
CIGAL

C++ sIGnal scAttering & waveLet

fast representations

Randall BALESTRIERO

randallbalestriero@gmail.com

Department of Mathematics, Pierre et Marie Curie University
Paris 6

Hervé GLOTIN

Aix Marseille Universit, ENSAM, Marseille
Universit de Toulon, CNRS, LSIS UMR, La Garde

Institut Universitaire de France (IUF), Paris

1

randallbalestriero@gmail.com

Contents

1 Introduction 3

2 Audio File io 3

2.1 File Structure . 3
2.2 Implementation . 5

3 Fourier Transform 5

3.1 Definitions . 5
3.2 Fast Fourier Transform . 6

3.2.1 Danielson-Lanczos Lemma 7
3.2.2 Twiddle Factor Properties 8
3.2.3 Butterfly Scheme . 9

3.3 Implementation . 9
3.3.1 Inverse Fourier Transform 11
3.3.2 Graph . 11

4 Spectrogram 11

4.1 Algorithm . 12
4.2 Implementation . 12

4.2.1 Graph . 13
4.3 Examples . 13

5 Scattering Network 15

5.1 Introduction . 15
5.2 Filter Bank implementation . 17

5.2.1 Graph . 19
5.3 Layer Implementation . 19

5.3.1 Graph . 20
5.4 Decomposition Implementation 21
5.5 Scattering Network Implementation 21
5.6 Examples . 22

6 Data representation 24

6.1 Import data . 24
6.2 Optimization . 24
6.3 Colormap . 25
6.4 Implementation . 25

7 Validation on a large scale bioacoustic data set 26

7.1 Recall of previous attempts . 26
7.2 Results with CIGAL . 26
7.3 Perspective on BIRD2015 . 26

8 Future work 28

A README 29

B Licence GPL 30

2

1 Introduction

With the computational power available today, machine learning is becoming a
very active field finding its applications in our everyday life. One of its biggest
challenge is the classification task involving data representation (the preprocess-
ing part in a machine learning algorithm). In fact, classify linearly separable
data is easily done. The aim of the preprocessing part is to obtain well repre-
sented data by mapping raw data into a feature space where simple classifiers
can be used efficiently. For example, everything around audio processing uses
MFCC until now. This toolbox gives the basic tools for audio representation
using the C++ programming language by providing an implementation of the
Scattering Network [4] which brings a new and powerful solution for these tasks.
The tool-kit of reference in scattering analysis is the SCATNET from Mallat
et al. 1. This tool is an attempt to have some of the scatnet features more
tractable in large dataset. Furthermore, the use of this toolbox is not limited to
machine learning preprocessing. It can also be used for more advanced biologi-
cal analysis such as animal communication behaviours analysis or any biological
study related to signal analysis. One motivation for this work is the collabora-
tion between DI ENS and the university of Toulon through the SABIOB Scaled
Acoustic project.[15] [14]. This toolbox gives out of the box executables that can
be used by simple bash commands. Examples are given in the README file.
Finally, for each presented algorithm, a graph is provided in order to summarize
how the computation is done in this toolbox.

2 Audio File io

2.1 File Structure

The WAV file is an instance of a Resource Interchange File Format (RIFF)
defined by IBM and Microsoft. The header part of this file is made of comple-
mentary chunks describing the architecture of the wav allowing easy information
storing. Let’s see how these chunks are organized in a WAV file :

1http://www.di.ens.fr/data/software/scatnet/

3

http://www.di.ens.fr/data/software/scatnet/

Figure 1: The Canonical WAV file format https://ccrma.stanford.edu/

courses/422/projects/WaveFormat/

The file is made of three main chunks each having a specific role that we will
describe here.

• ChunkID identifies the type of the first chunk with four characters :
”RIFF”.

• ChunkSize is the size of the file left from this point. It will be 36 (sum of
the other chunks sizes) plus Subchunk2Size and this can be easily seen by
summing the different sizes on the right of the header representation.

• Format will be four characters : ”WAVE” (this allows us to check if we
are really reading a wav file during the process).

• SubChunk1ID identifies the second chunk. It is a four characters name :
”fmt ” and starts the data description block.

• SubChunk1Size is simply the size of this block which is 16.

• AudioFormat, also called Format tag, is the option indicating the data
compression used. It is almost always equal to 1 which stands for : no
compression is used.

• NumChannels is the number of channels (1 for mono and 2 for stereo).

• SampleRate is simply the number of samples per second, the frequency.

4

https://ccrma.stanford.edu/ courses/422/projects/WaveFormat/
https://ccrma.stanford.edu/ courses/422/projects/WaveFormat/

• ByteRate is the average number of bytes per second, this can be found
with the following formula : SampleRate ∗NumChannels ∗ BitsPerSample

8
.

• BlockAlign won’t be necessary for us. It can be computed with the formula
: NumChannels ∗ BitsPerSample

8
.

• BitsPerSample can either be 8 or 16 but in general the later is used.

• SubChunk2ID identifies the last chunk block, it is made of the four char-
acters : ”data”.

• Subchunk2Size is the size of the file left which is just the size of the data.

• Data is the block containing the values of the signal in the standard pulse-
code modulation representation.

2.2 Implementation

The use of the built-in class WAV is simple, the only thing to provide is the
name of the wav file. This can be done during the instantiation of the class or
at any other time. Let’s look at an example.

WAV<double> S igna l (”mysignal . wav”) ;
WAV<double> Signa l2 ;
”mysignal . wav”>>Signa l2 ;
”mysignal2 . wav”>>S igna l ;

The template parameter can be ignored leading to the default value : float. One
instance of the class can be used for different wav files which can be useful. This
WAV variable allows easy interactions and can provide informations about the
loaded file :

S igna l . S i z e ;
S igna l . SampleRate ;
Signal NumberOfChannel ;
S igna l [i] ; // r e t u r n t h e i t h v a l u e o f t h e l o a d e d s i g n a l

Finally, to export the loaded file two options are available. Firstly, it is possible
to export it into a txt file which only export the signal data disregarding all
the other informations. This loss can be avoided using a special method which
exports the data back into a wav file, with the following syntax :

Signal>>” newsignal . txt ” ; // t o . t x t
S igna l . PrintWav (” newsignal . wav”) ; // t o . wav

With this implementation, WAV can be seen as a special type. Note that no
normalization is used. In fact, only the user can define the normalizing constant
he is interested in (max, L2-norm,...) and so has to apply it after the import.
Finally, for an external use of this toolbox, one should not need to use this class
since it is just here as a input/output convenience for the other algorithm we
will now describe.

3 Fourier Transform

3.1 Definitions

A sinusoidal wave is characterised by three parameters: amplitude, frequency
and phase.

5

• The amplitude is the amount the function varies, positively or negatively,
from zero in the y direction.

• The frequency is how many complete cycles there are of the wave in unit
distance on the x axis (which often measures time).

• The phase is relevant when comparing two waves of the same frequency.
It is how much (measured in degrees or radians) one is shifted relative to
the other on the x axis.

This terminology comes from sound engineering where higher frequency sounds
have higher pitch and waves of greater amplitude are louder. As an alternative
of specifying the frequency, the number of cycles in unit distance, we can instead
specify the wavelength : the length of one cycle. The higher the frequency, the
shorter the wavelength. The lower the frequency the longer the wavelength.
The Nyquist frequency is the maximum frequency that can be detected for a
given sampling rate and it is half of it. This is because in order to measure
a wave one needs at least two sample points to identify it (trough and peak).
We will abbreviate the continuous Fourier transform with CFT and the discrete
Fourier transform with DFT.

