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  Hidden Markov Models (HMMs) are widely used for speech recognition tasks but have been used rarely for the classifi-
cation of bioacoustics signals. This study proposes a new approach for the supervised classification of the calls that
compose humpback whale (Megaptera novaeangliae) song sequences with the use of HMMs, based on the concept of
subunits as building blocks. HMMs are suitable candidates to conduct such classification tasks because they are very flex-
ible, which suggests that they will cope with the great variability of the humpback whale call repertoire and also with the
changes in duration of individual calls. Indeed, the same vocalisations which are repeated by an individual throughout a
song may vary in length as the song progresses, posing a challenge for classification algorithms. Another attractive char-
acteristic of HMMs is that highly developed tool-set is widely available. We describe the HMM classification method and
show that a high level of performance can be achieved with modest requirements both in terms of computational load and
storage. Training stage requires minimal manual input and once trained the recognition process is fully automated. We
will present how the classification performance of songs recorded in Madagascar is affected by different amount of train-
ing.
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1 INTRODUCTION  
Songs of humpback whales (Megaptera novaeangliae) have been extensively studied across 
the World [1-7] since they were defined as such by Payne and McVay [8] because humpback 
whales breeding grounds, where songs are typically heard, are widespread. This has led to 
the need for the development of appropriate tools for the automatic classification of the song 
components to perform large-scale comparisons of their songs. The task of song 
classification is still largely carried out manually or with the use of algorithms that require 
substantial human supervision, which is extremely time-consuming and not easily replicable 
when comparing songs analysed across research groups.  
Our new approach for song classification of humpback whales using Hidden Markov Models 
(HMMs) showed high level of classification of songs recorded in Madagascar between 2007 
and 2009 [9, 10]. The power of HMMs derives from their ability to model non-stationary 
random processes, specifically, they are particularly appropriate when modeling signals, such 
as humpback whale vocalisations, whose durations are stochastic. HMMs have become the 
basis of most modern algorithms for the classification of human speech (speech recognition) 
[11]. This central role in speech recognition (and their wider use in the field of speech 
analysis) has meant that considerable research effort has been dedicated to the study of 
HMMs, one consequence of which is a highly developed, and widely available, tool-set. This 
makes them attractive tools for application in a wide range of fields, including bioacoustics 
[12, 13]. Models borrowed from speech production have already been implemented for the 
classification of humpback whale songs [14, 15]. Although the specific pathways of sound 
production and propagation in baleen whales remain to be understood, it is recognised that 
air must be recycled within the vocal tract to allow continuous production of sound underwater 
and considering the lack of bubble emission during sound generation [15, 16]. HMMs have 
been used once before to model humpback whale calls, but with the implementation of an 
unsupervised algorithm which led to substantial reduction in the classification performance 
[17].   
In this study, we assess the performance of HMMs for the classification of humpback whale 
songs using different levels of algorithm training. Indeed, the goal is to maximise the 
recognition performance of the individual calls present in a song sequence, whilst minimising 
the amount of training data needed, so that human input is reduced as are time consumption 
and computational load. 
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2 METHODS  
2.1 Data collection and preparation  

Humpback whale songs were recorded in the Ste. Marie Island Channel, which is located 
between the Island of Ste. Marie and the North East Coast of Madagascar (Indian Ocean). 
Data were recorded at a sampling frequency of 44.1 kHz (16 bits) from a small boat using a 
single CO.L.MAR Italia GP280 hydrophone connected to a TASCAM HD-P2 recorder. The 
hydrophone was located at a depth of approximately 20 m for all recordings and the 
bathymetry ranged between 28 to 40 m. 
Prior to classification, the song analysed in this study was automatically segmented into its 
component units, i.e. continuous sounds between two silences, as defined by Payne and 
McVay [8] using an energy detector with a double threshold, and then refined manually to 
ensure that the limits of the start and the end of each call were accurate. The individual 
vocalisations detected during the song segmentation stage were not directly inputted in the 
classification algorithm; instead they were reduced to a series of coefficients that described 
the essential characteristics of the call. The efficiency of three feature sets that are commonly 
adopted to represent bioacoustics signals was tested using our Madagascar recordings in a 
previous study on humpback whale call classification (Pace, et al., 2009). These included 
Linear Prediction Coefficients (LPCs), coepstrum, and Mel-frequency coepstrum coefficients 
(MFCCs). The results showed that MFCCs performed better than the other two feature sets 
for nearly all call types despite the fact that there are based on an anthropomorphic 
perception of sound. Hence, they were chosen for the feature extraction stage of our 
classification algorithm. 
Each call was represented through a series of 24 features; specifically these are 12 MFCCs 
and 12 corresponding delta coefficients (i.e ΔMFCCs). The number of coefficients was 
selected to optimise performance, as described in [10]. These coefficients were calculated 
using the standard function included in the HTK toolkit [18] which was used for the HMM 
implementation.  
 
