to
eventually remove bad quality recordings from the testing dataset.

11 Octave analysis
In order to differentiate background noise in different sites, we performed an octave analysis

on all recorded samples. This yields a measure of acoustic energy per band of frequencies (Figure
26). Octave analysis divides a recording into increasing band of frequencies in which the central
frequency is doubled is each octave (i.e. : the first band goes from f1 to 2*f1, the second from 2*f1
to 4*f1, and so on). The first band starts around 100 Hz and the last band ends around 16 000 Hz.
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11 OCTAVE ANALYSIS

Figure 26 – Confusion matrix for the quebec test set

However, no correlation between energy in specific octaves and prediction accuracy is found in
309 samples from different sites of the year 2018 (Figure 27).
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11 OCTAVE ANALYSIS

Figure 27 – Confusion matrix for the quebec test set

The difference between the probability attributed by the model to a species and the maximum
probability shows the distance between good and bad predictions. We represented this result for
each of the 309 samples in 4 categories of energy per octave band (Figure 28). There is no clear
tendency.
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11 OCTAVE ANALYSIS

Figure 28 – Pmax-Ptarget for each octave band (oct 1 to oct8). The closer the probability is to
0, the closer is the prediction to the correct species
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12 DISTANCE FROM THE CORRECT PREDICTION PER SITE AND PER SPECIE

12 distance from the correct prediction per site and per
specie

Beside results from octave analysis, we also looked at the difference between good and bad
predictions per habitat for 43 species out of 75, a choice made by experts’ recommendations based
on the ecological relevance of these species (Figure 29, 30, 35).

Figure 29 – Average difference between Pmax and Ptarget per forest sites
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12 DISTANCE FROM THE CORRECT PREDICTION PER SITE AND PER SPECIE

Figure 30 – Average difference between Pmax and Ptarget per wetlands sites
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13 MODIFICATION OF THE POOLING FUNCTION

Figure 31 – Average difference between Pmax and Ptarget per tundra sites

There seems to be no species or site that recurrently yields poor predictions. The number of
species in tundric sites is reduced compared to other environments. These sites were thought to
be more prone to bad predictions because of the adverse weather conditions and the openness of
the habitat.

13 Modification of the pooling function
If a 10 s recording sample is mostly made up of background noise, the resulting maximum

probability will be the sum of randomly attributed species because the focus is not on the actual
animal vocalization. We randomly sampled 6 recordings to see whether the cutting of samples to
the exact bird vocalization would improve the probability to predict the correct species (Figure
32). There seems to be no significant effect on these random samples. However, when listening to
these samples, they are either very low or seem to present multiple birds singing at the same time.
This requires further investigation.
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14 ENTROPY ANALYSIS

Figure 32 – Outputs of the model for six random samples. The highest positive value is the
species attributed to a sample by the model.

14 Entropy Analysis
In this following subsection, all experiments are conducted on the output of the last layer of

the resnet model, a vector assigning to each class a probability that the sample belongs to that
specific class. Additionally, instead of forwarding the 10 second sample in the model, the sample
was divided into four 3s sections with a 1s overlap (0s-3s, 2s-5s, 4s-7s, 6s-9s). This results from the
fact that several birds sing on a 10sec interval. Smaller interval enable to isolate single species of
birds. The result was for each sample a (4x43) matrix.
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14 ENTROPY ANALYSIS

Figure 33 – Mean value of the correct label in the 4 sections (blue), and mean of the standard
deviations for each section (bars)

The correct label has a high probability in the last layer of the resnet model (Figure 33).
The predicted class is the class with the highest probability in the time section and with the

lowest value of entropy (Figure 34).
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14 ENTROPY ANALYSIS

Figure 34 – Confusion matrix for predictions based on the section with the lowest entropy

The strongest classes are selected (Figure 33). All classes averaging over 0.15 (potential values
are between 0 and 1) for the correct classes were chosen, creating a dataset of (4x43) matrices
belonging to 21 classes. A small model with 3 fully connected layers and some dropout was trained
on 75% of this new dataset.
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15 TRANSFER LEARNING

Figure 35 – Accuracies for model trained on the output of the resnet model and on the
strongest 21 classes

Accuracy was also computed on each 3 sec interval. This analysis reveals that accuracy is
higher for tests made on the 4-7 sec interval of 10 sec samples.

interval (s) accuracy best species selected from this interval accuracy for best species
0-3 7% CAGO, MAWA, OVEN 25%
2-5 11% BAWW, CAGO, MAWA,OVEN 26%
4-7 25% BAWW, CAGO, OVEN,SOSP,TEWA,WTSP 42%
6-9 14% CAGO, MAWA,OVEN,SOSP,WTSP 26%

Table 5 – accuracy for 4 intervals in 10sec samples

A pooling function taking into account the hierarchy in intervals accuracy could be applied.
However, this effect likely stems from the window selection around the time given by J.-F. Jetté
at which the identified species produces a vocalization.