Interpretation of the CFT Using the Euler’s formula, we can see the
Fourier Transform as a decomposition of a signal into complex sinus by the
use of convolutions.

eix = cos(x) + i sin(x)

f̂(ξ) =

∫ ∞

−∞

f(x)e−2πixξdx

=

∫ ∞

−∞

f(x)(cos(−2πxξ) + i sin(−2πxξ))dx

=

∫ ∞

−∞

f(x) cos(−2πxξ) + f(x)i sin(−2πxξ)dx

=

∫ ∞

−∞

f(x) cos(−2πxξ)dx+

∫ ∞

−∞

f(x)i sin(−2πxξ)dx

3.2 Fast Fourier Transform

We will now denote xk as the kth value on the signal in the time space and Xk

the kth value of the signal in the frequency domain, N will denote the length of
the signal. A length of N means the indices range from 0 to N − 1.
The fast Fourier transform (FFT) is a instance of DFT which is able to perform
the DFT in O(N log(N)) complexity.
The DFT formula using the Twiddle Factor notation :

∀k ∈ Z,Xk =
N−1
∑

n=0

xne
−2πikn

N

Xk =

N−1
∑

n=0

xnW
kn
N

6

As we can see, we need to perform N operations for each Xk, k ∈ {0, 1, ..., N−1}
thus we are in O(N2) complexity.
Note that it is possible to use the scaling factor :1/

√
N in order to have an

unitary operator (Parseval’s theorem) which implies that the sum (or integral)
of the square of the function is equal to the sum (or integral) of the square of
its transform which is not needed in this toolbox thus not used.
In order to go from N2 operations to N log(N) operations, three main concepts
have to be defined :

• The Danielson-Lanczos Lemma

• The Twiddle Factor properties

• The Butterfly Scheme

3.2.1 Danielson-Lanczos Lemma

This theorem is the foundation of the FFT by allowing a divide and conquer
strategy. In fact, we have the following relations :

Xk =

N−1
∑

n=0

xne
−i2πkn

N

=

N
2 −1
∑

n=0

x2ne
−i2π2kn

N + x2n+1e
−i2π(2k+1)n

N

=

N
2 −1
∑

n=0

x2ne
−i2πkn

N/2 +

N
2 −1
∑

n=0

x2n+1e
−i2π2kn−i2πn

N

=

N
2 −1
∑

n=0

x2ne
−i2πkn

N/2 +W k
N

N
2 −1
∑

n=0

x2n+1e
−i2πkn

N/2

For every Xi we can now divide the N sums into two different summation group
(Even and Odd). Note that for the special case N = 2 the sums are removed and
n is replaced by 0 which means that we are left with a simple linear combination
of the input signal and the Twiddle Factor. If we apply this recursively we obtain
the following architecture :

x

Odd

Odd

Odd Even

Even

Odd Even

Even

Odd

Odd Even

Even

Odd Even

7

And now for any given input size we are able to break it done into a linear
combination of the input signal with twiddle factors. For example, if N = 4 we
have after full decomposition :

Xk = x0 +W k
2 x2 +W k

4 x2 +W k
4W

k
2 x3

And for N = 8 :

Xk = x0+W
k
2 x4+W

k
4 x2+W

k
4W

k
2 x6+W

k
8 x1+W

k
8W

k
2 x5+W

k
8W

k
4 x3+W

k
8W

k
4W

k
2 x7

This puts a constraint though, the signal length has to be a power of 2. The
number of decomposition is thus log2(N). If the signal size is not a power of 2
it is necessary to use zero padding (add as may 0 as necessary at the end of the
input). Padding with 0 in time domain leads to an interpolation of the FFT.
Middle zero padding the FFT (in the frequency domain) interpolates the IFFT
(time domain). Periodizing in the frequency domain implies sub-sampling in
the time domain (this will be useful for the Scattering Network).
One last thing to notice here is the order of the input values in the decomposi-
tion. Because of the nature of this decomposition (even/odd) we end up with
the x terms being rearranged in a specific order : the bit-reversal order. This
can be found by taking the symmetric of the binary position of the input value
as seen in this little example for N = 8:

0 : 000 → 000 : 0

1 : 001 → 100 : 4

2 : 010 → 010 : 2

3 : 011 → 110 : 6

4 : 100 → 001 : 1

5 : 101 → 101 : 5

6 : 110 → 011 : 3

7 : 111 → 111 : 7

3.2.2 Twiddle Factor Properties

Complexity has already been broken down but we can still optimize the im-
plementation by exploiting the Twiddle Factor properties using roots of unity
properties. In fact we have :

W k
N = e

−i2πk
N = cos(2πk/N)− i sin(2πk/N)

Thus for N = 2:

W 0
2 =W 2

2 =W 4
2 = ...

W 1
2 =W 3

2 =W 5
2 = ...

8

And for N = 4

W 0
4 =W 4

4 =W 8
4 = ...

W 1
4 =W 5

4 =W 9
4 = ...

W 2
4 =W 6

4 =W 10
4 = ...

W 3
4 =W 7

4 =W 11
4 = ...

And so on using trigonometric properties, with functions here beingNπ-periodic.
So using this will allow us to perform less Twiddle Factor computation at each
level.

3.2.3 Butterfly Scheme

Finally, the last brick is the butterfly scheme that can be seen in the next
diagram3.3 allowing an in-place FFT which is memory friendly.

3.3 Implementation

Firstly, our implementation is made of three nested loops, the main one which
will go through the log(N) levels of decomposition. The second one will go
through the blocks inside a specific level (the last level as 1 block whereas
the first level as N/2 blocks). Finally the last loop will go inside a block (a
block on the first decomposition level will have size 2 while the block in the
last decomposition level will be of size N). For each level (i), only 2i Twiddle
factors are computed in the main loop where i is the decomposition level from
0 to log(N) − 1. A simple temporary variable is used in order to perform the
swapping operations. Here is an instance of this implementation for N = 8 and
a human friendly output explaining the performed steps.

9

Figure 2: Full FFT computation with N = 8 [1]

Level : 0
W[0]=W(0 ,2)
Block : 0

s i g n a l [1]∗=W[0]
tmp=s i gn a l [0]
s i g n a l [0]+= s i gn a l [1]
s i g n a l [1]=tmp−s i g n a l [1]

Block : 1
s i g n a l [3]∗=W[0]
tmp=s i gn a l [2]
s i g n a l [2]+= s i gn a l [3]
s i g n a l [3]=tmp−s i g n a l [3]

Block : 2
s i g n a l [5]∗=W[0]
tmp=s i gn a l [4]
s i g n a l [4]+= s i gn a l [5]
s i g n a l [5]=tmp−s i g n a l [5]

Block : 3
s i g n a l [7]∗=W[0]
tmp=s i gn a l [6]
s i g n a l [6]+= s i gn a l [7]
s i g n a l [7]=tmp−s i g n a l [7]

Level : 1
W[0]=W(0 ,4) ,W[1]=W(1 ,4)
Block : 0

s i g n a l [2]∗=W[0]
tmp=s i gn a l [0]
s i g n a l [0]+= s i gn a l [2]
s i g n a l [2]=tmp−s i g n a l [2]
s i g n a l [3]∗=W[1]
tmp=s i gn a l [1]
s i g n a l [1]+= s i gn a l [3]
s i g n a l [3]=tmp−s i g n a l [3]