2.2 Hidden Markov Models implementation 

Each call class is represented by one left to right HMM with one state if the call frequency is 
stable throughout its duration or two states if the frequency is varying, e.g. in the case of an 
up-sweep or down-sweep, plus two “non-emitting” states at the start and at the end of each 
model (Figure 1).  
 
 
 

 

Figure 1: example of humpback whale unit vocalisation which is used for training an HMM. 
This unit is broken down into 3 states that correspond to three changes in direction within the 
call. The first segment (a) is a quick upsweep, the second segmented is an upside down arch 
(b) and the last part of the call is almost flat but with a slight upward curvature (c). Two states 

at each end mark the start and end of the unit. 
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The number of states of each HMM determines the size of the transition matrix: a three state 
HMM will have a 3×3 transition matrix. The transition between observations was modeled 
through a Gaussian mixture where each probability was a real number from 0 to 1 and sum to 
unity. Given that each recording segment containing a call could include a silent part at the 
start and/or at the end of the sound clip, one HMM was created with the same characteristics 
described above to model the silences.  
During the training phase a database of labelled (manually classified) data is employed. The 
manual classification is performed by an experienced observer, through visual inspection of 
the spectrograms and aurally and is used both for the labeling stage and for checking the 
performance of the automatic classifier.  
The training stage deals with calculating the maximum likelihood estimates (MLE) of the 
transition probabilities matrix of the states. In practice, this means that starting from a 
prototype HMM after the training process one obtains a model whose mean, variance and 
transition probabilities are calculated based on the statistical properties of the data present in 
the training set. This is achieved by applying the Viterbi algorithm [19] to find the most likely 
state sequence corresponding to each training sample, followed by a Baum-Welch [20] re-
estimation to obtain the probability of being in each state at each time frame using the 
Forward-Backward algorithm. A thorough review of the use of HMMs is provided by Rabiner 
[21].  
For the recognition stage, a Viterbi alignment [22] was performed to match each call of the 
testing dataset the best matching HMM. The output of the HMM recognition was then 
compared to the manual classification and the correction classification rate computed as a 
percentage. 
In this study, we compared the recognition performance with different amounts of training 
data, specifically we trained the HMM on 50% of the calls for each call class. Then we tested 
the HMM with 25% of data training, and lastly 10% data training was used. In the latter case, 
the amount of training data per class was sometimes slightly above 10% because the 
minimum number of samples required to train each HMM is 3 calls. A table showing the 
number of calls trained in each class and the recognition results is presented in the results 
section.  
 
 
3 RESULTS  
The automatic classification performance based on the recognition of individual calls of the 
HMM model is presented in this section.  
The calls identified during the segmentation were manually and named alphabetically. The 
song recorded in Madagascar in 2008 was segmented into 334 units, which were divided into 
16 classes. Three classes were omitted form the analysis because they contained fewer than 
6 calls, i.e. the minimum number to be able to run both the training and testing stages of the 
algorithm. The call types identified are presented in the table below, as well as the number of 
calls used to train each category for each training scenario (Table 1). 
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Table 1: table showing the call types identified in the recording analysed, as well as the 
number of calls used during the training stage for each of the training scenario. The 

classification performance for each of the scenarios is presented as a percentage of the total 
number of calls tested for each call type. The training set number denoted by a ‘*’ mean that 
the actual number of calls used for the training stage should have been less than three if we 
calculated the appropriate percentage of calls for the training scenario; however, we had to 
train the HMM with 3 calls which is the minimum number required for running the algorithm. 
Also note that the number of calls used for the training was rounded to the nearest integer. 

Call 
type 

Training 
Classification 
performance  

 (% out of 181) 

50% 25% 10% 50% 25% 10% 

a 12 11 4 97 100 84 

b 10 5 * 100 100 100 

d 6 3 * 86 100 86 

f 7 4 * 100 50 100 

g 6 3 * 100 100 100 

h 10 5 * 100 60 10 

i 10 10 4 97 91 85 

j 8 4 * 86 57 14 

k 10 6 * 88 81 38 

l 5 * * 100 100 100 

m 10 6 * 100 93 93 

n 9 8 3 87 96 91 

o 7 4 * 88 100 88 

overall 110 72 41 94 90 78 
 
The results show that the best performance overall was achieved using 50% of the data for 
training the HMMs and the other 50% for testing the classifier; however, this was not true of 
all the call classes tested Figure 2.  