15 Transfer Learning
Result vectors from the resnet model are fed into a new model composed of fully connected

layers. This experiment was inspired by the promising and interesting analysis of the probability
vectors in the previous subsection. Bird vocalizations last on average 3.7 seconds. The new matrix
of results was composed of 4s signals every 0.5 seconds in the 10s window. Encouraging results on
Quebec dataset are observed (Figure 36).
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15.1 Training for different locations 15 TRANSFER LEARNING

learning rate batch size
16 32 64 128 256

0.1 0.089 0.08
0.01 0.35 0.37 0.07 0.32
0.001 0.62 0.57 0.56
0.0001 0.58 0.49 height

Figure 36 – Training, Testing, Validation accuracies for wdl=0.002, lr=0.001, bs = 64, 43 species

Different parameters were tested on the same training set to compare results (wdl = 0.005, 80
epochs).

15.1 Training for different locations
In order to verify the model validity and try to improve its validity, three similar models

were trained for different locations. The first one, NH, is composed of every recording from wet
environments above the 46.7° latitude, the second one, SH, is composed of wet environments below
the 46.7° latitude. The last model, called ’other’, was trained on every other sample. Nordic wetland
model training set is to small to draw conclusions on it.
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15.2 Training for different days 15 TRANSFER LEARNING

Figure 37 – Training, Testing, Validation accuracies for wdl=0.002, lr=0.001, bs = 64, 43
species on SH

Figure 38 – Training, Testing, Validation accuracies for wdl=0.002, lr=0.001, bs = 64, 43
species on other

Figure 37 and 42 show lower prediction accuracy than in Figure 36. This is due to an identi-
fication of the background noise in the added layer. Training and testing sets were not properly
separated. However, we plan to separate them by taking different days on the same sites.

15.2 Training for different days
Another way to split the data up to increase the difference between the trainset and the

testset and thus the model’s ability to generalize is to create different sets for different days. In
this subsection the training set is made up of the even days of the month, and the test set and
validation sets of the odd days of the month. Multiple experiments were made but down below is
the one with the best scores.
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15.2 Training for different days 15 TRANSFER LEARNING

In order to obtain these scores, every sample was filtered with a band pass filter (400Hz, 9kHz),
and the trainset was complexified by overlapping different 10s samples one over another to create
new background noises and choruses.

Figure 39 – Training, Testing, Validation accuracies for filtered samples, trained on even days
and tested on odd days of the month

Down below are the three confusion matrices associated with the above experiment, but split
into each type of environment.
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Figure 40 – Confusion matrix for test set and validation set samples from the bog environment
on model that performed best on test set
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15.2 Training for different days 15 TRANSFER LEARNING

Figure 41 – Confusion matrix for test set and validation set samples from the forest
environment on model that performed best on test set

Bioacoustique Quebec - LIS CNRS page 46



16 CONCLUSION

Figure 42 – Confusion matrix for test set and validation set samples from the humid
environment on model that best performed on the test set

The model better classifies unseen data from the forest environment with an accuracy of 17%.
For samples from the wet environment, the model has an accuracy of 13%, this is maybe due to
the presence of frogs or choruses on the recordings. The model struggles with samples from the
bog environment, with an accuracy of 8% that could be explain by the heavy influence of the wind
and climate conditions on the quality of the recordings.

16 Conclusion
These experiments show that data augmentation fails to make the model generalize. This failure

to generalize can have many roots - amount of samples, quality of samples, uniformity of samples,
mislabeling of samples, incorrect time-frequency representation of the signal, etc. However, the
model and python script were previously tested and corrected, furthermore, the five classes used
contained more than 100 samples each which should be enough for some, if not good, generalization.
It can then be concluded that the samples themselves, the 10 second signals, are the main root
of the problem. Some samples contain multiple species at once, some species have many different
calls, some resembling other species’ vocalizations, which makes it difficult for both humans and
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16 CONCLUSION

neural networks to differentiate the classes. The possible influence of the weather conditions was
analyzed but led to inconclusive results.

In this report, many different ideas and methods were tested. Future perspectives lie in the
detection and suppression of chorus, the detection of good quality recordings that can accurately
be predicted by the CNN, and in the creation of distinct testing sets (grouped by sites, month) to
avoid background noise identification.

Identification of real-world recordings of birds is not an easy task but our various attempts
at it let us better understand where the difficulties lie. Every experiment brings us closer to an
efficient classification tool.
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