Block : 1
s i g n a l [6]∗=W[0]
tmp=s i gn a l [4]
s i g n a l [4]+= s i gn a l [6]
s i g n a l [6]=tmp−s i g n a l [6]
s i g n a l [7]∗=W[1]
tmp=s i gn a l [5]
s i g n a l [5]+= s i gn a l [7]
s i g n a l [7]=tmp−s i g n a l [7]

Level : 2
W[0]=W(0 ,8) ,W[1]=W(1 ,8)
W[2]=W(2 ,8) ,W[3]=W(3 ,8)
Block : 0

s i g n a l [4]∗=W[0]
tmp=s i gn a l [0]
s i g n a l [0]+= s i gn a l [4]
s i g n a l [4]=tmp−s i g n a l [4]
s i g n a l [5]∗=W[1]
tmp=s i gn a l [1]
s i g n a l [1]+= s i gn a l [5]
s i g n a l [5]=tmp−s i g n a l [5]
s i g n a l [6]∗=W[2]
tmp=s i gn a l [2]
s i g n a l [2]+= s i gn a l [6]
s i g n a l [6]=tmp−s i g n a l [6]
s i g n a l [7]∗=W[3]
tmp=s i gn a l [3]
s i g n a l [3]+= s i gn a l [7]
s i g n a l [7]=tmp−s i g n a l [7]

The Twiddle Factors are computed at the start of each main loop computing
the needed values which are then reused throughout the blocks, meaning that
for the first level only one value is computed and then reused all along the
blocks. Here is an example of the use :

WAV<> wav(” s i g n a l . wav”) ; // l o a d a wav i n t o f l o a t t y p e a r r a y
f f t <> s i g n a l f f t (s i g n a l . ptr () , s i g n a l . S i z e) ; // d e f a u l t p a d d i n g o p t i o n =1
s i g n a l f f t . ComputeFFT () ;
s i g n a l f f t . ComputeIFFT () ; // g e t b a c k t o t h e o r i g i n a l s i g n a l
s i g n a l f f t [2] ; // a c c e s s t h e s e c o n d c o e f f i c i e n t
s i g n a l f f t >>” s i g n a l f f t . txt ” ; // e x p o r t i t
wav<<” processed . wav” ; // l o a d a new wav
s i g n a l f f t . ComputeFFT(wav . ptr () , wav . S i z e) ; // p e r f o rm a new FFT

10

Note that the parameters of the fft class are by default float and float, the first
one stands for the type of the input signal and the latter for the coefficients type
(complex<float>). Finally the padding option which by default is 1 can be set
to 0 if the user is sure that the given signal is already a power of 2, this force to
skip the padding part resulting in faster computation. Also the coefficients are
stored as complex type even after having performed an IFFT meaning that one
needs to use a typecast to retrieve the original float type signal for example.

3.3.1 Inverse Fourier Transform

In order to simplify the algorithm we sill use the following formula :

IFFT (x) =
1

N
conj(FFT (conj(x)))

3.3.2 Graph

Figure 3: FFT Summary Diagram

4 Spectrogram

Each Xk is a complex number that encodes how strongly the oscillation at this
frequency is represented in the data but by doing an FFT we loose the time
component. A useful tool is the spectrogram allowing to retrieve part of the
time information. The main idea is to perform multiples FFT on a signal each
one being located enough in time so the frequency information gained by the

11

FFT can also be linked to a more or less specific time position in the signal.
Note however that precision in both time and frequency is impossible to get but
depending on the needs one can choose which one to enhance by modifying the
size of the considered window. Larger window gives better frequency resolution
but lesser time precision and vice-versa. It is easy to picture the fact that smaller
windows are better for the high frequency part allowing good time precision
while for low frequency a larger window has to be used for being able to capture
it. This problem is lessen in wavelet decomposition and thus the scattering
network since this window size is not constant anymore.

4.1 Algorithm

Conceptually a spectrogram is computed with the following scheme :

• splitting the signal into overlapping (or not) parts of equal length defined
by the user.

• applying to each of these chunk a windowing function (typically hanning
or hamming) in order to remove artefacts by periodizing the function so
the limit points (start and end of the chunk) are equal. This part is called
apodization

• computing the FFT on each of these chunks

• for each computed FFT, taking the absolute value of the coefficients will
give the columns of the spectrogram.

The windowing is needed since the FFT computation presumes that the input
data repeats over and over. This is important when the initial and final values
of the data are not the same because the discontinuity causes artefacts in the
spectrum computed by the FFT.
In addition, in this toolbox, only the first half of the FFT coefficient are put
into the spectrogram thus avoiding symmetrical redundancy. This is due to the
fact that our input signal is real and so the second half of the FFT coefficients
is simply the complex conjugate of the first half, since in the spectrogram we
display the absolute value of the coefficients, we get symmetry about the middle
point.
Most window functions afford more influence to the data at the center of the
window than tohe t data at the edges, which represents a loss of information.
To mitigate that loss, it is common to use overlapping in time (usually 50%).

4.2 Implementation

It is important to note that the spectrogram (2D-matrix) is stored by column
and not by line for faster computation. In fact, during the spectrogram calcu-
lation we need to access this matrix column-wise. The operator [] returns the
column while the operator () takes two arguments and return the corresponding
value in a normal way. Let’s look at an example :

spectrogram<> b(” s i gna l 1 . wav” , 2 56 , 0 . 2 5) ; // d e f a u l t w indow f u n c t i o n : hamming
WAV<> wav(” s i gna l 2 . wav”) ; // l o a d a n o t h e r wav
b . Perform (wav . ptr () , wav . S i z e) ; // c ompu t e s p e c t r o g r am g i v e n t h e s e new e n t r i e s

// and d e f a u l t p a r am e t e r s w i t h t h e a l r e a d y d e c l a r e d s p e c t r o g r am v a r i a b l e
b>>” l i f e s p e c t r o . txt ” ; // w r i t e t h e m a t r i x i n t o a t x t f i l e
b [1] [0] ; // s e c o n d co lumn , f i r s t e l e m e n t
b (0 , 1) ; // f i r s t l i n e s e c o n d e l e m e n t same r e s u l t a s a b o v e

12

The template parameter defines the coefficients type. The default value is
float. Also note that no transformation is performed after the absolute value is
computed, which means that if one want to apply a logarithmic function (most
common one) this has to be done after computation.
The apodization can be done using one of the available windowing function :

• hamming

• hanning

• triangular

• hann poisson

but can also be used with a specific user defined function passed as last argument
when calling the Perfom method.

4.2.1 Graph

Figure 4: Spectrogram Summary Diagram

4.3 Examples

Let’s look at some spectrogram examples. Note that a logarithmic function has
been applied to the computed values (improving coefficient representation for
us). The signals are from a bird of the BIRDLIFE CLEF Challenge 2014 2. and
a Inia dolphin.

2http://www.imageclef.org/lifeclef/2015

13

http://www.imageclef.org/lifeclef/2015

Figure 5: Inia Dolphin Slow Clicks : Spectrogram 128 50%

Figure 6: Inia Dolphin Fast Clicks : Spectrogram 128 50%

14

Figure 7: Bird : Spectrogram 512, 50%

5 Scattering Network

The Scattering Network aims to find a better data representation after numerous
transformations of a raw input. It’s been developed by Stéphane MALLAT and
its team and his team in matlab, which is not the fastest implementation. In fact,
this algorithm just started to be applied in concrete challenges and problems.
We will review its core ideas and the implementation architecture I chose.