 
Figure 2: percentage correct classification of the Hidden Markov Modelling classification 
obtained for three different training scenarios for each call type (or unit type) and overall. 
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With a 25% percentage reduction in training data, the classification performance decreases 
only by 4% but the mistakes affect the various call types differentially. Indeed, in three 
instances, namely units ‘f’, ‘h’ and ‘j’, the classification accuracy halved (or nearly halved). On 
the other hand, there are 3 instances in which more units were correctly classified when there 
were 25% rather than 50% calls used for training.  
In the last training scenario, when the HMMs were trained using only 10% of the data (or 
slightly more) the overall classification performance reduced to 78%. Again here some call 
types were more affected than others by the change in training set size. Specifically, units ‘h’, 
‘j’ and ‘k’ were classified very poorly (<40% correct classification), whilst the classification of 
the other unit types was nearly equal to the one obtained with the other training scenarios. 
 
 
 
4 DISCUSSION 
High levels of classification performance were obtained using Hidden Markov Modelling for 
classifying humpback whale calls, as demonstrated in our previous work which compared 
classification performance across songs of different years and emitted by a variety of singers 
[9, 10]. Whilst, in this paper we did not present the analysis on the classification performance 
from different years, we aimed at analysing in more detail how different amount of training 
affects the classification performance. For an automatic classifier to be efficient and widely 
used, the amount of training required to run the algorithm should be minimized to reduce the 
human input and the computational load so that the whole recognition task can be 
implemented quickly even with large datasets.  
The results presented in this study show how three different training scenarios affect the 
performance of the automatic classification; the information that can be extrapolated can help 
choosing which scenario is better for the task that one needs to perform, considering the 
trade-off between amount of time and human input required at the training stage and the 
performance outcome. 
The data showed that the largest training set size led to a higher classification performance, 
with calls being correctly classified in more than 85% of the cases for all call types. 
Decreasing the training set led to a reduced classification performance, but this decrease was 
not linear and affected different call types differentially. The smallest training sample size 
resulted in an overall decrease of 16% in classification performance compared to the 50% 
training set scenario. Whilst this is not a huge decrease, it can be quite conspicuous when 
analysing large amounts of data, as is customary when dealing with humpback whale song 
classification tasks. In addition, the recording used for the analysis had quite a high signal to 
noise ratio (SNR), which is difficult to achieve for continuous recordings taken in the field. We 
expect the classification performance to be worse when the quality of the recordings is lower, 
and a larger amount of training being required in these cases so that the HMMs can 
recognize the characteristics of the original signal, rather than the artefacts of the noise that 
may be present.  
The fact that some call types were more affected than others by the change in training set 
size suggests that training should be tuned to the type of call. Given that humpback whale 
songs are composed of units that vary considerably in characteristics, it is feasible that 
different types of calls may need different amount of training. Indeed, the repertoire of 
humpback whale includes tonal harmonic calls, broadband sounds, and fast up-sweeps and 
down-sweeps [23, 24]. Considering that with the 50% training scenario, the classification 
performance was similar across call types, one can conclude that the differential performance 
is not due to the performance of the feature set used. This could have been a possibility given 
that MFCCs are based on the Fourier representation of the signals, and therefore are 
particularly suited for characterising harmonic sounds. The unit types that were most affected 
by changes in the amount of training data used were either broadband calls (units ‘h’ and ‘j’) 
or calls where sudden changes in frequency could be observed (units ‘f’ and ‘k’). This is 
unsurprising considering that the few calls present in the training set might differ from one 
another and not give an accurate enough representation of the characteristics of the other 
calls that belong to the same class that were present in the test set.  
Further work will consist in comparing training data sets sizes for other datasets to check if 
the results are consistent with these findings. In addition, the same study will be extended to 
the classification task based on the segmentation of songs into smaller building blocks, which 
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we defined as subunits [9, 10]. Subunit segmentation was also proposed for killer whale calls 
[25]. We would expect the differential response across call types to be greatly reduced when 
classifying songs based on subunits because the calls identified in such categories are more 
stable in the frequency domain because where sudden frequency shifts are observed in a 
unit, this will lead to splitting it into two (or more) subunits.   

5 CONCLUSION 
Hidden Markov Models are well suited and easily adaptable for the classification of humpback 
whale calls. The classification performance with three training scenarios performed in this 
study suggests that, as expected, a larger training set leads to more accurate classification; 
however, given that halving the amount of training required, leads to only a 4% decrease in 
performance, one could favour this scenario to reduce human input and effort considerably. 
Further analysis is required to consolidate the results and test the performance on larger test 
sets and songs emitted by different whales. 
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