5.1 Introduction

The basic idea is to perform series of linear and non linear operations. The lin-
ear operations are done through the convolutions while the non linear ones are
the use of the absolute value on these convolutions. The use of the latter allows
fast convergence by the contractive property. The convolutions are basically
decomposing the signal into a wavelet basis. A parallel can be made with the
FFT and the complex sine decomposition. The structure itself of the network
can be compared to a Convolutionnal Neural Network where the filters are com-
puted and fully determined by the meta parameters while in a CNN they are
learned during training. This is a huge difference in term of computation time
allowing good representation without training. We have to keep in mind that
filters generation is also complex and time consuming.
The mapped data into the feature space can be used for simple data analysis or
data learning but it finds its best use in classification. In fact, this feature space
is much more suited for the use of linear classifier. Note that in this implemen-
tation we won’t look at the reconstruction problems since our main goal is not
to use the Scattering Network for compression,reconstruction,... Let’s look at
the general picture of the scattering network and analyse it briefly.

15

Figure 8: Scattering Summary.[6]

In this case the scattering network is made of 3 layers. Each layer has low-
pass filters (φ) and high-pass filters (ψ). In our specific case of 1D signals,
there is only one φ per layer. Given an input signal x of size N we perform
a low-pass decomposition (S0x) by performing the convolution x ⋆ φ and a
high-decomposition leading to a output size of 2N/T ×NumberOfPsisFilters by
performing NumberOfPsisFilters convolutions x ⋆ ψi,λ1 where ψi,λ1 is the ith

filter of the ψ-filter bank generated by the meta parameters λ1. Finally on this
high-decomposition is applied the absolute value operation.
Then for the second layer, each one of the previous high-decomposition is treated
as an input signal and the same algorithm is performed. Details about this will
be given in the scattering layer section5.3 but we can already note that the meta
parameters are specific to a scattering layer Finally let’s review what the meta
parameters are about :

• T determines the time resolution by changing the size of the filter. Small
T is suited for important time precision for high frequency signals.

• Q determines the quality factor (the number of filters per octave)

• J determines the number of octave to go through.

• PE (Periodization Extent) constant used in the filter periodization (1 by
default)

In order to respect this architecture, this toolbox uses a specific structure :
MetaParam using default parameters and a TtoJ method :

MetaParam L1param (500) ;
// L1param . T =500 , L1param . Q=1 , L1param . J =8 , L1param . PE=1
L1param=MetaParam (500 , 2) ;
// L1param . T =500 , L1param . Q=2 , L1param . J =6 , L1param . PE=1
L1param=MetaParam (500 , 2 , 4) ;
// L1param . T =500 , L1param . Q=2 , L1param . J =4 , L1param . PE=1
L1param=MetaParam (500 , 4 , 4 , 4) ;
// L1param . T =500 , L1param . Q=4 , L1param . J =4 , L1param . PE=4

Let’s now see the details of each implementation level and emphasize the
implementation architecture used.

16

5.2 Filter Bank implementation

Filters are created through the constructor of the Filter1D class. Given meta-
parameters and a support size, the constructor will initialize all the wanted
variables and compute the actual filters. Note that the Filter1D class has two
children : the MorletFilter1D and GaborFilter1D. These two specializations
have their own filter generation algorithm. This also means that if one wants
to implement a new filter, the only thing to do is to create another class of the
name of this filter, inherit from the Filter1D class and implement the coefficients
generation method.
Note that the constructor can be used in two different ways :

• Giving support size, meta parameters, and the position of the filter in this
configuration (gamma)

• Giving a support size, a σ and a ξ.

The first one is more practical for the ψ generation since the size and the meta
parameters are fixed for a layer, we just have to loop through γ (the filter number
in the filter bank). On the other hand, the second constructor is simpler for the
φ filter generation, in fact, since only one low-pass filter is made per layer, we
just have to compute ξ and σ for this filter.
Here is an example with arbitrary coefficients :

Fi l ter1D∗ BankFi l ter=new Fi l ter1D [5] ;
BankFi l ter [0]= GaborFilter1D (500 , 0 , 1 , 2) ; // 500 p o i n t s , x i =0 , s i gma =1 ,PE=2
for (int i =1; i <5;++i)

BankFi l ter [i]=MorletFi l ter1D (500 ,2+0.5∗ i , 0 . 2∗ i) ; // 500 p o i n t s , x i = f (i) ,
// s i gma=g (i) , PE=1 (d e f a u l t)

ofstream f i l e (” f i l t e r s . txt ”) ;
for (int i =0; i <5;++i){

f i l e <<BankFi l ter [i] ; // u s e o f t h e o v e r l o a d e d o p e r a t o r
f i l e <<”\n” ;

}
delete [] BankFi l ter ;
f i l e . c l o s e () ;

Giving the following result :

Figure 9: Filters generation example, orange : Gabor filter, blue : Morlet
wavelets.

17

The filters are directly computed in the Fourier domain to speed up the de-
composition algorithm, indeed we only have to compute the FFT of the input
to perform the decomposition algorithm now. Here ξ corresponds to the central
frequency and so to the global maximum position. It can be seen as a position
parameter while σ is a scale parameter. In practice, in order to generate the fil-
ters we always take the mother coefficients that are transformed through a scale
coefficient following exponential change. We have then as mother coefficients :

Ξ =
π

2
∗ (2−1/Q + 1)

Σ =
√
3 ∗ (1− 2−1/Q)

The scaling factor for the filter i is :λi = 2−i/Q which leads to the following coef-
ficients for any given filter i for a specific layer having the same meta parameters
:

ξi = Ξ ∗ λi
σi = Σ ∗ λi

Filters In this implementation, high-pass filters are Morlet wavelets while low-
pass filters are Gabor filters. Note that Morlet filters are actually another name
for Gabor kernels. The difference between the Gabor function (non-zero-mean
function) and the Gabor kernel (zero-mean function) is that the Gabor kernel
satisfies the admissibility condition for wavelets (integral equals to 0), thus being
suited for multi-resolution analysis. The admissibility condition ensures that the
inverse transform and Parseval formula are applicable.

Filter Periodization In order to increase resolution of the filters, we can
compute them on a bigger interval than the one we are interested in and then
periodize them in the Fourier domain :

f(x) =
∑

n∈Z

f(x+ 2πn)

In practice nothing assures the convergence for any function f but our filters are
generated through Gaussian functions which assure convergence. In practice,
we use n ∈ {−PE,−PE + 1, ..., PE, PE + 1} with x ∈ {x ∈ R, i = 0, ..., T − 1 :
x = i∗2π/T} which is similar to x ∈ {0, 2π/T, 2∗2π/T, ..., (T −1)2π/T}. With
this definition x covers [0, 2π[with T points linearly separated by a distance of
1/T . In all the examples presented here a periodization extent of 1 is used.
The n coefficients affect the range on which the wavelet is evaluated which grows
with bigger n :

[−2π ∗ PE, 2π ∗ (1 + PE)− 1/T]

It is then shrunk into the desired support size by the periodization process.

18

5.2.1 Graph

Figure 10: Filter1D Summary Diagram

5.3 Layer Implementation

The role of this class is to be the link between the raw input, the meta param-
eters, and the bank filters by performing the decomposition process. Firstly,
this class takes a 2D input (the input signal has to be transformed for the first
layer). This allows an easy link between layers by directly setting the input of
the next one as the output of the previous one.
Given the input, private variables are computed determining the structure of
the class by computing variables that will be passed to the next layer such as
the size of the output (given the input size and the number of ψ filters :Q ∗ J).
Then when all the ψ filters are available a Littlewood-Paley normalization is
performed (due to the logarithmic spaced filters). After this, the filters are gen-
erated using the Filter1D class. The Decomposition can now be performed.
Note that the decomposition is stored as a 2D matrix for every layer. Normally,
layer i has a dimension of i + 1 which is not true in this toolbox. In fact, in
this toolbox, the graph structure of the scattering network5.1 has been kept
through 2D matrices. For example for the second layer if we have k filters for
L1 and l filters for L2 and with ψi,j being the hth filter of the ith layer, the

19

high-decomposition matrix of L2 will be :

||x ⋆ ψ1,1| ⋆ ψ2,1|
. . .

||x ⋆ ψ1,1| ⋆ ψ2,l|
||x ⋆ ψ1,2| ⋆ ψ2,1|

. . .
||x ⋆ ψ1,2| ⋆ ψ2,l|

. . .
||x ⋆ ψ1,k| ⋆ ψ2,1|

. . .
||x ⋆ ψ1,k| ⋆ ψ2,l|

If one wants to select a specific ψ2,i decomposition it can be done by selecting
the lines i, i + l, i + 2l, ... and thus only analysing one path of the scattering
network.

5.3.1 Graph

Figure 11: Scattering Layer Summary Diagram

20

5.4 Decomposition Implementation

The core of the algorithm lies in this decomposition. Firstly, the convolution
defined in the section 5.1 is redundant and so is only performed on every T/2
spaced points. This implies a reduced output length and faster computation.
Thus, it is necessary to perform a periodization before computing the IFFT
(allowing a time sub-sampling). The output length must then be InputSize∗2/T .
Doing this for each psis filter gives the output of the layer. Here is a simple
scheme to emphasize the algorithm :

Data: Input,inputN,inputM,Meta Parameters
Result: Output,outputN,outputM
NumberOfPsis=J*Q;
outputN=inputN*NumberOfPsis;
outputM=inputM∗2/T ;
BankPsis creation;
Phi;
for i = 0 →inputN do

inputFFT=FFT(input[i]);
LowDecomposition[i]=IFFT(periodize(inputFFT.*Phi));
for j = 0 → NumberOfPsis do

HighDecomposition[i*NumberOfPsis+j]=IFFT(periodize(inputFFT.*BankPsis[j]));

end

end

Algorithm 1: Decomposition Algorithm

With ”periodize” being the function that will periodize the result in order
to sub-sample in the time domain to obtain the desired output size. In the
algorithm, after a layer has performed the decompositions, filters are freed in
order to reduce memory consumption. In fact, filters of computed layers wont
be reused and it would be a waste to keep them.

5.5 Scattering Network Implementation

Finally here is how to perform the Scattering Network on a signal and to save
the outputs :

MetaParam∗ opt=new MetaParam [3] ;
opt [0]=MetaParam (8 , 30 , 4 , 1) ;
opt [1]=MetaParam (64 , 1 , 1 , 1) ;
opt [2]=MetaParam (1024 , 1 , 1 , 1) ;
Scatter ingNetwork decomposit ion (” s i g n a l . wav” , opt , 3) ;

o fstream f i l e ;
f i l e . open (” l aye r1 . txt ”) ;
f i l e <<decomposit ion [0] ;
f i l e . c l o s e () ;
f i l e . open (” l aye r2 . txt ”) ;
f i l e <<decomposit ion [1] ;
f i l e . c l o s e () ;
f i l e . open (” l aye r3 . txt ”) ;
f i l e <<decomposit ion [2] ;
f i l e . c l o s e () ;
delete [] opt ;

In fact the operator [] is overloaded to return the specific layer which itself uses
its overloaded operator to export the coefficients.

21

Figure 12: Scattering Network Summary Diagram

5.6 Examples

In the examples below we did not apply any operation (nor logarithm of re-
normalization nor else). The sub-plots are from top to bottom the signal, and
the L1, L2, L3 from the scattering. Ordinates are the j index.

22

Figure 13: Signal, L1, L2, L3 of Inia Perou (slow clicks) T1:4 Q1:32 J1:2 T2:256
Q2:1 J2:1 T3:16 Q3:1 J3:1

Figure 14: Signal, L1, L2, L3, Inia Perou (fast clicks) T1:4 Q1:20 J1:1 T2:128
Q2:1 J2:1 T3:2 Q3:4 J3:1

Some of the discontinuities seen on the y axis of L3 are from the way the
results are stored and are due to the 2D representation of a 3D matrix. In
fact here the L3 output is not of dimension 4 since L2 doesn’t add a dimension
because it is made of only one high-pass filter. Using only one high-pass filter
for L3 would mean that the output of L3 is again of dimension 2.

23

Figure 15: Signal, L1, L2, L3, Bird (BIRDLIFE CLEF Challenge) T1:4 Q1:25
J1:4 T2:256 Q2:1 J2:1 T3:128 Q3:1 J3:1

6 Data representation

In order to appreciate the decompositions done either with spectrograms or the
scattering network, this toolbox provides a imagesc like utility. The presenta-
tion of it is as follow : description of the import method, optimization of the
rendering algorithm, representation of the data through OpenGL. Note that a
special executable file is done and can be used on every .txt file containing a
2D matrix by calling it. More descriptions are in the annexA.

6.1 Import data

The Data is imported by reading a .txt file. This method doesn’t need to know
the size of the matrix then is not the most efficient one. When reading the
file, the first line is used to learn the size of the matrix resulting for the other
lines in a faster loading method. In fact,the first line uses the vector push back
method that expands the size of the vector by 2 times its actual size when it’s
full meaning that for N points only log(N) expansions are made if we started
from a vector of length 1. The following lines are directly loaded into a vector
of the right size.

6.2 Optimization

Rendering is done using openGL. The matrix is decomposed into squares with
nodes being representation of the matrix points. Using squares instead of trian-
gles is more efficient in this particular case since all the points lie in a 2D plane.
The values of the points are described through the colors. Another optimization
used is through arrays (either vertex arrays, color arrays,...) by enabling client
states. In fact passing directly the vertex, color and points arrays reduces the
number of function calls and improve performances.

24

6.3 Colormap

To render good spectrograms or scalograms it is necessary to have a good col-
ormap which is simply a R → R

3 function mapping the value of a point to a
RGB color. The one used here is the same as Matlab or Python.

Figure 16: Colormap used in the toolbox

This colormap need normalized data as input but offers very pleasant ren-
dering colors.

6.4 Implementation

Given a matrix N ×M , squares are computed using or not the original aspect
ratio. If the aspect ratio is kept then a matrix of size N × 2N for example will
be displayed into [0, 1]× [0, 0.5] and this is true for every possible ratio. However
this kind of displaying can become very unpleasant for extrem ratios (few rows
and millions of columns for example). That is why it is possible to disregard
the original ratio drawing the matrix into the unitary square by adding a simple
argument when calling the function as follow:

. / imshow myspectro . txt // k e e p i n g o r i g i n a l r a t i o

. / imshow 0 myspectro . txt // s q u a r e d r a t i o

The 0 option specifies to not keep the original aspect ratio meaning that now the
image will be displayed as a square. During the data visualization it is possible
to zoom in or out using + and -. Moves are possible through the mouse or the
a,w,s,d keys.

25

7 Validation on a large scale bioacoustic data

set

In order to test the whole tool on a real data set, we used the Bird Challenge
2014 3 contening nearly 100 hours of recording distributed on 14K files of bird
songs from the Amazonian forest.

7.1 Recall of previous attempts

Previous attempts to run scattering decomposition on this dataset were difficult.
We tried first[2] to run scatnet on each file, over time windows of 300 ms. The
main difficulties were then the duration of the processing, and the cuts between
the windows that was difficult to manage for a second stage of classification over
the whole signal. In fact, the scatnet signal length limit is of 215 bins.

7.2 Results with CIGAL

CIGAL allowed on 1 CPU 2600 Mhz of the UTLN server to run all the files in
72 hours for layer 0,1 and 2. Note that once layer 0 done, computation time for
the other layers decreases significantly. We then get continuous decomposition
as illustrated below for several files using Morlet wavelets.

7.3 Perspective on BIRD2015

We give in fig 17 to 20 the spectrogram versus the scattering of some tropical
bird species from the Bird lifeclef challenge 2014 [ref]. They demonstrate the
clarity of the features. We currently use these features to train Convolutional
Neural Net for bird species identification.

Figure 17: XC73908.wav with T1:4 Q1:20 J1: 5, T2:256 Q2:1 J2:1, T3:128 Q3:1
J3:1, Spectrogram : 128 bins and 50% overlap

3SABIOD.ORG

26

SABIOD.ORG

Figure 18: XC83327.wav with T1:4 Q1:20 J1: 5, T2:256 Q2:1 J2:1, T3:128 Q3:1
J3:1, Spectrogram : 128 bins and 50% overlap

Figure 19: XC81545.wav with T1:4 Q1:20 J1: 5, T2:256 Q2:1 J2:1, T3:128 Q3:1
J3:1, Spectrogram : 128 bins and 50% overlap

27

Figure 20: XC80923.wav with T1:4 Q1:20 J1: 5, T2:256 Q2:1 J2:1, T3:128 Q3:1
J3:1, Spectrogram : 128 bins and 50% overlap

8 Future work

Concerning computation time for the Scattering Network, here is a plot for
each signal length (power of 2 from 28 to 216) with two layers. The asymptotic
complexity is O(n log(n)) for the scattering layer although here with the chosen
coefficients we can’t yet see the curve.

Figure 21: First Layer Coefficients : T=2,Q=8,J=8. Second Layer Coefficients
:T=16,Q=1,J=1

With this toolbox, it will be possible to perform deep analysis on the massive

28

signal datasets taking advantage of the speed benefits of this implementation.
More and more challenges are available such as the BIRDLIFE CLEF 2014 chal-
lenge4 offering a huge dataset.
This toolbox shall open new investigations into large scale databases, with com-
plex and not yet well known sources, including multipath propagation. It may
be useful for bioacoustic tropical forest databases or cetacean real time survey.
The FFT3D algorithm will be added to this toolbox having the advantage of
containing phse information which seems to be an interesting information for
good representation.
Extension to GPU processing is one of the possible future work which could
fully exploit the architecture of the presented algorithms.

Acknowledgements

We thank SABIOD MI MASTODONS CNRS which supported some analysis
of bioacoustic corpus which conducted to scale these signal decompositions. We
thank Marie Trone for her continuous interest on our signal processing, and for
sharing the INIA database. We also thank Vincent LOSTANLEN and Stephane
MALLAT for their contributions.

A README

Description of the folders :

• txt is where the results of the executable programs should be stored

• source contains all the algorithms and utilities

• exec contains code that use algorithms from source in order to make a
usable command line executable for

– scattering

– spectrogram

– imshow

• wav is a folder where the signals are stored, in this version some samples
are already present for testing

The Makefile is used without any arguments, it will create all the executa-
bles (3) which can then be used as follow

SPECTROGRAM:
default arguments
./spectrogram wav/slow.wav //this will generate the file
./txt/spectrogram.txt which can be displayed as follow
specify the window size
./spectrogram wav/slow.wav 256
specify the window size plus the overlapping

4http://sabiod.univ-tln.fr/public_data/BIRD_CHALLENGE/

29

http://sabiod.univ-tln.fr/public_data/BIRD_CHALLENGE/

./spectrogram wav/slow.wav 256 0.2

IMSHOW:
keeping original ratio
./imshow txt/spectrogram.txt
this utility acts like imagesc in matlab and can be used on any .txt storing a
plain matrix
square ratio
./imshow 0 txt/spectrogram.txt

SCATTERING:
arguments are in order : wav file, T1, Q1, J1, T2, Q2, J2,...
the number of layers is determined by the number of args given. Doing the
following command will save the layers in txt files into the txt directory
./scattering 8 20 4 8 1 1 32 1 1 wav/processed.wav

DISPLAYING THE SCATTERING
In order to display the wav plus all the scattering layers, a simple python file
is used for convenience and is used by simply calling it and passing the wav on
which the scattering has been done
python exec/Plots.py wav/processed.wav

B Licence GPL

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see ¡http://www.gnu.org/licenses/¿.

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

The GNU General Public License is a free, copyleft license for software and
other kinds of works.

The licenses for most software and other practical works are designed to
take away your freedom to share and change the works. By contrast, the GNU
General Public License is intended to guarantee your freedom to share and
change all versions of a program–to make sure it remains free software for all its
users. We, the Free Software Foundation, use the GNU General Public License
for most of our software; it applies also to any other work released this way by
its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom

30

to distribute copies of free software (and charge for them if you wish), that you
receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others from denying you these
rights or asking you to surrender the rights. Therefore, you have certain respon-
sibilities if you distribute copies of the software, or if you modify it: responsi-
bilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must pass on to the recipients the same freedoms that you received.
You must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1)
assert copyright on the software, and (2) offer you this License giving you legal
permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that
there is no warranty for this free software. For both users’ and authors’ sake,
the GPL requires that modified versions be marked as changed, so that their
problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified
versions of the software inside them, although the manufacturer can do so. This
is fundamentally incompatible with the aim of protecting users’ freedom to
change the software. The systematic pattern of such abuse occurs in the area of
products for individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand
ready to extend this provision to those domains in future versions of the GPL,
as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States
should not allow patents to restrict development and use of software on general-
purpose computers, but in those that do, we wish to avoid the special danger
that patents applied to a free program could make it effectively proprietary.
To prevent this, the GPL assures that patents cannot be used to render the
program non-free.

The precise terms and conditions for copying, distribution and modification
follow.

Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this Li-
cense. Each licensee is addressed as “you”. “Licensees” and “recipients”
may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an

31

exact copy. The resulting work is called a “modified version” of the earlier
work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without permis-
sion, would make you directly or secondarily liable for infringement under
applicable copyright law, except executing it on a computer or modifying
a private copy. Propagation includes copying, distribution (with or with-
out modification), making available to the public, and in some countries
other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through a
computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the
extent that it includes a convenient and prominently visible feature that
(1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and
how to view a copy of this License. If the interface presents a list of user
commands or options, such as a menu, a prominent item in the list meets
this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form of
a work.

A “Standard Interface” means an interface that either is an official stan-
dard defined by a recognized standards body, or, in the case of interfaces
specified for a particular programming language, one that is widely used
among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of packag-
ing a Major Component, but which is not part of that Major Component,
and (b) serves only to enable use of the work with that Major Compo-
nent, or to implement a Standard Interface for which an implementation
is available to the public in source code form. A “Major Component”, in
this context, means a major essential component (kernel, window system,
and so on) of the specific operating system (if any) on which the exe-
cutable work runs, or a compiler used to produce the work, or an object
code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run
the object code and to modify the work, including scripts to control those
activities. However, it does not include the work’s System Libraries, or
general-purpose tools or generally available free programs which are used
unmodified in performing those activities but which are not part of the
work. For example, Corresponding Source includes interface definition files
associated with source files for the work, and the source code for shared

32

libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control
flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can re-
generate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same
work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright
on the Program, and are irrevocable provided the stated conditions are
met. This License explicitly affirms your unlimited permission to run the
unmodified Program. The output from running a covered work is covered
by this License only if the output, given its content, constitutes a covered
work. This License acknowledges your rights of fair use or other equivalent,
as provided by copyright law.

You may make, run and propagate covered works that you do not con-
vey, without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with facili-
ties for running those works, provided that you comply with the terms of
this License in conveying all material for which you do not control copy-
right. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms
that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes it
unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting
or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid cir-
cumvention of technological measures to the extent such circumvention is
effected by exercising rights under this License with respect to the covered
work, and you disclaim any intention to limit operation or modification of
the work as a means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropri-
ately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added
in accord with section 7 apply to the code; keep intact all notices of the

33

absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and
you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the terms
of section 4, provided that you also meet all of these conditions:

(a) The work must carry prominent notices stating that you modified it,
and giving a relevant date.

(b) The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact all
notices”.

(c) You must license the entire work, as a whole, under this License
to anyone who comes into possession of a copy. This License will
therefore apply, along with any applicable section 7 additional terms,
to the whole of the work, and all its parts, regardless of how they
are packaged. This License gives no permission to license the work
in any other way, but it does not invalidate such permission if you
have separately received it.

(d) If the work has interactive user interfaces, each must display Appro-
priate Legal Notices; however, if the Program has interactive inter-
faces that do not display Appropriate Legal Notices, your work need
not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work, and
which are not combined with it such as to form a larger program, in or on
a volume of a storage or distribution medium, is called an “aggregate” if
the compilation and its resulting copyright are not used to limit the access
or legal rights of the compilation’s users beyond what the individual works
permit. Inclusion of a covered work in an aggregate does not cause this
License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:

(a) Convey the object code in, or embodied in, a physical product (in-
cluding a physical distribution medium), accompanied by the Cor-
responding Source fixed on a durable physical medium customarily
used for software interchange.

(b) Convey the object code in, or embodied in, a physical product (in-
cluding a physical distribution medium), accompanied by a written

34

offer, valid for at least three years and valid for as long as you of-
fer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the Cor-
responding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of
physically performing this conveying of source, or (2) access to copy
the Corresponding Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source. This alternative is allowed
only occasionally and noncommercially, and only if you received the
object code with such an offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the Correspond-
ing Source in the same way through the same place at no further
charge. You need not require recipients to copy the Corresponding
Source along with the object code. If the place to copy the object
code is a network server, the Corresponding Source may be on a dif-
ferent server (operated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear directions next
to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you re-
main obligated to ensure that it is available for as long as needed to
satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you
inform other peers where the object code and Corresponding Source
of the work are being offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be included
in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer prod-
uct, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical
or common use of that class of product, regardless of the status of the
particular user or of the way in which the particular user actually uses,
or expects or is expected to use, the product. A product is a consumer
product regardless of whether the product has substantial commercial,
industrial or non-consumer uses, unless such uses represent the only sig-
nificant mode of use of the product.

“Installation Information” for a User Product means any methods, pro-
cedures, authorization keys, or other information required to install and
execute modified versions of a covered work in that User Product from a
modified version of its Corresponding Source. The information must suf-
fice to ensure that the continued functioning of the modified object code

35

is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specif-
ically for use in, a User Product, and the conveying occurs as part of a
transaction in which the right of possession and use of the User Product is
transferred to the recipient in perpetuity or for a fixed term (regardless of
how the transaction is characterized), the Corresponding Source conveyed
under this section must be accompanied by the Installation Information.
But this requirement does not apply if neither you nor any third party
retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for the
User Product in which it has been modified or installed. Access to a net-
work may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information provided, in
accord with this section must be in a format that is publicly documented
(and with an implementation available to the public in source code form),
and must require no special password or key for unpacking, reading or
copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this Li-
cense by making exceptions from one or more of its conditions. Additional
permissions that are applicable to the entire Program shall be treated as
though they were included in this License, to the extent that they are
valid under applicable law. If additional permissions apply only to part of
the Program, that part may be used separately under those permissions,
but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own removal
in certain cases when you modify the work.) You may place additional
permissions on material, added by you to a covered work, for which you
have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add
to a covered work, you may (if authorized by the copyright holders of that
material) supplement the terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms
of sections 15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices
displayed by works containing it; or

36

(c) Prohibiting misrepresentation of the origin of that material, or requir-
ing that modified versions of such material be marked in reasonable
ways as different from the original version; or

(d) Limiting the use for publicity purposes of names of licensors or au-
thors of the material; or

(e) Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that material
by anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any liability
that these contractual assumptions directly impose on those licensors
and authors.

All other non-permissive additional terms are considered “further restric-
tions” within the meaning of section 10. If the Program as you received
it, or any part of it, contains a notice stating that it is governed by this
License along with a term that is a further restriction, you may remove
that term. If a license document contains a further restriction but per-
mits relicensing or conveying under this License, you may add to a covered
work material governed by the terms of that license document, provided
that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must
place, in the relevant source files, a statement of the additional terms that
apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form
of a separately written license, or stated as exceptions; the above require-
ments apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly pro-
vided under this License. Any attempt otherwise to propagate or modify
it is void, and will automatically terminate your rights under this License
(including any patent licenses granted under the third paragraph of section
11).

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure
the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the li-
censes of parties who have received copies or rights from you under this

37

License. If your rights have been terminated and not permanently rein-
stated, you do not qualify to receive new licenses for the same material
under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a
copy of the Program. Ancillary propagation of a covered work occurring
solely as a consequence of using peer-to-peer transmission to receive a
copy likewise does not require acceptance. However, nothing other than
this License grants you permission to propagate or modify any covered
work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives
a license from the original licensors, to run, modify and propagate that
work, subject to this License. You are not responsible for enforcing com-
pliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organi-
zation, or substantially all assets of one, or subdividing an organization,
or merging organizations. If propagation of a covered work results from
an entity transaction, each party to that transaction who receives a copy
of the work also receives whatever licenses to the work the party’s prede-
cessor in interest had or could give under the previous paragraph, plus a
right to possession of the Corresponding Source of the work from the pre-
decessor in interest, if the predecessor has it or can get it with reasonable
efforts.

You may not impose any further restrictions on the exercise of the rights
granted or affirmed under this License. For example, you may not impose
a license fee, royalty, or other charge for exercise of rights granted under
this License, and you may not initiate litigation (including a cross-claim
or counterclaim in a lawsuit) alleging that any patent claim is infringed
by making, using, selling, offering for sale, or importing the Program or
any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this Li-
cense of the Program or a work on which the Program is based. The work
thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or
controlled by the contributor, whether already acquired or hereafter ac-
quired, that would be infringed by some manner, permitted by this Li-
cense, of making, using, or selling its contributor version, but do not
include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition,
“control” includes the right to grant patent sublicenses in a manner con-
sistent with the requirements of this License.

38

Each contributor grants you a non-exclusive, worldwide, royalty-free patent
license under the contributor’s essential patent claims, to make, use, sell,
offer for sale, import and otherwise run, modify and propagate the con-
tents of its contributor version.

In the following three paragraphs, a “patent license” is any express agree-
ment or commitment, however denominated, not to enforce a patent (such
as an express permission to practice a patent or covenant not to sue for
patent infringement). To “grant” such a patent license to a party means
to make such an agreement or commitment not to enforce a patent against
the party.

If you convey a covered work, knowingly relying on a patent license, and
the Corresponding Source of the work is not available for anyone to copy,
free of charge and under the terms of this License, through a publicly
available network server or other readily accessible means, then you must
either (1) cause the Corresponding Source to be so available, or (2) arrange
to deprive yourself of the benefit of the patent license for this particular
work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Know-
ingly relying” means you have actual knowledge that, but for the patent
license, your conveying the covered work in a country, or your recipient’s
use of the covered work in a country, would infringe one or more identifi-
able patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement,
you convey, or propagate by procuring conveyance of, a covered work, and
grant a patent license to some of the parties receiving the covered work
authorizing them to use, propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope
of its coverage, prohibits the exercise of, or is conditioned on the non-
exercise of one or more of the rights that are specifically granted under
this License. You may not convey a covered work if you are a party to
an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third
party grants, to any of the parties who would receive the covered work
from you, a discriminatory patent license (a) in connection with copies of
the covered work conveyed by you (or copies made from those copies), or
(b) primarily for and in connection with specific products or compilations
that contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any
implied license or other defenses to infringement that may otherwise be
available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not ex-
cuse you from the conditions of this License. If you cannot convey a

39

covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not convey it at all. For example, if you agree to terms that obligate
you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and
this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission
to link or combine any covered work with a work licensed under version 3 of
the GNU Affero General Public License into a single combined work, and
to convey the resulting work. The terms of this License will continue to
apply to the part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public Li-
cense “or any later version” applies to it, you have the option of following
the terms and conditions either of that numbered version or of any later
version published by the Free Software Foundation. If the Program does
not specify a version number of the GNU General Public License, you may
choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of
the GNU General Public License can be used, that proxy’s public state-
ment of acceptance of a version permanently authorizes you to choose that
version for the Program.

Later license versions may give you additional or different permissions.
However, no additional obligations are imposed on any author or copyright
holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OFMERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAMPROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

40

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAWORAGREED
TO INWRITINGWILL ANY COPYRIGHT HOLDER, OR ANYOTHER
PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANYGENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above
cannot be given local legal effect according to their terms, reviewing courts
shall apply local law that most closely approximates an absolute waiver
of all civil liability in connection with the Program, unless a warranty or
assumption of liability accompanies a copy of the Program in return for a
fee.

End of Terms and Conditions

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively state the exclusion
of warranty; and each file should have at least the “copyright” line and a
pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

41

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice
like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appro-
priate parts of the General Public License. Of course, your program’s com-
mands might be different; for a GUI interface, you would use an “about
box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL,
see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your pro-
gram into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary applica-
tions with the library. If this is what you want to do, use the GNU
Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

References

[1] A dft and fft tutorial. http://www.alwayslearn.com/dft%20and%20fft%
20tutorial/DFTandFFT_BasicIdea.html, June 2014.

[2] Randall Balestriero. Scattering for bioacoustics. Internship research report,
Univ. Toulon, 2013-14 supervised by H. Glotin.

[3] Randall Balestriero and Herve Glotin. Humpback whale song representa-
tion. NIPS4B 2013.

[4] DI ENS. Scatnet toolbox. http://www.di.ens.fr/data/software/scatnet/,
2011-2015.

[5] H Goeau, H Glotin, WP Vellinga, and A Rauber. Lifeclef bird identitfica-
tion task 2014. Clef working notes, 2014.

[6] Anden J. and Mallat S. Deep scattering spectrum. Deep Scattering Spec-
trum,Submitted to IEEE Transactions on Signal Processing, 2011.

[7] Alexis Joly, Herve Goeau, Herve Glotin, Concetto Spampinato, and Hen-
ning Muller. Lifeclef 2014: multimedia life species identification challenges.
Information Access Evaluation. Multilinguality, Multimodality, and Inter-
action, Springer International Publishing, 2014.

[8] Stéphane Mallat. A wavelet tour of signal processing. Academic press,
1999.

42

http://www.alwayslearn.com/dft%20and%20fft%20tutorial/DFTandFFT_BasicIdea.html
http://www.alwayslearn.com/dft%20and%20fft%20tutorial/DFTandFFT_BasicIdea.html

[9] Stephane MALLAT. Group invariant scattering. Communications in Pure
and Applied Mathematics, vol. 65, no. 10, pp. 1331-1398, 2012.

[10] Joo Martins. How to implement the fft algo-
rithm. http://www.codeproject.com/Articles/9388/

How-to-implement-the-FFT-algorithm, February 2005.

[11] Vlodymyr Myrny. A simple and efficient fft implemen-
tation in c++:part 1. http://www.drdobbs.com/cpp/

a-simple-and-efficient-fft-implementatio/199500857, May 2007.

[12] Craig Stuart Sapp. Wave pcm soundfile format. https://ccrma.

stanford.edu/courses/422/projects/WaveFormat/, December 2011.

[13] Laurent Sifre and Stephane Mallat. Rotation, scaling and deformation
invariant scattering for texture discrimination. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2013.

[14] Trone, Balestriero, and Glotin. Gabor scalogram reveals formants in high-
frequency dolphin clicks. Proc. of Neural Information Processing Scaled for
Bioacoustics: from Neurons to Big Data, 2013, Ed. Glotin H., LeCun Y.,
Artieres T., Mallat S., Tchernichovski O., Halkias X., joint to NIPS Conf.,
http://sabiod.org/publications.html, ISSN 979-10-90821-04-0, 2013.

[15] Marie Trone, Herve Glotin, Randall Balestriero, and Bonnett E David. All
clicks are not created equally: Variations in high-frequency acoustic signal
parameters of the amazon river dolphin (inia geoffrensis). in The Journal
of the Acoustical Society of America, Volume 136, Issue 4, short letter, Oct
2014, long paper in preparation., 2014.

[16] Wikipedia. Fast fourier transform. http://en.wikipedia.org/wiki/

Fast_Fourier_transform, December 2014.

[17] Wikipedia. Wav. http://en.wikipedia.org/wiki/WAV, November 2014.

43

http://www.codeproject.com/Articles/9388/How-to-implement-the-FFT-algorithm
http://www.codeproject.com/Articles/9388/How-to-implement-the-FFT-algorithm
http://www.drdobbs.com/cpp/a-simple-and-efficient-fft-implementatio/199500857
http://www.drdobbs.com/cpp/a-simple-and-efficient-fft-implementatio/199500857
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/WAV

	Introduction
	Audio File io
	File Structure
	Implementation

	Fourier Transform
	Definitions
	Fast Fourier Transform
	Danielson-Lanczos Lemma
	Twiddle Factor Properties
	Butterfly Scheme

	Implementation
	Inverse Fourier Transform
	Graph

	Spectrogram
	Algorithm
	Implementation
	Graph

	Examples

	Scattering Network
	Introduction
	Filter Bank implementation
	Graph

	Layer Implementation
	Graph

	Decomposition Implementation
	Scattering Network Implementation
	Examples

	Data representation
	Import data
	Optimization
	Colormap
	Implementation

	Validation on a large scale bioacoustic data set
	Recall of previous attempts
	Results with CIGAL
	Perspective on BIRD2015

	Future work
	README
	Licence GPL

